KEAM 2023 Solved Paper # **Physics & Chemistry** # **Question 1** A projectile is thrown at a speed V and at an angle θ with the horizontal. If the speed at its maximum height is $\frac{V}{3}$, then the value of $\tan\theta$ is : #### **Options:** - A. $\sqrt{3}$ - B. $\frac{1}{\sqrt{3}}$ - C. $2\sqrt{2}$ - D. 3 - E. $3\sqrt{3}$ **Answer: C** #### **Solution:** #### **Solution:** $u\cos\theta$ $v\cos\theta = \frac{v}{3}$ $\cos\theta = \frac{1}{3}$ $\tan\theta = \sqrt{\sec^2\theta - 1}$ $= \sqrt{3^2 - 1} = \sqrt{8} = 2\sqrt{2}$ # **Question 2** Consider a vector addition $\vec{P} + \vec{Q} = \vec{R}$. If $\vec{P} = |\vec{P}| \hat{i}$, $|\vec{Q}| = 10$ and $\vec{R} = 3 |\vec{P}| \hat{j}$ then $|\vec{P}|$ is: ### **Options:** - A. √10 - B. 30 - C. √30 - D. $2\sqrt{10}$ - E. $2\sqrt{20}$ | | swer: A
clution: | |---|---| | $\overrightarrow{P} + \overrightarrow{P} \hat{i}$ $ 10^{2}$ | ution:
$\overrightarrow{Q} = \overrightarrow{R}$
$+ 10 \widehat{n} = 3p \widehat{j}$
$\widehat{n} = 3p \widehat{j} - p \widehat{i} $
$= 9p^2 + p^2$
$= 10p^2$ | | Q | uestion 3 | | is | car is moving with an i
applied and the car is
e average speed of the | A car is moving with an initial speed of 5m / s. A constant braking force is applied and the car is brought to rest in a distance of 10m. What is the average speed of the car during the deceleration process? #### **Options:** A. 1m / s B. 2.5m / s C. 4m / s D. 5m / s E. 7m / s **Answer: B** #### **Solution:** **Solution:** # **Question 4** Consider a particle executing a simple harmonic motion. Let x, A, K and U are displacement, amplitude, kinetic energy and potential energy, respectively, of the particle at certain instant of time. If $\frac{K}{U} = 3$, then $\frac{x}{A}$ is . ## **Options:** A. $\frac{1}{3}$ B. $\frac{1}{2}$ C. $\frac{2}{3}$ | D. | $\frac{1}{9}$ | | |-----|---------------|--| | E. | $\frac{4}{9}$ | | | Ans | nswer: B | | | So | olution: | | | | | | | Sol | lution: | | # **Question 5** Two thin convex lenses L_1 and L_2 have focal lengths $4\,cm$ and $10\,cm$, respectively. They are separated by a distance of $x\,cm$ as shown in the figure. A point source S is placed on the principal axis at a distance $12\,cm$ to the left of L_1 . If the image of S is formed at infinity, the value of x is : #### **Options:** | Α | 6 | |--------------|-------------------| | 4 1 . | $\mathbf{\sigma}$ | B. 16 C. 14 D. 24 E. 10 **Answer: B** #### **Solution:** | Solu | tion: | | | |------|-------|--|--| | | | | | | | | | | # ----- # **Question 6** What is the de Broglie wavelength corresponding to a ball of mass 100g moving with a speed of 33m / s? (Plank's constant = $6.6 \times 10^{-34} J$ / s) **Options:** | B. 2×10^{-34} m | |---| | C. 3×10^{-34} m | | D. 1×10^{34} m | | E. 2×10^{34} m | | Answer: B | | Solution: | | Solution: | | Question 7 | | A laser source emits light of wavelength 300 nm and has a power of 3.3 mW. The average number of photons emitted per second is : (Speed of light = 3×10^6 m / s, Plank's constant = 6.6×10^{-34} J / s) | | Options: | | A. 2×10^{15} | | B. 1×10^{15} | | C. 5×10^{15} | | D. 3×10^{15} | | $E. 4 \times 10^{15}$ | | Answer: C | | Solution: | | Solution: | | Question 8 | | A thin convex lens of refractive index 1.5 has a focal length of 10 cm in air. When the lens is immersed in a fluid, its focal length becomes 70 cm. The refractive index of the fluid is : | | Options: | A. 1×10^{-34} m A. 1.33 B. 1.6 | C. 1.25 | |--| | D. 1.45 | | E. 1.4 | | Answer: E | | Solution: | | Solution: | | Question 9 | | For the hydrogen spectrum, the wavelength in Balmer series is given by | | $\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$, where $\lambda =$ wavelength and R is Rydberg constant. | | What are the values of n_1 and n_2 for the longest wavelength in the Balmer series ? | | Options: | | A. $n_1 = 2$, $n_2 = 3$ | | B. $n_1 = 2$, $n_2 = 4$ | | C. $n_1 = 1$, $n_2 = 2$ | | D. $n_1 = 2$, $n_2 = \infty$ | | E. $n_1 = 3$, $n_2 = \infty$ | | Answer: A | | Solution: | | Solution: | | Question 10 | Car P is heading east with a speed V and car Q is heading north with a speed $\sqrt{3}V$. What is the velocity of car Q with respect to car P? ## **Options:** - A. $V\sqrt{3}$, heading north - B. 2V, 30° east of north - C. $V\sqrt{3}$, 60° west of north | D. 2V, 30° west of north | |---| | E. $V\sqrt{2}$, 45° west of north | | Answer: D | | Solution: | | Solution: | | Question 11 | | A particle at rest starts from the origin with a constant acceleration that makes an angle 60° with the positive y-axis. If its displacement along y-axis is 10m in time 2 s, then the magnitude of \vec{a} is : | | Options: | | A. 10ms ⁻² | | $B. 4ms^{-2}$ | | C. 8ms ⁻² | | D. 15ms^{-2} | | E. 20ms ⁻² | | Answer: A | | Solution: | | Solution: | | Question 12 | | Suppose a force is given by the expression $= kx^2$; where x has the dimension of length. The dimension of k is : | | Options: | | A. $ML^{-1}T^{-1}$ | | B. MLT ⁻¹ | C. MT^{-2} D. $M^{-1}L^{-1}T$ E. $ML^{-1}T^{-2}$ **Answer: E** à | Solution: | |--| | Question 13 | | A horizontal force is exerted on a 20 kg box to slide it up on an inclined plane with an angle of 30° . The frictional force retarding the motion is 80N. If the box moves with a constant speed, then the magnitude of the force is: (Take $g=10ms^{-2}$) | | Options: | | A. $50\sqrt{2}N$ | | B. 100N | | C. $80\sqrt{3}$ N | | D. $100\sqrt{2}N$ | | E. $120\sqrt{3}N$ | | Answer: E | | Solution: | | Solution: | | Question 14 | # In a Young's double slit experiment which of the following statements is NOT true? #### **Options:** **Solution:** - A. Angular separation of the fringes remains constant when the screen is moved away from the plane of the slits. - B. Fringe separation increases when the separation between the two slits decreases. - C. Sharpness of the fringe pattern decreases when the source slit width increases. - D. Distance between the fringes decreases when the separation between slits and the screen increases. - E. The central fringe is white when the monochromatic source is replaced by a white light source. **Answer: D** #### **Solution:** | Solution: | |---| | Question 15 | | N capacitors, each with $1\mu F$ capacitance, are connected in parallel to store a charge of 1C. The potential across each capacitor is 100V. If these N capacitors are now connected in series, the equivalent capacitance in the circuit will be : | | Options: | | A. 10^{-4} F | | B. 10^{-6} F | | C. 10^{-10} F | | D. 5×10^{-8} F | | $E. 10^{-2}F$ | | Answer: C | | Solution: | | Solution: | | Question 16 | | A train consists of an engine and 3 coaches, first coach is closest to the engine, third coach is farthest from engine. The train is moving with a constant acceleration a. The mass of each coach is M . The force exerted by the first coach on the second coach will be: | | Options: | | A. Ma | | B. 2M a | | C. 3 Ma | | D. 4 Ma | | E. $\sqrt{2}M$ a | | Answer: B | | Solution: | | Solution: | | Question 1 | 17 | |----------------------|---| | 1 kg is attach | n rod of mass 3 kg has a length of 1m. If a point mass of ed to it at a distance of 40 cm from its center, the center of y a distance of: | | Options: | | | A. 2.5 cm | | | B. 5 cm | | | C. 8 cm | | | D. 10 cm | | | E. 20 cm | | | Answer: D | | | Solution: | | | Solution: | | | | ling on a plane surface. A point on the rim of the wheel at el as the centre has a speed of 4m / s. The speed of the | | Options: | | | A. 4m / s | | | B. 0 | | | C. $2\sqrt{2}$ m / s | | | D. 8m / s | | | E. $4\sqrt{2}$ m / s | | | Answer: C | | | Solution: | | | Solution: | | | Question 1 | | | An unpolarised ligh
ray is totally polaris
index of the glass is | sed. If the angle of | | | |--|----------------------|---|---------| | Options: | | | | | A. 1.5 | | | | | B. 1.73 | | | | | C. 1.41 | | | | | D. 1.45 | | | | | E. 1.60 | | | | | Answer: B | | | | | Solution: | | | | | Solution: | | | | | Question 20 | | - | | | A planet has an esca
The radius of the pl
The acceleration du | anet is 10, 000 km. | | ce is : | | Options: | | | | | A. $10m / s^2$ | | | | | B. $9.8 \text{m} / \text{s}^2$ | | | | | C. $20m / s^2$ | | | | | D. $2.5 \text{m} / \text{s}^2$ | | | | | E. $5m / s^2$ | |
 | | Answer: E | | | | | Solution: | | | | | Solution: | | | | | Question 21 | | - | | In a Zener regulated power supply circuit as shown in figure below, a Zener diode with $\rm V_z$ = 10V is used for regulation. The load current, Zener current and unregulated input V $_{\rm in}~$ are 5 mA, 35 mA and 20V, # respectively. The value of R is: Vin S Load **Options:** A. 1000Ω B. 750Ω $C.250\Omega$ D. 100Ω E. 500Ω **Answer: C Solution: Solution: Question 22** An average frictional force of 80N is required to stop an object at a distance of 25m. If the initial speed of the object is 20m / s, the mass of the object is: **Options:** A. 25 kg B. 12 kg C. 30 kg D. 40 kg E. 10 kg **Answer: E Solution: Solution: Question 23** | ideal gas is kept in a closed container. If the temperature is doubled
the volume of the container is reduced to half, the gas pressure is : | |--| | ons: | | nchanged | | alved | | oubled | | creased by 4 times | | creased by 16 times | | ver: D | | ution: | | ion: | | estion 24 | | lestion 24 | | netal wire of natural length 50cm and cross-sectional area 4.0mm^2 is ed at one end. A mass of 2.4kg is hung from the other end of the e. If the elastic potential energy of the wire is $1.8 \times 10^{-4} \text{J}$, then its ang's modulus is : (Take g = 10ms^{-2}) | | netal wire of natural length 50 cm and cross-sectional area 4.0 mm ² is ed at one end. A mass of 2.4 kg is hung from the other end of the e. If the elastic potential energy of the wire is 1.8×10^{-4} J, then its | | netal wire of natural length $50\mathrm{cm}$ and cross-sectional area $4.0\mathrm{mm}^2$ is ed at one end. A mass of $2.4\mathrm{kg}$ is hung from the other end of the e. If the elastic potential energy of the wire is $1.8\times10^{-4}\mathrm{J}$, then its ang's modulus is : (Take g = $10\mathrm{ms}^{-2}$) | | netal wire of natural length $50\mathrm{cm}$ and cross-sectional area $4.0\mathrm{mm}^2$ is ed at one end. A mass of $2.4\mathrm{kg}$ is hung from the other end of the e. If the elastic potential energy of the wire is $1.8\times10^{-4}\mathrm{J}$, then its ang's modulus is : (Take g = $10\mathrm{ms}^{-2}$) ons: | | netal wire of natural length 50 cm and cross-sectional area 4.0mm ² is ed at one end. A mass of 2.4 kg is hung from the other end of the e. If the elastic potential energy of the wire is 1.8×10^{-4} J, then its ang's modulus is : (Take g = 10ms^{-2}) ons: $6 \times 10^{11} \text{Nm}^{-2}$ | | netal wire of natural length $50\mathrm{cm}$ and cross-sectional area $4.0\mathrm{mm}^2$ is ed at one end. A mass of $2.4\mathrm{kg}$ is hung from the other end of the e. If the elastic potential energy of the wire is $1.8\times10^{-4}\mathrm{J}$, then its ang's modulus is : (Take $g=10\mathrm{ms}^{-2}$) ons: $6\times10^{11}\mathrm{Nm}^{-2}$ $4\times10^{11}\mathrm{Nm}^{-2}$ | | netal wire of natural length 50 cm and cross-sectional area 4.0mm ² is ed at one end. A mass of 2.4 kg is hung from the other end of the e. If the elastic potential energy of the wire is 1.8×10^{-4} J, then its ang's modulus is : (Take g = 10ms^{-2}) ons: $6 \times 10^{11} \text{Nm}^{-2}$ $4 \times 10^{11} \text{Nm}^{-2}$ $2 \times 10^{11} \text{Nm}^{-2}$ | | netal wire of natural length 50 cm and cross-sectional area 4.0mm ² is ed at one end. A mass of 2.4 kg is hung from the other end of the e. If the elastic potential energy of the wire is 1.8×10^{-4} J, then its ang's modulus is : (Take g = 10ms^{-2}) ons: $6 \times 10^{11} \text{Nm}^{-2}$ $4 \times 10^{11} \text{Nm}^{-2}$ $2 \times 10^{11} \text{Nm}^{-2}$ $8 \times 10^{11} \text{Nm}^{-2}$ | | netal wire of natural length 50 cm and cross-sectional area 4.0mm ² is red at one end. A mass of 2.4 kg is hung from the other end of the e. If the elastic potential energy of the wire is 1.8×10^{-4} J, then its ing's modulus is : (Take g = 10ms^{-2}) ons: $6 \times 10^{11} \text{Nm}^{-2}$ $4 \times 10^{11} \text{Nm}^{-2}$ $2 \times 10^{11} \text{Nm}^{-2}$ $8 \times 10^{11} \text{Nm}^{-2}$ $0 \times 10^{11} \text{Nm}^{-2}$ | | netal wire of natural length 50 cm and cross-sectional area 4.0mm^2 is at one end. A mass of 2.4 kg is hung from the other end of the e. If the elastic potential energy of the wire is $1.8 \times 10^{-4} \text{J}$, then its ang's modulus is : (Take $g = 10 \text{ms}^{-2}$) ons: $6 \times 10^{11} \text{Nm}^{-2}$ $4 \times 10^{11} \text{Nm}^{-2}$ $2 \times 10^{11} \text{Nm}^{-2}$ $8 \times 10^{11} \text{Nm}^{-2}$ $0 \times 10^{11} \text{Nm}^{-2}$ wer: E | **Options:** | A. Static friction force is always equal to μN , where μ is co-efficient of static friction and N is normal force. | |--| | B. Friction is a non-conservative force. | | C. Friction arises from electro-magnetic force. | | D. Friction always opposes relative motion between two surfaces. | | E. Maximum value of static friction is μN , where μ is co-efficient of static friction and N is normal force. | | Answer: A | | Solution: | | Solution: | | Question 26 | | The angle of minimum deviation for a prism of apex angle 60° and refractive index of $\sqrt{2}$ is: | | Options: | | A. 45° | | B. 90° | | C. 30° | | D. 60° | | E. 15° | | Answer: C | | Solution: | | Solution: | | Question 27 | | An ideal diatomic gas is made up of molecules that do not vibrate. Its volume is compressed by a factor of 32, without any exchange of heat. If the initial and final pressures are P_1 and P_2 , respectively, the ratio $P_1 : P_2$ is : | | Options: | A. 7:5 | · | |--| ne under the influence of a source of
ent at time t = 0 and 10 s are 0 and
nent at time t = 20 s is: | | · | | | | | | | | | | | | | | | | L | nd the capillary rises by a height of $5.0\,\mathrm{cm}$. The contact angle between liquid and glass will be : (Take $g=10\mathrm{ms}^{-2}$) ### **Options:** A. 30° B. 0° C. 45° | D. 75° | |---| | E. 60° | | answer: E | | Solution: | | olution: | | Question 30 | | A gun fires N bullets per minute. The mass of each bullet is 10g and every bullet travels with a speed of 600m / s. If the power delivered by the gun is 9000W, the value of N is : | | Options: | | a. 300 | | 3. 400 | | 2. 360 | | D. 420 | | E. 250 | | answer: A | | Solution: | | olution: | | Question 31 | | n an oil drop experiment, 'n' numbers of electrons are stripped from in oil drop to make it positively charged. A vertical electric field of | In an oil drop experiment, 'n' numbers of electrons are stripped from an oil drop to make it positively charged. A vertical electric field of magnitude $4.9 \times 10^{14} N$ / C is applied to balance the force due to gravity on the oil drop. If the mass of oil drop is $80\mu g$, the value of 'n' will be: (Take g = 9.8m / s^2 and charge of an electron $= 1.6 \times 10^{-19} C$) #### **Options:** A. 1 B. 10 C. 100 D. 1000 | Answer: B | |--| | Solution: | | Solution: Question is wrong - None of above | | Question 32 | | A radioactive nuclei has a half life of 693 s. The activity of one mole of that nuclei sample is : (Avogadro's number = 6.023×10^{23} and ln(2) = 0.693) | | Options: | | A. $2 \times 10^{10} \mathrm{Bq}$ | | B. $3.7 \times 10^{10} \mathrm{Bq}$ | | C. 6.023×10^{20} | | D. $0.5 \times 10^{-10} \mathrm{Bq}$ | | E. $1 \times 10^{20} \mathrm{Bq}$ | | Answer: C | | Solution: | | Solution: | | Question 33 | | A projectile is thrown at an angle 60° above the horizontal and with kinetic energy 40 J. The kinetic energy of the projectile at the highest point of its trajectory will be : | | Options: | | A. 10J | | B. 40J | | C. 20J | | D. $20\sqrt{2}J$ | E. 10000 E. 20√3J **Answer: A** | Solution: | |---| | Question 34 | | A billiard ball B_1 moving with velocity V , collides with another billiard ball B_2 at rest. After the collision, ball B_1 is deflected by 60° and the angle between the velocities of these two balls is 90° . The speed of the ball B_2 after the collision is : | | Options: | | A. $\frac{V}{2}$ | | B. $\frac{3V}{2}$ | | C. 2V | | D. $\frac{2V}{\sqrt{3}}$ | | E. $\frac{\sqrt{3}V}{2}$ | | Answer: E | | Solution: | | Solution: | | Question 35 | | Two satellites A and B are moving around the earth in a circular orbit of radius ' R ' and ' $2R$, respectively. If the kinetic energy of the satellite A is two-times the kinetic energy of the
satellite B, the ratio of their masses (m _A : m _B) is : | | Options: | | A. 1:2 | **Solution:** B. 2:1 C. 1:1 D. 1:4 E. 4:1 | Answer: C | |---| | Solution: | | Solution: | | Question 36 | | An object at rest suddenly explodes into three parts of equal masses.
Two of them move away at right angles to each other with equal speed
of 10m / s. The speed of the third part just after the explosion will be : | | Options: | | A. 10m / s | | B. 20m / s | | C. $2\sqrt{10}$ m / s | | D. 0 | | E. $10\sqrt{2}$ m / s | | Answer: E | | Solution: | | Solution: | | Question 37 | | Two identical solid spheres, each of radius 10 cm, are kept in contact. If
the moment of inertia of this system about the tangent passing through
the point of contact is 0.14 kg·m², then mass of each sphere is | | Options: | | A. 5 kg | | B. 17.5 kg | | C. 35 kg | | D. 2.5 kg | E. 10 kg **Answer: A** **Solution:** ______ # **Question 38** A NOR gate has two input I $_1$ and I $_2$ and one output terminal Y . Which of the following configuration (truth table) is INCORRECT for the NOR gate? **Options:** A. $$I_1 = 0$$, $I_2 = 0$, $Y = 1$ B. $$I_1 = 0$$, $I_2 = 0$, $Y = 0$ C. $$I_1 = 1$$, $I_2 = 1$, $Y = 0$ D. $$I_1 = 1$$, $I_2 = 0$, $Y = 0$ E. $$I_1 = 0$$, $I_2 = 1$, $Y = 0$ **Answer: B** **Solution:** **Solution:** _____ # **Question 39** The kinetic energy of a particle of mass m_1 moving with a speed V is same as the kinetic energy of a solid sphere of mass m_2 rolling on the plane surface. If the speed of the centre of the sphere is also V, then $\frac{m_1}{m_2}$ is : **Options:** A. $$\frac{7}{10}$$ B. $$\frac{1}{2}$$ C. $$\frac{5}{7}$$ D. $$\frac{7}{5}$$ E. $$\frac{2}{3}$$ **Answer: D** **Solution:** | Solution: | | |--|---| | Question 40 | | | Line-of-sight communication happens by means of: | | | Options: | | | A. Ground wave | | | B. Sky wave | | | C. Surface wave | | | D. Space wave | | | E. Seismic wave | | | Answer: D | | | Solution: | | | Solution: | | | Question 41 A ring of radius 1.75m stands vertically. A small sphere of radius and the control of this size with cut alignment. If it has a recommendation of this size with cut alignment. | _ | | rolls on the inside of this ring without slipping. If it has a velocity $f(s) = 10 \text{m}$, s at the bottom of the ring, then its velocity when it is top is: (Take $g = 10 \text{m} / s^2$) | _ | | Options: | | | A. $3\sqrt{2}$ m / s | | | B. $2\sqrt{3}$ m / s | | | C. 8√2m / s | | | D. $2\sqrt{5}$ m / s | | | E. $5\sqrt{2}$ m / s | | | Answer: E | | | Solution: | | | Solution: | | | Question 42 | | | signal of 5 kHz frequency is amplitude modulated on a carrier wave of
equency 5 MHz. The frequencies of the side bands are : | |--| | tions: | | 1.5 MHz and 5.5 MHz | | 1.95 MHz and 5.05 MHz | | 1.995 MHz and 5.005 MHz | | 1.9995 MHz and 5.0005 MHz | | 5 MHz and 5 kHz | | swer: C | | lution: | | ution: | | uestion 43 | | | | string clamped at both the ends has a mass 10 gm, length 1m and it is
pt under tension of 1N. It is vibrating in the fundamental mode with
amplitude of 1 cm. Assuming the standing wave pattern, the
eximum acceleration seen in the string is: | | pt under tension of 1N. It is vibrating in the fundamental mode with amplitude of 1 cm. Assuming the standing wave pattern, the | | pt under tension of 1N. It is vibrating in the fundamental mode with amplitude of 1 cm. Assuming the standing wave pattern, the eximum acceleration seen in the string is: | | pt under tension of 1N. It is vibrating in the fundamental mode with amplitude of 1 cm. Assuming the standing wave pattern, the eximum acceleration seen in the string is: | | pt under tension of 1N. It is vibrating in the fundamental mode with amplitude of 1 cm. Assuming the standing wave pattern, the eximum acceleration seen in the string is : $\frac{4\pi^2m}{s^2}$ | | pt under tension of 1N. It is vibrating in the fundamental mode with amplitude of 1 cm. Assuming the standing wave pattern, the eximum acceleration seen in the string is : $\frac{4\pi^2m}{s^2}$ | | pt under tension of 1N. It is vibrating in the fundamental mode with amplitude of 1 cm. Assuming the standing wave pattern, the eximum acceleration seen in the string is : $\frac{4\pi^2 m}{s^2} = \frac{8\pi^2 $ | | pt under tension of 1N. It is vibrating in the fundamental mode with amplitude of 1 cm. Assuming the standing wave pattern, the eximum acceleration seen in the string is : $\frac{4\pi^2 m}{s^2}$ $\frac{4\pi^2 m}{s^2}$ $\frac{4\pi^2 m}{s^2}$ | | pt under tension of 1N. It is vibrating in the fundamental mode with amplitude of 1 cm. Assuming the standing wave pattern, the eximum acceleration seen in the string is : $\frac{4\pi^2 m}{s^2}$ $\frac{2\pi^2 m}{s^2}$ $\frac{2\pi^2 m}{s^2}$ $\frac{2\pi^2 m}{s^2}$ $\frac{2\pi m}{s^2}$ $\frac{2\pi m}{s^2}$ | | pt under tension of 1N. It is vibrating in the fundamental mode with amplitude of 1 cm. Assuming the standing wave pattern, the eximum acceleration seen in the string is : $\frac{4\pi^2 m}{s^2}$ $\frac{2\pi^2 m}{s^2}$ $\frac{2\pi^2 m}{s^2}$ $\frac{2\pi m}{s^2}$ $\frac{2\pi m}{s^2}$ $\frac{2\pi m}{s^2}$ $\frac{2\pi m}{s^2}$ $\frac{2\pi m}{s^2}$ Swer: C | bulk modulus of the ball is 10^{11} N / m², then change in the volume is: **Options:** | $10^{-1\%}$ | |--| | $3. 10^{-2\%}$ | | $2. 10^{-3}\%$ | | $0.\ 10^{-4\%}\%$ | | $1.10^{-5}\%$ | | nswer: B | | Solution: | | olution: | | Question 45 | | hollow sphere of radius ' r ' encloses an electric dipole composed of
wo charges +q and -q. The net flux of electric field through the
urface of the sphere due to the enclosed dipole is : | | ptions: | | $\frac{2q}{\varepsilon_0}$ | | $\frac{2q}{\epsilon_0}.4\pi r^2$ | | Z. infinite | | 0. zero | | $\frac{q}{\epsilon_{o}}$ | | nswer: D | | Solution: | | olution: | | Question 46 | | The work done W is required by an agent to form a bubble of radius R. In extra amount of work ΔW is required to increase the radius by ΔR . If $\frac{\Delta R}{R} = 1\%$, then $\frac{\Delta W}{W}$ is : | **Options:** A. 2% | B. 1% | |--| | C. 4% | | D. 3% | | E. 0.5% | | Answer: A | | Solution: | | Solution: | | Question 47 | | Each side of a regular hexagon has resistance R. The effective resistance between the two opposite vertices of the hexagon is : | | Options: | | A. R | | B. 2R | | C. $\frac{3R}{2}$ | | D. $\frac{2R}{3}$ | | E. 3R | | Answer: C | | Solution: |
 Solution: | | Question 48 | | Two metallic solid spheres A and B, have radius R and 3R, respectively. The solid spheres are charged and kept isolated. Then, the two spheres are connected to each other through a thin conducting wire. The ratio of the final charge on the spheres A to B is: | | Options: | | A. 1:1 | B. 1:3 C. 3:1 | D. 1:9 | |--| | E. 9:1 | | Answer: B | | Solution: | | Solution: | | Question 49 | | A heat engine operates between a cold reservoir and a hot reservoir. The engine takes $200J$ of heat from the hot reservoir and has the efficiency of 0.4 . The amount of heat delivered to the cold reservoir in a cycle is : | | Options: | | A. 100J | | B. 120J | | C. 140J | | D. 160J | | E. 80J | | Answer: B | | Solution: | | Solution: | | Question 50 | | A system of ideal gas undergoes a thermodynamic process in which the initial pressure and volume are equal to the final pressure and volume. Let ΔQ is the heat supplied to the system, ΔW is the work done by the system and ΔU is the change in internal energy. The correct option is : | **Options:** A. $\Delta Q = \Delta W$ B. $\Delta U > 0$ C. $\Delta U \neq 0$ D. $\Delta U + \Delta Q + \Delta W = 0$ $E. \Delta Q + \Delta W = 0$ | Answer: A | |---| | Solution: | | Solution: | | Question 51 | | The rms speed of a gas having diatomic molecules at temperature T (in Kelvin) is $200 \text{m} / \text{s}$. If the temperature is increased to 4T and the molecules dissociate into monoatomic atoms, the rms speed will become : | | Options: | | A. 400m / s | | B. 200m / s | | C. 800m / s | | D. $200\sqrt{2}$ m / s | | $E. 400\sqrt{2}m / s$ | | Answer: E | | Solution: | | Solution: | | Question 52 | | A metallic bullet with an initial velocity of 500m / s penetrates a solid object and melts. The initial temperature of the bullet is 30°C and its melting point is 280°C . The ratio of total heat generated to the initial kinetic energy of the bullet will be : [Latent heat of fusion of metal = $3.0 \times 10^{4}\text{J}$ / kg and specific heat capacity of metal = 200J / kg - K] | | Options: | | A. 0.5 | B. 1.0 C. 0.81 D. 0.36 E. 0.64 **Answer: E** **Question 55** Which of the following scientific principle is used to produce the ultrahigh magnetic fields? **Options:** A. Magnetic confinement of plasma B. Faraday's laws of electromagnetic induction C. Controlled nuclear fusion D. Motion of charged particles in electromagnetic fields E. Superconductivity **Answer: E Solution: Solution:** Question 56 A laser beam with an energy flux of 20W / cm² is incident on a nonreflecting surface at normal incidence. If the surface has an area of 30cm², the total momentum delivered by the laser in 30 minutes for complete absorption will be: **Options:** A. $2.8 \times 10^{-3} \text{ kg m / s}$ B. $4.2 \times 10^{-3} \text{ kg m / s}$ C. $3.6 \times 10^{-3} \text{ kg m / s}$ D. $3.3 \times 10^{-3} \text{kg m} / \text{s}$ E. $2.4 \times 10^{-3} \,\mathrm{kg}\,\mathrm{m}$ / s **Answer: C Solution: Solution: Question 57** | that maximum current may be drawn into the circuit is: | | | |---|--|--| | Options: | | | | λ. 60μF | | | | 3. 50μF | | | | շ. 100µF | | | | D. 80μF | | | | Σ. 25μF | | | | answer: D | | | | Solution: | | | | olution: | | | | Question 58 A magnetic field of $(10^{-4\hat{k}})$ T exerts a force of $(4\hat{i} - 3\hat{j}) \times 10^{-12}$ N on a particle having a charge of 10^{-9} C. The speed of the particle is : | | | | Options: | | | | a. 40m / s | | | | 3. $40\sqrt{2}$ m / s | | | | C. 50m / s | | | | 0. 50√3m / s | | | | $1.100\sqrt{2} \text{m} / \text{s}$ | | | | answer: C | | | | Solution: | | | | olution: | | | | Question 59 | | | A simple pendulum experiment is performed for the value of ' $g^{'}$, the acceleration due to the Earth's gravity. The measured value of length of the pendulum is 25 cm with an accuracy of 1 mm and the measured time A series LCR circuit consists of a variable capacitor connected to an inductor of inductance 50 mH, resistor of resistance 100Ω and an AC source of angular frequency $500 \, \text{rad}$ / s. The value of capacitance so | for 100 oscillations is found to be 100 sec with an accuracy of 1sec. The
percentage uncertainty in the determination of ' g ' is : | |--| | Options: | | A. 9.8 | | B. 0.98 | | C. 4.8 | | D. 2.4 | | E. 1.4 | | Answer: D | | Solution: | | Solution: | | Question 60 | | A combination of two charges $+1nC$ and $-1nC$ are separated by a distance of $1\mu m$. This constituted electric dipole is placed in an electric field of $1000V$ / m at an angle of 45° . The torque and the potential energy on the electric dipole are : | | Options: | | A. $\frac{1}{\sqrt{2}} \times 10^{-12} \text{ N.m and } \frac{1}{\sqrt{2}} \times 10^{-12} \text{J}$ | | B. $\frac{1}{\sqrt{2}} \times 10^{-12} \text{ N.m and } \sqrt{2} \times 10^{-12} \text{J}$ | | C. $\sqrt{2} \times 10^{-12} \text{ N.m and } \frac{1}{\sqrt{2}} \times 10^{-12} \text{J}$ | | D. $\sqrt{2} \times 10^{-12} \text{ N.m and } \sqrt{2} \times 10^{-12} \text{J}$ | | E. $\frac{\sqrt{3}}{2} \times 10^{-12} \text{ N.m and } \frac{\sqrt{3}}{2} \times 10^{-12} \text{J}$ | | Answer: A | | Solution: | | Solution: | | Question 61 | In a current carrying coil of inductance $60\,mH$, the current is changed | The average in | nduced EMF in the coil will be: | |------------------|--| | Options: | | | A. 1.2V | | | B. 2.4V | | | C. 3.0V | | | D. 1.8V | | | E. 0.6V | | | Answer: C | | | Solution: | | | Solution: | | | Question 6 | 5 2 | | energy of 180 | oil with an internal resistance of 50Ω stores magnetic field mJ and dissipates energy as heat at the rate of 200W when rent is passed through it. The inductance of the coil will | | Options: | | | A. 90 mH | | | B. 120 mH | | | C. 45 mH | | | D. 30 mH | | | E. 60 mH | | | Answer: A | | | Solution: | | | Solution: | | | Question 6 | 3 3 | | | ying long solenoid is formed by winding 200 turns per cm of turns per cm is increased to 201 keeping the current | constant, then the magnetic field inside the solenoid will change by : from 2.5A in one direction to 2.5A in the opposite direction in $0.10\ sec.$ | Options: | | |---|------------| | A. 0.2% | | | 3. 0.4% | | | C. 0.5% | | | D. 1% | | | E. 2% | | | Answer: C | | | Solution: | | | Solution: | | | Question 64 | | | A metallic cylindrical wire 'A has length $10\mathrm{cm}$ and radius $3\mathrm{metallic}$ Another hollow cylindrical wire 'B' of the same metal has lead not radius $3\mathrm{mm}$ and outer radius $4\mathrm{mm}$. The ratio of the rethe wires A to B is : | ngth 10 cm | | Options: | | | A. $\frac{7}{9}$ | | | 3. $\frac{9}{7}$ | | | C. $\frac{9}{16}$ | | | O. $\frac{16}{9}$ | | | Ξ . $\frac{3}{4}$ | | | Answer: A | | | Solution: | | | Solution: | | | Question 65 | | A small bar magnet lies along the x-axis with its centre fixed at the origin. If the magnetic field at point $(5\hat{i})$ m due to this magnet is 4×10^{-6} T, then the magnetic field at point $(10\hat{j})$ m will be : | Options: | |---| | A. 2.5×10^{-7} T | | B. 2×10^{-6} T | | C. 1×10^{-6} T | | $D. 2.0 \times 10^{-7} T$ | | $E. 8.0 \times 10^{-8} T$ | | Answer: A | | Solution: | | Solution: | | Question 66 | | An ideal gas is compressed in volume by a factor of $\bf 2$, while keeping its temperature constant. The speed of sound in it is : | | Options: | | A. doubled | | B. unchanged | | C. reduced to half | | D. increased by 4 times | | E. reduced by 4 times | | Answer: B | | Solution: | | Solution: | | Question 67 | | In the magnetic meridian of a certain plane, the horizontal component of earth's magnetic field is 0.36 Gauss and the dip angle is 60° . The magnetic field of the earth at this location is : | | Options: | A. 0.72 Gauss B. 0.18 Gauss | C. 0.42 Gauss | |--| | D. 0.56 Gauss | | E. 0.81 Gauss | | Answer: A | |
Solution: | | Solution: | | Question 68 | | A resistance R is connected across an ideal battery. The total power dissipated in the circuit is P. If another resistance R is added in series, the new total dissipated power is : | | Options: | | A. 2P | | B. 4P | | C. P | | D. $\frac{P}{2}$ | | E. $\frac{P}{4}$ | | Answer: D | | Solution: | | Solution: | | Question 69 | | A toroid with 500 turns of wire carries a current of (2 π) Ampere. A metal ring inside the toroid provides the core and has susceptibility of 2×10^{-5} . If the magnetization is $5\times 10^{-2} A$ / m, then radius of the ring is : | | Options: | | A. 50 cm | | B. 20π cm | | C. $\frac{50}{\pi}$ cm | | E. 60 cm | |---| | Answer: D | | Solution: | | Solution: | | Question 70 | | When a vibrating tuning fork moves towards a stationary observer with a speed of 50m / s, the observer hears a frequency of 350 Hz. The frequency of vibration of the fork is : (Take speed of sound = 350m / s | | Options: | | A. 350 Hz | | B. 400 Hz | | C. 200 Hz | | D. 300 Hz | | E. 250 Hz | | Answer: D | | Solution: | | Solution: | | Question 71 | The rod PQ slides along 2 parallel rails as shown in the figure. It has a length of 20 cm and is perpendicular to the 2 rails. It performs simple harmonic motion with amplitude 5 cm and frequency 10 Hz. The magnetic field is 10^{-4} T and is directed perpendicular to the plane of paper. What is the peak induced electromagnetic force? **Options:** D. 20 cm | 7 | |--| | A. $2\pi \times 10^{-7} \text{V}$ | | B. $4\pi^2 \times 10^{-3} \text{V}$ | | C. $2\pi \times 10^{-5} \text{V}$ | | D. $4\pi \times 10^{-5} V$ | | $E. \pi^2 \times 10^{-4} V$ | | Answer: C | | Solution: | | Solution: | | Question 72 | | Find the effective resistance between points A and B. Each resistance is equal to R. | | | | Options: | | A. 2R | | B. $\frac{3}{4}$ R | | C. 3R | | D. $\frac{4}{3}$ R | | E. $\frac{9}{5}$ R | | Answer: D | | Solution: | | Solution: | | Question 73 | | The number of electrons in one mole of methane: | | Options: | | A. 6.023×10^{23} | |---| | B. 60.23×10^{23} | | $C. 0.6023 \times 10^{23}$ | | D. 602.3×10^{23} | | $E.6023 \times 10^{23}$ | | Answer: B | | Solution: | | Solution: | | Question 74 | | Which of the following statement cannot be explained by the proposals of Dalton's atomic theory ? | | Options: | | A. Reorganisation of atoms in chemical reactions | | B. Identical propertics of all atoms of given element | | C. The reason for combining of atoms | | D. Formation of compounds from the combination of elements in a fixed ratio | | E. Matter consists of individual atoms | | Answer: C | | Solution: | | Solution: | | Question 75 | | The correct order of variation of first ionisation enthalpies is : | | Options: | | A. Ne $<$ Xe $>$ Li $>$ K $<$ Cs | | B. Xe < Li < K < Cs < Ne | C. Cs > K > Li > Xe > Ne D. Li > K > Cs > Ne > Xe $E. \ Ne > Xe > Li > K > Cs$ | Answer: E | |--| | Solution: | | Solution: | | Question 76 | | Which of the following statements is WRONG? | | Options: | | A. The bond order of He_2 is zero; so He_2 molecule is unstable. | | 3. Li ₂ molecule is diamagnetic. | | $\mathrm{C.\ O_2}$ molecule contains two unpaired electron and is paramagnetic. | | D. C_2 molecule is paramagnetic in vapour phase. | | E. H ₂ molecule has no unpaired electrons, | | Answer: D | | Solution: | | Solution: | | Question 77 | | Find the WRONG statement from the following lists: | #### **Options:** - A. Dipole-dipole interaction exists in the HCl molecules. - B. Three states of matter are due to the balance between intermolecular forces and the thermal energy of the molecules. - C. According to kinetic theory of gases, the collisions of gas molecules are perfectly elastic. - D. Strength of hydrogen bond depends on the coulombic interaction between lone pair of electrons of one atom and the hydrogen atom. - E. Aqueous tension of water decreases with the increase in temperature. **Answer: E** #### **Solution:** | Question 78 | |--| | The hybridisation of Xe in XeF ₂ is : | | Options: | | A. sp^3 | | $B. sp^3d$ | | C. $\mathrm{sp}^3\mathrm{d}^2$ | | D. sp^2d | | E. Sp^2 | | Answer: B | | Solution: | | Solution: | | Question 79 | | Which of the following compounds is known as inorganic benzene? | | Options: | | A. B_6H_6 | | B. C_5H_5B | | $C. C_3N_3H_3$ | | D. $B_3N_3H_6$ | | $E.BF_3$ | | Answer: D | | Solution: | | Solution: | | Question 80 | | The number of S – S bonds and the number of lone pairs in \mathbf{S}_8 molecule, | respectively, are: | Options: | | |--|---| | A. 8,8 | | | B. 8,16 | | | C. 16,8 | | | D. 8,4 | | | E. 4,8 | | | Answer: B | | | Solution: | | | Solution: | | | Question 81 | | | The shape of XeOF ₄ molecule is : | | | Options: | | | A. Square pyramid | | | B. Planar | | | C. Trigonal bipyramid | | | D. Pentagonal bipyramid | | | E. Linear | | | Answer: A | | | Solution: | | | Solution: | | | Question 82 | | | The geometry of $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ ions are | , | | Options: | | | A. Both tetrahedral | | B. Both square planar D. Square planar and tetrahedral, respectively C. Both octahedral | E. Tetrahedral and square planar, respectively | |--| | Answer: E | | Solution: | | | | Solution: | | Question 83 | | Which of the following compounds extensively has Mg as an important element in the living world? | | Options: | | A. Haemoglobin | | B. ATP | | C. Florigen | | D. Ferritin | | E. Chlorophyll | | Answer: E | | Solution: | | Solution: | | Question 84 | | The basic character of the hydrides of 15 group elements decreases in the order : | | Options: | | A. $NH_3 > PH_3 > AsH_3 > SbH_3$ | | B. $SbH_3 > AsH_3 > PH_3 > NH_3$ | | C. $NH_3 > AsH_3 > PH_3 > SbH_3$ | | D. $NH_3 > SbH_3 > PH_3 > AsH_3$ | | $E. SbH_3 > PH_3 > AsH_3 > NH_3$ | **Answer: A** _____ ## **Question 85** Which of the following contains sp hybridised carbon atom? **Options:** A. $$CH_3 - CH = CH - CH_3$$ B. $$CH_3 - C \equiv C - CH_3$$ $$C. CH_3 - CH_3$$ $${\rm E.~CH_3-CH_2-Cl}$$ **Answer: B** #### **Solution:** **Solution:** ______ ## **Question 86** Which are the non-benzenoid aromatic compounds in the following? #### **Options:** A. iii and iv B. i and iv C. ii and iv D. i and iv E. ii and iii Answer: A Which of the following is the most stable carbocation? **Options:** A. CH₃ – $$CH_2$$ B. CH 3 C. $$CH_3 - \overset{\circ}{CH} - CH_3$$ D. (CH ₃)₃[®]C E. CH₃ – CH₂ – $$\overset{\text{\tiny \oplus}}{\text{\tiny CH}}_2$$ **Answer: D** **Solution:** **Solution:** ## **Question 88** Which of the following cannot act as a nucleophile? **Options:** A. $$CH_3^{\circ}$$ B. $$H_2O$$ Answer: D **Solution:** **Solution:** ----- What are the products of the following reactions? i) $CH_3 - CH_2 - Br + Na \xrightarrow{Dry \text{ ether}}$ ii) $CH_3COONa + NaOH \frac{CaO}{\Delta}$ **Options:** A. i) $CH_3 - CH_3$ and ii) $CH_2 = CH_2$ B. i) $CH_3 - CH_2 - CH_3$ and ii) $CH_3 - CH_3$ C. i) $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_3}$ and ii) $\mathrm{CH_4}$ D. i) $CH_3 - CH_2 - CH_2 - CH_3$ and ii) $H - C \equiv C - H$ E. i) $CH_3 - CH_2 - CH_2 - CH_3$ and ii) CH_4 **Answer: E** **Solution:** **Solution:** ______ ## **Question 90** Find the compounds P and Q in the following reactions : $$P \xrightarrow{H_2SO_4/\Delta} Q \xrightarrow{i)O_3} CHO$$ **Options:** A. В. C. **Answer: A** #### **Solution:** _____ ## **Question 91** ## Match the following complexes (P) with the geometry (Q): | (P) | (Q) | |---|----------------------------| | a) [Cu(NH ₃) ₄] ²⁺ | (i) Tetrahedral | | b) [Ag(NH ₃) ₂] ⁺ | (ii) Octahedral | | c) Fe(CO) ₅ | (iii) Square planar | | d) [Cr(H ₂ O) ₆] ³⁺ | (iv) Triagonal bipyramidal | | e)[NiCl ₄] ²⁻ | (v) Linear | #### **Options:** **Answer: B** #### **Solution:** **Solution:** _____ | The tetrahedral crystal field splitting is only of the octahedral splitting. | |--| | Options: | | A. $\frac{1}{9}$ | | B. $\frac{2}{9}$ | | C. $\frac{3}{9}$ | | D. $\frac{4}{9}$ | | E. $\frac{5}{9}$ | | Answer: D | | Solution: | | Solution: | | Question 93 | | Which order is correct in spectrochemical series of ligands : | | Options: | | A. $Cl^- < F^- < [C_2O_4]^{2-} < H_2O < CN^-$ | | B. $Cl^- < F^- < CN^- < H_2O < [C_2O_4]^{2-}$ | | $C. F^- < Cl^- < CN^- < H_2O < [C_2O_4]^{2-}$ | | D. $F^- < Cl^- < H_2O < CN^- < [C_2O_4]^{2-}$ | | $E. Cl^- < F^- < H_2O < [C_2O_4]^{2^-} < CN^-$ | | Answer: A | | Solution: | | Solution: | | Question 94 | | HF is a liquid unlike other hydrogen halides because: | **Options:** A. H – F bond is strong | B. Hydrogen bonding is present | |---| | C. HF is a weak acid | | D. F atom is smaller in size | | E. HF is a strong base | | Answer: B | | Solution: | | Solution: | | Question 95 | | The order of acidity follows: | | Options: | | A. $HF > HCl > HBr > HI$ | | B. $HF > HBr > HCl > HI$ | | C. $HI > HCl > HF > HBr$ | | D. $HI > HBr > HCl > HF$ | | E. HBr > HCl > HF > HI | | Answer: D | | Solution: | | Solution: | | Question 96 | | The correct order of O – O bond length in O_3 , O_2 and H_2O_2 is : | | Options: | | A. $O_2 > H_2 O_2 >
O_3$ | | B. $O_3 > H_2O_2 > O_2$ | | $C. H_2O_2 > O_2 > O_3$ | | D. $H_2O_2 > O_3 > O_2$ | | $E. O_2 > O_3 > H_2O_2$ | **Answer: D** What is the probable ratio between the root mean square speed (rms), average speed (av) and the most probable speed (mp)? (U = speed of the gas molecules) #### **Options:** A. $$U_{mp}: U_{rms}: U_{av}: 1.128: 1: 1.224$$ B. $$U_{av}: U_{rms}: U_{mp}: 1:1.128:1.224$$ C. $$U_{mp}: U_{av}: U_{rms}: 1:1.128:1.224$$ D. $$U_{mp}: U_{av}: U_{rms}: 1.224:1:1.128$$ E. $$U_{rms} : U_{mp} : U_{av} : 1 : 1.128 : 1.224$$ **Answer: C** | Solution: | |--| | Question 99 | | Which is the WRONG statement from the following lists? | | Options: | | A. No work is done during free expansion of an ideal gas for both reversible and irreversible processes. | | B. The density and pressure are extensive properties but the enthalpy and heat capacity are intensive properties. | | C. The change in enthalpy (ΔH) is negative for exothermic reactions but is positive for endothermic reactions. | | D. The difference between change in enthalpy (ΔH) and the internal energy (ΔU) is not significant for solids and liquids, but significant for gases. | | E. The standard enthalpy change of fusion of $\mathrm{CH_3COCH_3}$ is higher than that of $\mathrm{N_2}$. | | Answer: B | | Solution: | | Solution: | | Question 100 | The magnitude of equilibrium constant for the gaseous reaction of $H_2(g)$ with $I_2(g)$ for the formation of 2 HI(g) is 57 at a particular temperature. The molar concentrations, $[H_2] = 0.10M$, $[I_2] = 0.20M$ and [HI] = 0.40M are found to be at the same temperature. Find the **CORRECT** statement about the reaction: #### **Options:** - A. The mixture of $H_2(g)$, $I_2(g)$ and HI(g) is at equilibrium. - B. More $H_2(g)$ and $I_2(g)$ will not react to form more HI(g). - C. The concentration of $H_2(g)$ and $I_2(g)$ will decrease till the equilibrium constant is equal to reaction quotient. - D. Reaction quotient is independent of concentration. - E. If reaction quotient is greater than equilibrium constant of the reaction, more HI(g) will be formed. **Answer: C** | Solution: | |--| | Question 101 | | The pK $_{a}$ of acetic acid is 4.76 . What will be the pK $_{b}$ of ammonium hydroxide, if the pH of ammonium acetate is 7.00 ? | | Options: | | A. 4.770 | | 3. 4.765 | | C. 4.755 | | D. 4.750 | | E. 4.740 | | Answer: B | | Solution: | | Solution: | | Question 102 | | In oligosaccharides, how many monosaccharides will be present? | | Options: | | A. 1 to 5 | | 3. 2 to 10 | | C. 4 to 5 | | O. 1 to 15 | | E. 3 to 5 | | Answer: B | | Solution: | | Solution: | | | In DNA molecule, the sugar part is...... and in RNA molecule, the ## sugar part is..... #### **Options:** A. β – D – 2 – ribose and α – L-ribose B. β – D – 2-deoxy ribose and α -L-ribose C. β – D – 3-deoxy ribose and α -D-ribose D. α – D – 2-deoxy ribose and β – D-ribose E. β – D – 2 – deoxy ribose and β – D ribose **Answer: E** #### **Solution:** **Solution:** ----- ## **Question 104** ## Which statement is correct in the following? #### **Options:** - A. Amylose is a polymer of α D-glucose. - B. Amylose is a polymer of β D-glucose. - C. Cellulose is a polymer of α D glucose. - D. Cellulose is a polymer of β D galactose. - E. Amylose is a polymer of α Dgalactose. Answer: A #### **Solution:** Solution: _____ ## **Question 105** Calculate the log of equilibrium constant (log K $_c$) in reaction, Mg(s) + 2Ag $^+$ (aq) \rightarrow Mg $^{2+}$ (aq) + 2Ag(s) Given that E $_{cell}$ $^\circ$ = 3.245V #### **Options:** A. 100.5 B. 110.5 C. 10 D. 100 E. 110 **Answer: E** **Solution:** **Solution:** ------ ## **Question 106** The following diagram shows the $V\,$ – $T\,$ diagram for a process ABCA The corresponding P - V diagram is: **Options:** A. В. C D. E. **Answer: C** **Solution:** **Solution:** ## **Question 107** ## In which of the following, entropy decreases? **Options:** A. Liquid water is converted to gas. B. Liquid water crystallizes to ice. C. $H_2(g) \rightarrow 2H(g)$ D. $NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$ E. Temperature of NaCl(s) raises from 298 to 517K. **Answer: B** **Solution:** **Solution:** ## **Question 108** ### Identify 1 and 2 in the following reactions: (b) $$CH_2-CH_2-CH_3 = i) KMnO_4/KOH, heat $ii) H_3O^+$ 2$$ **Options:** A. E. **Answer: E** #### **Solution:** **Solution:** ## **Question 109** # In which of the following reactions, we will get new C-C bond ? Options: - A. Cannizzaro reaction and Aldol condensation reaction - B. Cannizzaro reaction and Sandmeyer's reaction - C. Friedel-Crafts reaction and GattermannKoch reaction - D. Cannizzaro reaction and ReimerTiemann reaction - $E. \ Sandmeyer's \ reaction \ and \ Aldol \ condensation \ reaction$ **Answer: C** #### **Solution:** **Solution:** _____ ## **Question 110** | Options: | |---| | A. N_2O_5 | | B. N_2O_3 | | C. NO_2 | | D. N_2O_4 | | E. N ₂ O | | Answer: A | | Solution: | | Solution: | | Question 111 | | In a zero-order reaction, the reactant A disappeared with a rate of reaction k = 0.04Msec ⁻¹ . The initial concentration of A is 1M. What will be the concentration of A after 20 seconds? | | Options: | | A. 1.08M | | B. 0.2M | | C. 0.8M | | D. 0.002M | | E. 0.008M | | Answer: B | | Solution: | | Solution: | | Question 112 | | Following of which can be an empirical relationship between the quantity of gas adsorbed by unit mass of solid adsorbent and pressure a particular temperature $?x = mass$ of the gas adsorbed on a mass ' m ' of the adsorbent at a pressure' $P : k$ and n are constants, which depend on the nature of the adsorbent and the gas at a particular teraperature. | The nitrogen oxide that does not contain N-N bond is: #### **Options:** - A. $\log x + \log m = \log k + \frac{1}{n} \log P$ - B. $\log x + \log m = \log k \frac{1}{n} \log P$ - C. $\log x + \log m = -\log k + \frac{1}{n} \log P$ - D. $\log x \log m = \log k + \frac{1}{n} \log P$ - $E. \log x \log m = \log k \frac{1}{n} \log P$ **Answer: D** #### **Solution:** **Solution:** ## **Question 113** ## In the following which can be used as an antidepressant drug? #### **Options:** - A. Salvarsan - B. Ofloxacin - C. Erythromycin - D. Serotonin - E. Chloroxylenol **Answer: D** #### **Solution:** **Solution:** #### ----- ## **Question 114** ## $[Co(NH_3)_4(NO_2)_2]Cl$ exhibits: #### **Options:** - A. Linkage isomerism, ionisation isomerism and optical isomerism - B. Linkage isomerism, geometrical isomerism and ionisation isomerism - C. Ionisation isomerism, geometrical isomerism and optical isomerism - D. Linkage isomerism, geometrical isomerism and optical isomerism - E. Optical isomerism, geometrical isomerism and ionisation isomerism **Answer: B** **Solution:** ----- ## **Question 115** Find the correct combination about the following plots (P, Q and R) for the variation of rate of reaction with time. ## **Options:** A. Q = Reversible; P = Zero order, R = Irreversible B. R = Zero order, P = Zero order, R = Irreversible C. Q = Irreversible; R = Reversible; P = Zero order D. P = Irreversible; Q = Reversible; R = Zero order E. P = Reversible; Q = Zero order, R = Irreversible **Answer: D** #### **Solution:** **Solution:** ## Question 116 The resistance of the cell containing the aqueous solution of NaCl at 20° C is $60 \, \text{ohm}$. If the specific conductivity of this solution at 20° C is $0.04 \, \text{ohm}^{-1} \, \text{cm}^{-1}$, what is the cell constant in cm⁻¹? | A. 2.0 | |---------------------| | B. 1.5 | | C. 0.5 | | D. 0.15 | | E. 2.4 | | | | Answer: E | | Answer: E Solution: | | | **Options:** ## Match the following columns (P) with (Q) | (P) | (Q) | |----------------------------|--| | a) Grignard reagent | (i) AlCl ₃ | | b) Sandmeyer's reaction | (ii) Sodium netal | | c) Cannizzaro reaction | (iii) Cu(I) | | d) Friedel-Crafts reaction | (iv) CH ₃ MgBr ² 9 | | e) Wurte reaction | (v) NaOH | #### **Options:** Answer: E ### **Solution:** **Solution:** ______ Which compound will not take part in the Friedel-Crafts acylation? #### **Options:** A. ii and iii B. only iii C. i and iiii D. only ii E. only i **Answer: D** #### **Solution:** **Solution:** ----- ## **Question 119** Identify 1 and 2 in the following reaction #### **Options:** A. В. CH3MgBr and CH3CHO C. D. CH₄ and CH₃CHO E. **Answer: C** #### **Solution:** **Solution:** _____ ## **Question 120** What is the major product in the following reaction? $CH_3 - CH_2 - CH_2 - CH = CH_2 + HBr \rightarrow$ **Options:** A. $$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - Br$$ B. CH $$_3$$ – CH $_2$ – CH $_2$ – CH $_3$ C. CH $$_3$$ – CH $_2$ – CH $_2$ – $\stackrel{Br}{\overset{Br}{\overset{C}{\overset{H}}{\overset{R}{\overset{P}}{\overset{R}{\overset{P}}{\overset{R}{\overset{P}}{\overset{P}}{\overset{P}}}}}}}$ – CH $_3$ D. CH $$_3$$ – CH $_2$ – CH $_2$ – CH $_2$ – CH $_2$ – Br E. $$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$ **Answer: B** ## **Solution:** **Solution:** ## **Maths** ## **Question 1** # Let $f : R \to R$ be a function defined by $f(x) = x^2 + 9$. The range of f is Options: A. R B. $(-\infty, -9] \cup [9, \infty)$ C. [9, ∞) D. [3, ∞) E. $[3, \infty) \cup (-\infty, -3]$ **Answer: C** #### **Solution:** ####
Solution: $x^{2} \ge 0$ $x^{2} + 9 \ge 9$ $f(x) \ge 9$ $\Rightarrow [9, \infty)$ ------ ## **Question 2** Let $f(x) = \frac{x-1}{x+1}$. Let $S = \{ x \in \mathbb{R} \mid f \circ f^{-1}(x) = x \text{. does not hold } \}$. The cardinality of S is #### **Options:** A. a finite number, but not equal to 1, 2, 3 B. 3 C. 2 D. 1 E. infinite **Answer: C** #### **Solution:** #### **Solution:** $\begin{array}{l} f\left(x\right) \text{ is not defined for } x=-1 \\ f^{-1}(x)=\frac{x+1}{x-1} \text{ is not defined for } x=1 \\ \therefore f \circ f(x)=x \text{ does not hold at } x=\pm 1 \\ n(s)=2 \end{array}$ ## **Question 3** | he domain of the real valued function f (x) = $\sqrt{x^2 - 4} + \frac{1}{\sqrt{x^2 - 7x + 6}}$ is | |--| | ptions: | | R - [-6, -2) | | R - [-6, 2) | | $\mathbb{R} - [-2, 6)$ | | . R – (2, 6] | | R - (-2, 6] | | nswer: E | | olution: | | Polition: $ -4 \ge 0 \Rightarrow x^2 \ge 4 $ $ x ∈ (-∞, -2] \cup [2, ∞)(1) $ $ -7x + 6 > 0 \Rightarrow (x - 1)(x - 6) > 0 $ $ x ∈ (-∞, 1) \cup (6, ∞) (2) $ The errection of $ x = (-2, 6] $ | | Question 4 | | he number of solutions of the equation $\frac{1}{2}(x^3 + 1) = \sqrt[3]{2x - 1}$ is | | ptions: | | . 0 | | . 6 | | . 9 | | . Infinite | | . 3 | | nswer: E | | olution: | | blution: HS is inverse of LHS. | Let a, b, c, d be an increasing sequence of real numbers, which are in geometric progression. If a + d = 112 and b + c = 48, then the value of $\frac{a+c+8}{b}$ is #### **Options:** A. 1 B. 5 C. 4 D. 3 E. 2 **Answer: C** #### **Solution:** #### **Solution:** Let $$a = a$$, $b = ar$, $c = ar^2$, $d = ar^3$ Given $a + ar^3 = 112$ $ar + ar^2 = 48$ $ar(1 + r) = 48$ $$\therefore \frac{a(1 + r^3)}{ar(1 + r)} = \frac{112}{48} = \frac{7}{3}$$ $$\Rightarrow 1 - r + r^2 = \frac{7r}{3}$$ $$\Rightarrow 3r^2 - 10r + 3 = 0$$ $$r = \frac{10 \pm \sqrt{100 - 36}}{6} = 3, \frac{1}{3}$$ Since GP is increasing $r \neq \frac{1}{3} < 1$ $$\therefore r = 3 \Rightarrow a = \frac{112}{28} = 4$$ $$\frac{a + c + 8}{b} = \frac{10a + 8}{3a} = \frac{48}{12} = 4$$ ## **Question 6** Let a, b be two real numbers between 3 and 81 such that the resulting sequence 3, a, b, 81 is in a geometric progression. The value of a + b is #### **Options:** A. 29 B. 90 C. 27 D. 81 E. 36 **Answer: E** #### Solution: a = 3r $b = 3r^2$ $c = 3r^3 = 81 \Rightarrow r = 3$ $a + b = 3(r + r^2) = 36$ ## **Question 7** Let a_1 , a_2 , a_3 , ... be an increasing sequence of natural numbers, which are in an arithmetic progression with common difference d. Suppose $a_1 + a_2 + a_3 = 27$ and $a_1^2 + a_2^2 + a_3^2 = 275$. Then the values of a_1 , d are #### **Options:** A. $a_1 = 3$; d = 2 B. $a_1 = -5$; d = 4 C. $a_1 = 4$; d = 5 D. $a_1 = -4$; d = 5 (F) $a_1 = 5$; d = 4 **Answer: D** #### **Solution:** #### **Solution:** $a_1 = a$ $a_2 = a + d$ $\mathbf{a}_2 = \mathbf{a} + 2\mathbf{d}$ $a_3 - a + 2a$ 3a + 3d = 27 (given) $a_1^2 + a_2^2 + a_3^2 = 3a^2 + 6ad + 5d^2$ $275 = 3[a^2 + 2ad + d^2] + 2d^2$ $= 3(a + d)^2 + 2d^2$ $275 = 3(81) + 2d^2$ $d^2 = \frac{275 - 243}{2} = 16$ $a + d = a + 4 = 9 \Rightarrow a = 5$ a = 5, d = 4 **Question 8** The sides of a right-angled triangle are in an arithmetic progression. If the area of the triangle is 54, then the length of the longest side is #### **Options:** A. 6 B. 12 C. 15 E. 18 **Answer: C** #### **Solution:** ``` Solution: ``` ``` Let a-d, a, a+d be the sides. B y Pythagoras theorem a^2+(a-d)^2=(a+d)^2 a^2+a^2-2ad+d^2=a^2+2ad+d^2 a^2=4ad a=4d area =\frac{1}{2}a(a-d)=54 \frac{1}{2}4d\cdot 3d=54 d^2=\frac{54}{6}=9 d=\pm 3, a=4d=12, (length is positive and so we avoid d=-3) a+d=15 ``` ## **Question 9** Let A be $(2n + 1) \times (2n + 1)$ matrix with integer entries and positive determinant. Where $n \in \mathbb{N}$. If $AA_{-}^{T} = I = A^{T}A$ then which of the following statements always holds? #### **Options:** $$A. \det(A) = 0$$ B. $$det(A + I) \neq 0$$ $$C. \det(A + I) = 0$$ $$D. \det(A - I) = 0$$ E. $$det(A - I) \neq 0$$ **Answer: D** #### **Solution:** #### Solution: A is orthogonal matrix of odd order Property det(A - I) = 0 _____ ## **Question 10** The inequality $\frac{2x-1}{3} \ge \frac{3x-2}{4} - \frac{(2-x)}{5}$ holds for x belonging to **Options:** B. (-x, 31) C. $(-\infty, -3] \cup [3, x)$ D. $(-\infty, 2]$ E. $(-\infty, 2] \cup [4, x)$ **Answer: D** #### **Solution:** #### **Solution:** $$\frac{2x-1}{3} \ge \frac{19x-18}{20}$$ $$40x-20 \ge 57x-54$$ $$\Rightarrow x \le \frac{34}{17} = 2$$ $$(-\infty, 2]$$ ______ ## **Question 11** The contrapositive of the statement "If the number is not divisible by $\bf 3$, then it is not divisible by $\bf 15^\circ$ is #### **Options:** A. If the number is not divisible by ${\bf 3}$, then it is not divisible by ${\bf 15}$ B. If the number is not divisible by 15, then it is not divisible by 3 C. If the number is not divisible by 15 , then it is divisible by 3 D. If the number is divisible by 15, then it is divisible by 3 E. If the number is divisible by 15, then it is not divisible by 3 **Answer: D** #### **Solution:** #### Solution: $$p \rightarrow q$$ Contrapositive $\sim q \rightarrow \sim p$ ----- ## **Question 12** Let A be an invertible matrix of size 4×4 with complex entries. If the determinant of of adj (A) is 5. then the number of possible value of determinant of A is #### **Options:** A. 1 B. 4 C. 6 D. 3 E. 2 **Answer: D** #### **Solution:** #### **Solution:** ``` A is invertible \Rightarrow | A | \neq0 |adj A| = |A|ⁿ⁻¹ = |A|⁴⁻¹ = |A|^3 = 5 |A| = \sqrt[3]{5} \Rightarrow \text{ there are 3 roots} ``` ## **Question 13** #### The determinant of the matrix is #### **Options:** A. 13 B. 208 C. 104 D. 26 E. 52 **Answer: E** #### **Solution:** $$\begin{vmatrix} 1 & 4 & 8 \\ 1 & 9 & 27 \\ 1 & 16 & 64 \end{vmatrix}$$ $$= \begin{vmatrix} 1 & 4 & 8 \\ 0 & 5 & 19 \\ 0 & 12 & 56 \end{vmatrix}$$ $$= (56 \cdot 5 - 12 \cdot 19) = 280 - 228 = 52$$ _____ ## **Question 14** If $$A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$$ and $A \cdot adjA = AA^T$, then which of the following #### statements is true #### **Options:** A. $$5a - b = -5$$ B. $$5a + b = 10$$ $$C. \det(A) < 0$$ D. A is symmetric E. $$det(A) \ge 0$$ **Answer: E** #### **Solution:** #### **Solution:** $$A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$$ $$A \text{ adj } A = AA^{\top}$$ $$A^{-1}A \text{ adj } A = A^{-1}AA^{\top}$$ $$\text{adj } A = A^{\top}$$ $$\begin{bmatrix} 2 & b \\ -3 & 5a \end{bmatrix} = \begin{bmatrix} 5a & 3 \\ -b & 2 \end{bmatrix}$$ $$\Rightarrow b = 3, \ a = \frac{2}{5}, \ 5a - b = 2 - 3 = -1 \neq -5$$ $$5a + b = 5 \neq 10$$ $$\therefore A = \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} . A \text{ is not symmetric}$$ $$|A| = 4 + 9 = 13$$ $$\therefore \det(A) \ge 0$$ ## **Question 15** Suppose A = $$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$ is an adjoint of the matrix $$\begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$. The **value of** $\frac{a_1 + b_2 + c_3}{b_1 a_2}$ **is** #### **Options:** A. 0 В. 3 **Answer: B** #### **Solution:** #### **Solution:** $a_1 = cofactor of a_{11} = 16 - 9 = 7$ $b_2 = cofactor of a_{22} = 4 - 3 = 1$ $c_3^2 = \text{cofactor of } a_{33}^2 = 4 - 3 = 1$ $b_1 = cofactor of a_{12} = -1$ $a_2 = cofactor of a_{21} = -3$ $\therefore \frac{a_1 + b_2 + c_3}{b_1 a_2} = \frac{7 + 1 + 1}{3} = \frac{9}{3} = 3$ ----- ## **Question 16** If $x + iy = \frac{1}{(1 + \cos \theta) + i\sin \theta}$, then the value or $x^2 + 1$ is #### **Options:** - A. $\frac{7}{4}$ - B. $\frac{13}{4}$ - C. $\frac{1}{4}$ - D. $\frac{9}{4}$ - E. $\frac{5}{4}$ **Answer: E** #### **Solution:** $$x + iy = \frac{1}{(1 + \cos \theta) + i\sin \theta}$$ $$= \frac{(1 + \cos \theta) - i\sin \theta}{(1 + \cos \theta)^2 + \sin^2 \theta}$$ Real part $x = \frac{1 + \cos \theta}{1 + 2\cos \theta + 1}$ $$= \frac{(1 + \cos \theta)}{2(1 + \cos \theta)} = \frac{1}{2}$$ $$\therefore x^2 + 1 = \frac{1}{4} + 1 = \frac{5}{4}$$ If α , β , γ
are the cube roots of -2 , then the value of $\frac{x\alpha+y\beta+z\gamma}{x\beta+y\gamma+z\alpha}$ is (x, y, z are variables) #### **Options:** A. $e^{i\pi/3}$ B. $e^{2\pi i / 3}$ C. 1 D. -1 E. $e^{4\pi i / 3}$ **Answer: E** #### **Solution:** #### **Solution:** $$\frac{3\sqrt{-1}}{3\sqrt{-2}} = -1, -\omega - \omega^{2} 3\sqrt{-2} = -2, -2\omega - 2\omega^{2} \alpha, \beta, y \frac{x(-2) + y(-2\omega) + z(-2\omega^{2})}{x(-2\omega) + y(-2\omega^{2}) + z(-2)} = \frac{x + y\omega + z\omega^{2}}{x\omega + y\omega^{2} + z\omega^{3}} = \frac{x + y\omega + z\omega^{2}}{\omega(x + y\omega + z\omega^{2})} = \frac{1}{\omega} = \frac{\omega^{2}}{\omega^{3}} = \omega^{2} = \frac{-1}{2} - \frac{i\sqrt{3}}{2} \text{ lies in } 3^{\text{rd}} \text{ quadrant}$$ $$\frac{4\pi}{3i}$$ ## **Question 18** Let $x + \frac{1}{x} = 2\cos\alpha$. For any $n \in \mathbb{N}$, the value of $x^n - \frac{1}{x^n}$ is ----- #### **Options:** A. $cos(n\alpha)$ B. $2\cos(n\alpha)$ C. $2i \sin(n\alpha)$ D. i $sin(n\alpha)$ E. $4\cos(n\alpha)$ Answer: C #### Solution: $$\begin{aligned} x + \frac{1}{x} &= 2\cos\alpha \\ x^2 - 2\cos\alpha x + 1 &= 0 \\ x &= \cos\alpha + i\sin\alpha \\ \text{Using De Moivre's theorem} \\ x^n &= (\cos\alpha + i\sin\alpha)^n = \cos n\alpha + i\sin n\alpha \\ \frac{1}{x^n} &= \cos n\alpha - i\sin n\alpha \\ x^n - \frac{1}{x^n} &= 2i\sin n\alpha \end{aligned}$$ _____ ## **Question 19** If $f(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z^n + a_0 \in \mathbb{R}[z]$ is a polynomial in z with no root over \mathbb{R} . then deg(f) is #### **Options:** A. 9 B. always ≤4 C. an odd number D. always ≥ 4 E. an even number **Answer: E** #### **Solution:** #### **Solution:** ``` f\left(z\right)=z^{n}+a_{n-1}z^{n-1}+\ldots+a_{1}z+a_{0} has no real root We know that complex roots occur in conjugate pairs Consider f(z)=1+z=0 f\left(z\right)=1+z+z^{2}=0 \text{ and } \\ f\left(s\right)=1-2+2^{2}-2=0 1+z=0 \text{ has one real root } \\ 1-z+z^{2}-z^{3}=0 \text{ has real solution } \\ z=1 1+z+z^{2}=0 \text{ has two imaginary roots} \\ \omega, \ \omega^{2}. \text{ From this we shall conclude that to get imaginary roots the degree of } f\left(z\right) \text{ must be even} ``` _____ ## **Question 20** Let $S = \{ n \in \mathbb{N} \mid n^3 + 3n^2 + 5n + 3 \text{. is not divisible by 3} \}$. Then, which of the following statements is true about S #### **Options:** A. $$S = \varphi$$ B. $|S| \ge 2$ and |S| is a multiple of 5 - C. S is non-empty but |S| is finite - D. |S| is infinite - E. S is non-empty and |S| is a multiple of 3 **Answer: A** #### **Solution:** ``` Solution: ``` ``` n^3 + 3n^2 + 5n + 3 = (n + 1)(n^2 + 2n + 3) = (n + 1)(n + 1)^{2} + 2 Consider the following cases n = 3k, n^3 + 3n^2 + 5n + 3 = (3k + 1)[(3k + 1)^2 + 2] = (3k + 1)[9k^2 + 6k + 3], which is divisible by 3 n = 3k + 1, n^3 + 3n^2 + 5n + 3 = (3k + 2)(9k^2 + 12k + 4 + 2), = (3k + 2)(9k^2 + 12k + 4 + 2), which is divisible by 3 n = 3k + 2 n^3 + 3n^2 + 5n + 3 = (3k + 3)(3k + 3)^2 + 2 which is divisible by 3 In all the above cases n^{3} + 3n^{2} + 5n + 3 is divisible by 3 \therefore n³ + 3n²5n + 3 is divisible by 3 for all n \in Z \therefore S = \phi ``` **Question 21** If the coefficients of $(5r + 4)^{th}$ term and $(r - 1)^{th}$ term in the expansion of $(1 + x)^{25}$ are equal, then r is #### **Options:** - A. 6 - B. 3 - C. 5 - D. 2 - E. 4 **Answer: E** #### **Solution:** ``` ^{25}C_{5r+3} = ^{25}C_{r-2} \Rightarrow 5r + 3 + r - 2 = 25 6r = 24 ``` $$\frac{\sum\limits_{r=0}^{n}(4r+3)\cdot(^{n}C_{r})^{2}}{(2n+3)} \quad \textbf{is}$$ ## For any $n \ge 0$, the value of is #### **Options:** A. $${}^{2n}C_{n-1}$$ $$C.$$ $^{2n}C_{n+1}$ D. $${}^{n}C_{n-2}$$ E. $$^{2n}C_n$$ **Answer: E** #### **Solution:** #### **Solution:** $$\sum_{r=0}^{n} \frac{(4r+3)(^{n}C_{r})^{2}}{2n+3}$$ Substitute for n = 1 $$\frac{3+(^{1}C_{0})^{2}+7(^{1}C_{1})^{2}}{5} = \frac{10}{5} = 2$$ $$= 2 \cdot 1C_{1} = 2C_{1}$$ In the given choices option E matches with this ------ ## **Question 23** # The number of ways in which we can distribute n identical balls in k boxes is ### **Options:** B. $${}^{n}C_{(k-1)}$$ C. $$^{(n-k-1)}C_{(k-1)}$$ D. $$^{(n-1)}C_{(k-1)}$$ E. $$(n-k)C_n$$ **Answer: C** Since blank boxes can be allowed ${}^{(n+k-1)}C_{(k-1)}$ is the required number _____ # **Question 24** Suppose there are 5 alike dogs, 6 alike monkeys and 7 alike horses. The number of ways of selecting one or more animals from these is ### **Options:** - A. 362 - B. 363 - C. 336 - D. 335 - E. 337 **Answer: D** #### **Solution:** #### **Solution:** Alike animals no: of ways 5 Dogs 6 ways(including) 6 Monkeys 7 ways 7 Horses 8 ways Required number = 6 · 7 · 8 - 1 = 335 Here 1 is the count of no selection # **Question 25** **Consider the following Linear Programming Problem (LPP):** ``` \mathbf{Maximize} \ \mathbf{Z} = \mathbf{60x}_1 + \mathbf{50x}_2 ``` subject to $$x_1 + 2x_2 \le 40$$ $$3x_1 + 2x_2 \le 60$$ $$x_1, x_2 \ge 0$$ Then, the - A. LPP has a unique optimal solution. - B. LPP is infeasible. - C. LPP is unbounded. - D. LPP has multiple optimal solutions. - E. LPP has no solution. ``` Answer: A ``` #### **Solution:** ``` z = 60x_1 + 50x_2 (0, 0) 0 (20, 0) 1200 (10, 15) 1350 (0, 20) 1000 \therefore optimum at (10, 15) z = 1350 ``` _____ # **Question 26** # Consider the linear programming problem : Minimize $3x_1 + 4x_2 + 2x_3$ subject to $$x_1 + x_2 + x_3 \le 6$$ $x_1 + 2x_2 + x_3 \le 10$ $x_1, x_2, x_3 \ge 0$ Then, the number of basic solutions are #### **Options:** A. 7 B. 9 C. 10 D. 8 E. 3 **Answer: E** #### **Solution:** #### **Solution:** ``` Minimize 3x_1 + 4x_2 + 2x_3 Subject to x_1 + x_2 + x_3 \ge 6 x_1 + 2x_2 + x_3 \ge 10 x_1 + x_2 + x_3 \ge 0 Dual Maximize z = 6y_1 + 10y_2 Subject to y_1 + y_2 \le 3 y_1 + 2y_2 \le 4 y_1 + y_2 \le 2 y_1 + y_2 \ge 0 Three basicsolutions ``` # **Question 27** In a linear programming problem, the restrictions under which the objective function is to be optimised are called as | Options: | |-----------------| |-----------------| - A. decision variables - B. objective function - C. constraints - D. integer solutions - E. optimal solutions **Answer: C** ### **Solution:** **Solution:** ----- # **Question 28** Which of the following is the correct formulation of linear programming problem # **Options:** - A. Max Z = $2x_1 + x_2$; subject to $x_1 + x_2 \le 10$; $x_1 \le 3$; $x_1 \ge 0$; $x_2 \le 0$ - B. Max Z = $3x_1 + 2x_2$; subject to $x_1 + 2x_2 \ge 11$; $3x_1 + x_2 \ge 24$; $x_1, x_2 \le 0$ - C. Min Z = $x_1 + 5x_2$; subject to $2x_1 + 5x_2 \le 10$; $x_1 + 3x_2 \le 9$; $x_1, x_2 \ge 0$ - D. Min Z = $4x_1 + 3x_2$; subject to $x_1 + 9x_2 \ge 8$; $2x_1 + 5x_2 \le 9$; $x_1 \le 0$, $x_2 \ge 0$ - E. Max $Z = 2x_1 + 5x_2$: subject to $4x_1 + 9x_2 \le 8$; $2x_1 + 3x_2 \le 9$; $x_1, x_2 \le 0$ **Answer: C** # **Solution:** **Solution:** $x_1, x_2 \ge 0$ is mandatory _____ # **Question 29** Let A and B be two independent events such that the odds in favour of A and B are 1:1 and 3:2, respectively. Then the probability that only one # of the two occurs is ### **Options:** A. 0.6 B. 0.7 C. 0.8 D. 0.5 E. 0.4 **Answer: D** ### **Solution:** #### **Solution:** $$P(A) = \frac{1}{2}, P(A') = \frac{1}{2}$$ $$P(B) = \frac{3}{5}, P(B') = \frac{2}{5}$$ $$P(AB') + P(A'B) = \frac{2}{10} + \frac{3}{10}$$ $$= \frac{5}{10} = 0.5$$ # **Question 30** A six faced fair die is rolled for a large number of times. Then, the mean value of the outcomes is # **Options:** A. 4.5 B. 2.5 C. 3.5 D. 1.5 E. 3 **Answer: C** # **Solution:** ### Solution: Mean value = $$\frac{n[1+2+3+4+5+6]}{6n}$$ = $\frac{21}{6}$ = 3.5 ----- # **Question 31** Let the probability distribution of random variable X be | X | -2 | -1 | 1 | 2 | 3 | |----------|----|------------|------------|---|------------| | P(X = x) | k | 2 <i>k</i> | 2 <i>k</i> | k | 3 <i>k</i> | Then, the value of $E(X^2)$ is **Options:** - A. $\frac{19}{9}$ - B. $\frac{13}{3}$ - C. $\frac{35}{9}$ - D. $\frac{11}{3}$ - E. $\frac{7}{3}$ **Answer: B** **Solution:** **Solution:** $$\sum P(x) = 1$$ $$\overline{9}k = 1$$ $$k = \frac{1}{9}$$ $$\sum (x^2) = \sum x^2 P(x) =$$ = $\frac{4+2+2+4+27}{9} = \frac{13}{3}$ _____ # **Question 32** Let the standard deviation of x_1 , x_2 and x_3 be 9 . Then, the variance of $3x_1+4,\,3x_2+4$ and $3x_3+4$ is **Options:** - A. 243 - B. 81 - C. 729 - D. 9 - E. 733 Answer: C Solution: $$Var(ax + b) = a^{2} var(x)$$ $var(3x + 9) = 3^{2} var(x)$ $= 9 var(x)$ $= 9\sigma^{2}$ $= 9 \cdot 81 = 729$ # **Question 33** If the median of the observations 4, 6, 7, x, x + 2, 12, 13 arranged in an increasing order is 9 , then the variance of these observations is ## **Options:** A. $\frac{37}{4}$ B. $\frac{38}{4}$ C. 8 D. 9 E. 10 **Answer: A** #### **Solution:** #### **Solution:** $$\frac{x + (x + 2)}{2} = 9$$ $$x = 18$$ $$\sigma^2 = \frac{E(x - \overline{x})^2}{n}$$ | x | $(x - \bar{x})^2$ | |----|-------------------| | 4 | 25 | | 6 | 9 | | 7 | 4 | | 8 | 1 | | 10 | 1 | | 12 | 9 | ----- # **Question 34** Let \overline{x} denote the mean of the observations 1, 3, 5, a, 9 and \overline{y} denote the # mean of the observations 2, 4, b, 6, 8 where a, b > 0. If $\overline{x} = \overline{y}$, the value of 2(a - b) is ### **Options:** A. 2 B. 38 C. 8 D. -4 E. 4 **Answer: E** # **Solution:** #### Solution: $$x = y$$ $$\frac{1+3+5+a+9}{5} = \frac{2+4+b+6+8}{5}$$ $$18+a = 20+b$$ $$a-b=2$$ $$2(a-b) = 4$$ ----- # **Question 35** Consider two independent events E and F such that $P(E) = \frac{1}{4}$, $P(E \cup F) = \frac{2}{5}$ and P(F) = a. Then, the value of a is ### **Options:** - A. $\frac{13}{20}$ - B. $\frac{1}{20}$ - C. $\frac{1}{4}$ - D. $\frac{1}{5}$ - E. $\frac{3}{5}$ **Answer: D** # **Solution:** #### **Solution:** $$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$ $\frac{2}{5} = \frac{1}{4} + a - \frac{a}{4}$ Since E & F are independent $$a = \left(\frac{2}{5} - \frac{1}{4}\right) \cdot \frac{4}{3}$$ $$= \frac{(8-5)}{20} \cdot \frac{4}{3}$$ $$= \frac{4}{20} = \frac{1}{5}$$ # **Question 36** There
are two cash counters A and B for placing orders in a college canteen. Let E_A be the event that there is a queue at counter A and E_B denotes the event that there is a queue at counter B. If $P(E_A) = 0.45P(E_B) = 0.55$ and $P(E_A \cap E_B) = 0.25$. then the probability that there is no queue at both the counters is ### **Options:** A. 0.75 B. 0.15 C. 0.25 D. 0.20 (E) 1.75 **Answer: C** #### **Solution:** #### **Solution:** $P(E_A^{1} \cap E_B^{1}) = 1 - P(E_A \cup E_B)$ = 1 - 0.75 = 0.25 ----- # **Question 37** Let $S = \{a, b, c\}$ be the sample space with the associated probabilities satisfying P(a) = 2P(b) and P(b) = 2P(c). Then the value of P(a) is - A. $\frac{1}{5}$ - B. $\frac{2}{7}$ - C. $\frac{1}{7}$ - D. $\frac{1}{6}$ - E. $\frac{4}{7}$ **Answer: E** ### **Solution:** #### **Solution:** $$P(a) = k$$ $$P(b) = \frac{k}{2}$$ $$P(c) = \frac{k}{4}$$ $$P(a) + P(b) + P(c) = 1$$ $$\Rightarrow k + \frac{k}{2} + \frac{k}{4} = 1$$ $$4k + 2k + k = 4$$ $$7k = 4$$ $$7k = 4$$ $$k = \frac{4}{7}$$ # **Question 38** A coin is tossed thrice. The probability of getting a head on the second toss given that a tail has occurred in at least two tosses is **Options:** - A. $\frac{1}{2}$ - B. $\frac{1}{16}$ - C. $\frac{1}{8}$ - D. $\frac{1}{4}$ - E. $\frac{1}{3}$ **Answer: D** # **Solution:** Tail occurred in at least 2 tosses ⇒{ TTH, THT, HTT, TTT } \therefore Required probability = $\frac{1}{4}$ # **Question 39** Let X be a random variable following Binomial distribution; Bin(n, p), where n is the number of independent Bernoulli trials and p is the probability of success. If E (X) = 1 and Var(X) = $\frac{4}{5}$, then the values of n and p are # **Options:** A. $$n = 5$$, $p = \frac{4}{5}$ B. $$n = 1$$, $p = \frac{1}{5}$ C. $$n = 1$$, $p = 1$ D. n = 5, p = $$\frac{1}{5}$$ E. $$n = 1$$, $p = \frac{4}{5}$ **Answer: D** # **Solution:** #### **Solution:** $$E(x) = np = 1$$ $$Van(x) = npq = \frac{4}{5}$$ $$\frac{npq}{np} = \frac{4}{5} = q$$ $$\therefore p = \frac{1}{5}, n = 5$$ # **Question 40** A box contains 10 coupons, labelled as 1, 2, ... 10. Three coupons are drawn at random and without replacement. Let X_1 , X_2 and X_3 denote the numbers on the coupons. Then the probability that $\max\{X_1, X_2, X_3\} < 7$ is # **Options:** A. $$\frac{{}^{3}\text{C}_{1}}{{}^{10}\text{C}_{2}}$$ B. $$\frac{{}^{7}\text{C}_{3}}{{}^{10}\text{C}_{3}}$$ C. $$\frac{{}^{3}C_{3}}{{}^{10}C_{3}}$$ D. $$\frac{{}^{3}C_{1}}{{}^{10}C_{7}}$$ E. $$\frac{^{6}\text{C}_{3}}{^{10}\text{C}_{3}}$$ Answer: E ``` {}^{6}\text{\scriptsize C}_{3}\over{}^{10}\text{\scriptsize C}_{3} (should not get 7, 8, 9) ``` # **Question 41** An electric bulb manufacturing company manufactures three types of electric bulbs A, B and C. In a room containing these three types of electric bulbs, it is known that 6% of type A electric bulbs are defective, 4% of type B electric bulbs are defective and 2% of type C electric bulbs are defective. An electric bulb is selected at random from a lot containing 50 type A electric bulbs, 30 type B electric bulbs and 20 type C electric bulbs. The selected electric bulb is found to be defective. Then the probability that the selected electric bulb was type A is ### **Options:** - A. $\frac{2}{23}$ - B. $\frac{23}{500}$ - C. $\frac{12}{23}$ - D. $\frac{15}{23}$ - E. $\frac{6}{115}$ **Answer: D** ### **Solution:** #### **Solution:** Applying Bayes' theorem $$P[E_{1}/A] = \frac{P[E_{1}][A/E_{1}]}{\sum\limits_{i=1}^{3} P[E_{i}]P[A/E_{i}]}$$ $$= \frac{\frac{50}{100} \cdot \frac{6}{100}}{\frac{50 \cdot 6}{100 \cdot 100} + \frac{30 \cdot 4}{100 \cdot 100} + \frac{20 \cdot 2}{100 \cdot 100}}$$ $$= \frac{15}{23}$$ # **Question 42** For four observations x_1 , x_2 , x_3 , x_4 , it is given that $\sum_{i=1}^{4} x_i^2 = 656$ and $\sum_{i=1}^{4} x_i = 32$. Then, the variance of these four observations is | A. | 144 | |------|-----| | 7 T. | | B. 730 C. 120 D. 248 E. 182.5 **Answer: A** # **Solution:** **Solution:** variance = $$\frac{\sum_{i=1}^{4} xi^2}{4} - (\overline{x})^2$$ = $\frac{656}{4} - (\frac{32}{4})^2 = 164 - 64 = 100$ # **Question 43** An um contains 8 black marbles and 4 white marbles. Two marbles are chosen at random and without replacement. Then the probability that both marbles are black is # **Options:** A. $\frac{7}{33}$ B. $\frac{2}{3}$ C. $\frac{7}{11}$ D. $\frac{14}{33}$ E. $\frac{21}{143}$ **Answer: D** # **Solution:** #### **Solution:** Required probability $$= \frac{8}{12} \cdot \frac{7}{11} = \frac{14}{33}$$ # **Question 44** A box contains 100 tickets numbered 00, 01, 02, ... 99 and a ticket is drawn at random. Let X denote the sum of the digits on that ticket and Y denote the product of those digits. Then the value of $P(X=2\mid Y=0)$ is ### **Options:** A. $\frac{3}{19}$ B. $\frac{6}{19}$ C. $\frac{1}{19}$ D. $\frac{2}{19}$ E. $\frac{1}{100}$ **Answer: D** #### **Solution:** #### **Solution:** $$\begin{split} &P[x=2 \ / \ y=0] \\ &= \frac{P(x=2 \ \cap \ y=0)}{P[y=0]} \\ &\text{Favourable cases to } y=0 \\ &01,\ 02,\ 03,\ 04,\ 05,\ 06,\ 07,\ 08,\ 09,\ 10,\ 20, \\ &30,\ 40,\ 50,\ 60,\ 70,\ 80,\ 90 \ , \\ &\text{In this cases the tickets } 02 \ \text{and } 20 \ \text{are favourable to } x=2 \ \text{and } y=0 \\ &\therefore \ \text{Required probability} \ = \frac{2}{19} \end{split}$$ ------ # **Question 45** Let the coefficient of variation of two datasets be 50 and 75. respectively and the corresponding variances be 25 and 36. respectively. Also let \overline{x}_1 and \overline{x}_2 denote the corresponding sample means. Then $\overline{x}_1 + \overline{x}_2$ is # **Options:** A. 2 B. 10 C. 18 D. 20 E. 16 **Answer: C** $$C \cdot V = \frac{SD}{x_1} \cdot 100$$ $$= \frac{5}{x_1} \cdot 100 = 50$$ $$\overline{x}_1 = \frac{500}{50} = 10$$ $$75 = \frac{6}{x_2} \cdot 100$$ $$\Rightarrow \overline{x}_2 = \frac{600}{75} = 8$$ $$\overline{x}_1 + \overline{x}_2 = 18$$ _____ # **Question 46** The mean deviation about the median for the data 3, 5, 9, 3, 8, 10, 7 is Options: A. $\frac{23}{7}$ B. $\frac{4}{7}$ C. $-\frac{4}{7}$ D. $\frac{16}{7}$ E. $\frac{17}{7}$ **Answer: D** # **Solution:** #### **Solution:** $$\begin{split} \mathbf{M} \cdot \mathbf{D} &= \frac{\Sigma \mid \mathbf{d} \mid}{n}, \, n = 7 \\ \text{Median is middle most item in, 3, 3, 5, 7,} \\ \mathbf{8, 9, 10} \\ \text{i.e., 7} \\ &= {}^{4 + 4 + 2 + 0 + 1 + 2 + 3 = 16} \\ \therefore \qquad \qquad \sum_{\substack{\mathbf{d} \\ \mathbf{d}}} \\ \therefore \mathbf{M} \cdot \mathbf{D} &= \frac{16}{7} \end{split}$$ # Question 47 A biased die is rolled such that the probability of getting k dots, $1 \le k \le 6$. on the upper face of the dic is proportional to k. Then the probability that five dots appear on the upper face of the die is A. $$\frac{16}{21}$$ | D | 2 | | | |----|----|--|--| | ь. | 21 | | | C. $$\frac{1}{21}$$ D. $$\frac{3}{21}$$ E. $$\frac{5}{21}$$ **Answer: E** ### **Solution:** #### **Solution:** ``` Sum of total probability = 1 K + 2K + K + 3K + 4K + 5K + 6K = 1 \Rightarrow 21K = 1 K = \frac{1}{21} \therefore 5K = \frac{5}{21} ``` _____ # **Question 48** Let $\Omega = \{1, 2, 3, 4, 5\}$ be the sample space with the events $A = \{1, 2, 5\}$, $B = \{1, 3, 5\}$ and $C = \{2, 3, 5\}$. Let E^c denote the complement of an event E. Then $P((A \cap B)^c \cup C^c)$ is ### **Options:** A. $$\frac{1}{5}$$ B. $$\frac{3}{5}$$ C. $$\frac{2}{5}$$ D. $$\frac{4}{5}$$ E. 1 **Answer: D** #### **Solution:** #### **Solution:** A $$\cap$$ B = {1, 5} (A \cap B)^C = {2, 3, 4} C^C = {1, 4} (A \cap B)^C \cup C^C = {1, 2, 3, 4} required probability = $\frac{4}{5}$ _____ # **Question 49** For any real number x, the least value of $4\cos x - 3\sin x + 5$ is ### **Options:** A. 10 B. 2 C. 0 D. 8 E. 4 **Answer: C** ### **Solution:** #### **Solution:** Standard result $$c - \sqrt{a^2 + b^2} \le a \cos \theta + b \sin \theta + c$$ $\le c + \sqrt{a^2 + b^2}$ Here c = 5, a = 4, b = 3 ∴ Least value $$= c - \sqrt{a^2 + b^2} = 5 - \sqrt{16 + 9} = 0$$ ----- # **Question 50** Let $P(x) = \cos^2 x + \sin^4 x$, for any $x \in \mathbb{R}$. Then which of the following options is correct for all x? # **Options:** A. $$\frac{1}{6} \le P(x) \le \frac{3}{4}$$ B. $$0 \le P(x) \le \frac{1}{2}$$ C. $$0 \le P(x) \le 1$$ D. $$\frac{1}{2} \le P(x) \le \frac{3}{2}$$ $$E. \ \frac{3}{4} \le P(x) \le 1$$ **Answer: E** # **Solution:** $$p(x) = \cos^{2}x + \sin^{2}x(1 - \cos^{2}x)$$ = 1 - \sin^{2}x\cos^{2}x = 1 - \frac{1}{4}\sin^{2}2x $$0 \le \sin^{2}2x \le 1$$ $$0 \ge -\frac{1}{4}\sin^{2}2x \ge \frac{-1}{4}$$ $$1 \ge 1 - \frac{1}{4}\sin^{2}2x \ge \frac{3}{4}$$ i.e., $\frac{3}{4} \le p(x) \le 1$ _____ # **Question 51** Let α and β be such that $\alpha + \beta = \pi$. If $\cos \alpha = \frac{1}{\sqrt{2}}$, then the value of $\cot(\beta - \alpha)$ is **Options:** **A.** ∞ B. 1 C. $\frac{1}{2}$ D. $\frac{1}{4}$ E. 0 **Answer: D** **Solution:** **Solution:** $$\cos \alpha = \frac{1}{\sqrt{2}} \Rightarrow \alpha = 45^{\circ}$$ $$\alpha + \beta = 180^{\circ}$$ $$\therefore \beta = 135^{\circ}$$ $$\cot(135 - 45) = \cot 90 = 0$$ ----- # **Question 52** The value of $\csc 20^{\circ} \tan 60^{\circ} - \sec 20^{\circ}$ is **Options:** A. 0 B. 1 C. 2 D. 4 E. 6 **Answer: D** $$\cos 20^{\circ} \tan 60^{\circ} - \sec 20^{\circ}$$ $$= \sqrt{3} \cos e c 20 - \sin 20$$ $$= \frac{\sqrt{3}}{\sin 20} - \frac{1}{\cos 20}$$ $$= \frac{\sqrt{3} \cos 20 - \sin 20}{\sin 20 \cos 20}$$ $$= \frac{\frac{\sqrt{3}}{2} \cos 20 - \frac{1}{2} \sin 20}{\frac{1}{2} \sin 20 \cos 20}$$ $$= \frac{\sin 60 \cos 20 - \cos 60 \sin 20}{\frac{1}{2} \sin 40}$$ $$= \frac{\sin 40}{\frac{1}{4} \sin 40} = 4$$ _____ # **Question 53** If $\alpha + \beta + \gamma = 2\pi$, then the value of $\cot \frac{\alpha}{2} \cot \frac{\beta}{2} + \cot \frac{\alpha}{2} \cot \frac{\gamma}{2} + \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$ is **Options:** - A. 0 - B. 1 - C. $\frac{\pi}{2}$ - D. $\frac{\pi}{3}$ - E. $\frac{1}{2}$ **Answer: B** ### **Solution:** #### **Solution:** $$\begin{array}{l} \alpha+\beta+\gamma=2\pi\\
\text{conditional identity}\\ \cot\frac{\alpha}{2}\cot\frac{\beta}{2}+\cot\frac{\alpha}{2}\cot\frac{\gamma}{2}+\cot\frac{\beta}{2}\cot\frac{\gamma}{2}=1 \end{array}$$ # **Question 54** Let p, q and r be the real numbers such that $|r| > \sqrt{p^2 + q^2}$. Then the equation $p\cos\theta + q\sin\theta = r$ has - A. exactly one real solution. - B. exactly two real solutions. C. infinite number of real solutions. D. no real solution E. integer solutions. **Answer: D** ## **Solution:** #### **Solution:** ``` \sqrt{p^2 + q^2} \triangle l \text{ ef tr} | p \cos \theta + q \sin \theta = r \text{ has real solution only} if r < \sqrt{p^2 + q^2} hence there is no real solution ``` ----- # **Question 55** If $x \in (0, \pi)$ satisfies the equation $6^{1 + \sin x + \sin^2 x + \dots} = 36$, then the value of x is **Options:** A. 0 B. $\frac{\pi}{3}$ C. $\frac{\pi}{6}$ D. $\frac{\pi}{2}$ E. $\frac{\pi}{4}$ **Answer: C** # **Solution:** #### **Solution:** $$6^{1 + \sin x + \sin^{2}x + \dots} = 36$$ $$= 6^{2}$$ i.e., $\frac{1}{1 - \sin x} = 2$ $$1 - 2 - 2\sin x$$ $$2\sin x = 1$$ $$\sin x = \frac{1}{2}$$ _____ # **Question 56** # The value (s) of a($\neq 0$) for which the equation $\frac{1}{2}(x-2)^2+1=\sin\left(\frac{a}{x}\right)$ holds is/ are ### **Options:** A. $$(4n + 1)π$$, $n ∈ Z$ B. $$2(n - 1)\pi$$, n ∈ Z C. $$n\pi$$, $n \in N$ D. $$\frac{n\pi}{2}$$, $n \in N$ E. 1 **Answer: A** ## **Solution:** #### **Solution:** $$\frac{1}{2}(x-2)^2 + 1 = \sin\left(\frac{a}{x}\right)$$ minimum value of $(x-2)^2 = 0 \sin\left(\frac{a}{x}\right) \le 1$. Therefore equality holds when LHS $= 1 = RHS \Rightarrow x = 2$ $$\sin\left(\frac{a}{2}\right) = 1 = \sin\frac{\pi}{2}$$ $$\therefore \frac{a}{2} = n\pi + (-1)^n \frac{\pi}{2}$$ $$a = 2n\pi + (-1)^n \pi$$ When $$n = 0$$, $a = \pi$ $$n = 1$$, $a = 2\pi - \pi = \pi$ $$n = 2$$, $a = 4\pi + \pi = 5\pi$ $$n = 3$$, $a = 8\pi + \pi = 9\pi$ $\Rightarrow 4(n-1)\pi$, $n \in 2$ _____ # **Question 57** # If x is a real number such that tan x + cot x = 2, then x = # **Options:** A. $$\left(n + \frac{1}{4}\right)\pi$$, $n \in \mathbb{Z}$ B. $$(n + 1)\pi$$, $n \in Z$ C. $$\left(n + \frac{1}{2}\right)\pi$$, $n \in Z$ D. $$n\pi$$, $n ∈ Z$ E. $$\frac{2}{3}$$ n π , n \in Z **Answer: A** $$\tan x + \cot x = 2$$ $$\tan x + \frac{1}{\tan x} = 2$$ $$\tan^2 x + 1 = 2 \tan x$$ $$\tan^2 x - 2 \tan x + 1 = 0$$ $$(\tan x - 1)^2 = 0$$ $$\tan x = 1$$ $$\tan x = \tan \frac{\pi}{4}$$ $$x = n\pi + \frac{\pi}{4}$$ $$= \pi \left(n + \frac{1}{4}\right), n \in Z$$ # **Question 58** If $\frac{1+\sin x}{1-\sin x} = \frac{(1+\sin y)^3}{(1-\sin y)^3}$ for some real values x and y, then $\frac{\sin x}{\sin y} =$ ### **Options:** A. $$\frac{3 + \sin^2 y}{1 + 3\sin^2 y}$$ B. $$\frac{3 + \cos^2 y}{1 + 3\cos^2 y}$$ C. $$\frac{3 + \sin^2 y}{1 - 3\sin^2 y}$$ D. $$\frac{3 + \sin^2 y}{1 - 3\cos^2 y}$$ E. $$\frac{1 + 3\sin^2 y}{1 - 3\cos^2 y}$$ #### **Answer: A** ### **Solution:** #### **Solution:** $$\begin{split} \frac{1+\sin x}{1-\sin x} &= \frac{(1+\sin y)^3}{(1-\sin y)^3} \\ \frac{(1+\sin x)+(1-\sin x)}{(1+\sin x)-(1-\sin x)} \\ &= \frac{(1+\sin y)^3+(1-\sin y)^3}{(1+\sin y)^3-(1-\sin y)^3} \\ \frac{2}{2\sin x} &= \frac{2+6\sin^2 y}{6\sin y+2\sin^3 y} \\ 2[3\sin y+\sin^3 y] &= 2\sin x(1+3\sin^2 y) \\ \sin y[3+\sin^2 y] &= \sin x[1+3\sin^2 y] \\ \frac{\sin x}{\sin y} &= \frac{3+\sin^2 y}{1+3\sin^2 y} \end{split}$$ # **Question 59** Let k be a real number such that $\sin \frac{3\pi}{14} \cos \frac{3\pi}{14} = k \cos \frac{\pi}{14}$. Then the value ## of 4k is ### **Options:** - A. 1 - B. 2 - C. 3 - D. 4 - E. 0 **Answer: B** ### **Solution:** #### **Solution:** $$\sin \frac{3\pi}{14} \cos \frac{3\pi}{14} = k \cos \frac{\pi}{14}$$ $$\frac{1}{2} \sin \frac{6\pi}{14} = k \cos \frac{\pi}{14}$$ $$\frac{1}{2} \cos \left[\frac{\pi}{2} - \frac{6\pi}{14} \right] = k \cos \frac{\pi}{14}$$ $$\frac{1}{2} \cos \left[\frac{2\pi}{2 \cdot 14} \right] = k \cos \frac{\pi}{14}$$ $$\frac{1}{2} \cos \left(\frac{\pi}{14} \right) = k \cos \left(\frac{\pi}{14} \right)$$ $$k = \frac{1}{2}$$ # **Question 60** In a triangle ABC, if $\cos^2 A - \sin^2 B + \cos^2 C = 0$, then the value of $\cos A \cos B \cos C$ is # **Options:** - A. $\frac{1}{4}$ - B. 1 - C. $\frac{\pi}{2}$ - D. $\frac{1}{2}$ - E. 0 **Answer: E** # **Solution:** $$\cos^{2}A - \sin^{2}B + \cos^{2}C = 0$$ $\cos(A + B\cos(A - B) + \cos^{2}C = 0.$ $\cos(\pi - C)\cos(A - B) + \cos^{2}C = 0$ $-\cos C\cos(A - B) + \cos^{2}C = 0$ $\cos C[\cos C - \cos(A - B)] = 0$ $\cos C[-\cos(A + B) - \cos(A - B)] = 0$ $\Rightarrow -\cos C(2\cos A\cos B) = 0$ $\Rightarrow \cos A\cos B\cos C = 0$ _____ # **Question 61** The value of $\cos^{-1}\left(\cos\left(\frac{7\pi}{4}\right)\right)$ is ### **Options:** A. 0 B. $\frac{\pi}{2}$ C. $\frac{\pi}{3}$ D. $\frac{\pi}{4}$ E. $\frac{\pi}{6}$ Answer: D ## **Solution:** #### **Solution:** $$\cos^{-1}\cos\left(\frac{7\pi}{4}\right) = \cos^{-1}\cos\left(2\pi - \frac{\pi}{4}\right)$$ $$= \cos^{-1}\cos\left(\frac{-\pi}{4}\right) = \cos^{-1}\cos\frac{\pi}{4} = \frac{\pi}{4}$$ ------ # **Question 62** The value of $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{5}\right)$ is A. $$tan^{-1}(5)$$ B. $$\tan^{-1}\left(\frac{1}{5}\right)$$ C. $$\tan^{-1}\left(\frac{2}{3}\right)$$ D. $$\tan^{-1}\left(\frac{8}{9}\right)$$ E. $$\tan^{-1}\left(\frac{9}{8}\right)$$ **Answer: E** ### **Solution:** **Solution:** $$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{5}$$ $$= \tan^{-1}\frac{\frac{1}{2} + \frac{2}{5}}{1 - \frac{1}{2} \cdot \frac{2}{5}}$$ $$= \tan^{-1}\frac{\frac{9}{10}}{\frac{8}{10}} = \tan^{-1}\frac{9}{8}$$ # **Question 63** The value of $\tan^{-1}(\sqrt{3}) - \sec^{-1}(\frac{2}{\sqrt{3}})$ is **Options:** - A. $\frac{2\pi}{3}$ - B. $\frac{\pi}{4}$ - C. $\frac{\pi}{3}$ - D. $\frac{\pi}{2}$ - E. $\frac{\pi}{6}$ **Answer: E** ### **Solution:** Solution: $$\tan^{-1}\sqrt{3} - \sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$ $$= \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}$$ # **Question 64** Let $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$. Then the vector in the direction of \vec{a} with magnitude 5 units is # **Options:** A. $$5\hat{i} - 5\hat{j} + 10\hat{k}$$ B. $$-5\hat{i} - 5\hat{j} + 10\hat{k}$$ C. $$\frac{1}{\sqrt{16}} (5\hat{i} - 5\hat{j} + 10\hat{k})$$ D. $$\frac{1}{\sqrt{6}} (-5\hat{i} - 5\hat{j} + 10\hat{k})$$ E. $$\frac{1}{\sqrt{6}} (-10\hat{i} - 5\hat{j} + 5\hat{k})$$ **Answer: C** # **Solution:** Unit vector in the direction of Vector with magnitude $5 = \frac{5\hat{i} - 5\hat{j} + 10\hat{k}}{\sqrt{6}}$ # Question 65 Let $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ be two vectors. Then the unit vector in the direction of $\vec{a} - \vec{b}$ is # **Options:** A. $$\frac{1}{\sqrt{10}} \left(2\hat{j} - 3\hat{k} \right)$$ B. $$\frac{1}{\sqrt{10}}(3\hat{j} - \hat{k})$$ C. $$(3\hat{j} - \hat{k})$$ D. $$\frac{1}{\sqrt{5}} \left(2\hat{j} - 3\hat{k} \right)$$ $$E. \frac{-1}{\sqrt{5}} \left(2\hat{j} - 3\hat{k} \right)$$ **Answer: B** $$\overline{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}} \ \overline{\mathbf{b}} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$$ $$\overline{a} - \overline{b} = 0 \hat{i} + 3 \hat{j} - \hat{k}$$ unit vector in the direction of $$\overline{a} - \overline{b} = \frac{3 \hat{i} - \hat{k}}{\sqrt{9 + 1}} = \frac{3 \hat{i} - \hat{k}}{\sqrt{10}}$$ _____ # **Question 66** The direction cosines of vector $\vec{a} = -2\hat{i} + \hat{j} - \hat{k}$ are **Options:** A. $$\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$ B. $$\left(\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)$$ C. $$\left(\frac{-2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)$$ D. $$\left(\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$ E. $$\left(\frac{-2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$ **Answer: B** **Solution:** **Solution:** direction cosines of $$\bar{a} = -2\hat{i} + \hat{j} - \hat{k}$$ is $\frac{-2}{\sqrt{4+1+1}}$, $\frac{1}{\sqrt{4+1+1}}$, $\frac{-1}{\sqrt{4+1+1}}$ $= \frac{-2}{\sqrt{6}}$, $\frac{1}{\sqrt{6}}$, $\frac{-1}{\sqrt{6}}$ # **Question 67** The value of λ for which the vectors $\hat{i} + \hat{j} - \hat{k}$ and $\lambda \hat{i} + 3\hat{j} + \hat{k}$ are perpendicular is - A. -2 - B. 2 - C. 0 - D. 1 - E. -1 **Solution:** Since vector are perpendicular, $\overline{a} \cdot \overline{b} = 0$ $\Rightarrow \lambda + 3 - 1 = 0$ $\Rightarrow \lambda = -2$ ----- # **Question 68** The position vectors of two points P and Q are given $\vec{OP} = 2\vec{a} - \vec{b}$ and $\vec{OQ} = \vec{a} + 3\vec{b}$, respectively. If a point R divides the line joining P and Q internally in the ratio 1 : 2, then the position vector of the point R is **Options:** A. $$\frac{1}{3}(5\vec{a} - \vec{b})$$ B. $$\frac{1}{3}(5\vec{a} + \vec{b})$$ C. $$\frac{1}{3}(\vec{a} - 5\vec{b})$$ D. $$\frac{1}{3}(\vec{a} + 5\vec{b})$$ E. $$\frac{1}{3}(\vec{a} + \vec{b})$$ **Answer: B** ### **Solution:** **Solution:** $$\overline{R} = \frac{(\overline{a} + 3b) + 2(2a - b)}{3}$$ $$= \frac{5a + b}{3}$$ ------ # **Question 69** Let \vec{a} and \vec{b} be perpendicular vectors such that $|\vec{a}| = \sqrt{104}$ and $|\vec{b}| = 6$. Then the value of $|\vec{a} - \vec{b}|$ is ``` C. \sqrt{98} ``` D. $\sqrt{55}$ **Answer: B** ### **Solution:** #### **Solution:** ``` |a| = \sqrt{104} |b| = 6 \ \overline{a} \perp \overline{b} \Rightarrow a \cdot b = 0 |a - b|^2 = |a|^2 + |b|^2 = 104 + 36 = 140 |a - b| = \sqrt{140} ``` # **Question 70** Let x be a real number and \vec{a} be any non-zero vector such that $|(4-x)\vec{a}| < |3\vec{a}|$. Then which of the following options is correct? #### **Options:** A. 0 < x < 6 B. 0 < x < 7 C. 1 < x < 7 D. $1 \le x \le 7$ E. $0 \le x \le 6$ **Answer: C** #### **Solution:** #### **Solution:** $$|(4 - x)a| < |3a|$$ $\Rightarrow |4 - x| < |3| = 3$ $-3 < 4 - x < 3$ $-7 < -x < -1$ $\Rightarrow 7 > x > 1$ # Question 71 The value of λ for which the vectors
$2^{\,\hat{i}}-3^{\,\hat{j}}+4^{\,\hat{k}}$ and $-4^{\,\hat{i}}+\lambda^{\,\hat{j}}-8^{\,\hat{k}}$ are collinear is #### **Options:** A. 0 B. 1 E. 4 **Answer: D** ## **Solution:** #### **Solution:** Since the vector are collinear $$\frac{2}{-4} = \frac{-3}{\lambda} = \frac{4}{-8}$$ $$\Rightarrow \lambda = 6$$ # **Question 72** The projection of the vector $\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$ is ### **Options:** A. $\frac{3}{4}$ B. $\frac{4}{3}$ C. $\frac{2}{3}$ D. $\frac{1}{3}$ E. 0 **Answer: B** ### **Solution:** Solution: $$\overline{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$$ $\overline{b} = \hat{i} + 2\hat{j} + 2\hat{k}$ projection of \overline{a} and $\overline{b} = \frac{a \cdot b}{|b|} = \frac{2 - 6 + 8}{\sqrt{1 + 4 + 4}}$ $= \frac{4}{2}$ # **Question 73** Let $$f(x) = \begin{cases} -5, & x \le 0 \\ x - 5, & x > 0 \end{cases}$$ and $g(x) = |f(x)| + 2f(|x|)|$ # Then g(-2) will be ### **Options:** A. -1 B. -15 C. 1 D. 0 E. -11 **Answer: A** ### **Solution:** #### **Solution:** $$g(-2) = |f(-2)| + 2f(|-2|)$$ = |-5| + 2(2-5) = 5-6 = -1 ----- # **Question 74** # Let [.] denote the greatest integer function and f(x) = [x] + |2 - x|, $-1 \le x \le 4$ Then ### **Options:** A. f is continuous at x = 2 B. f is not continuous at x = 1 C. f is continuous at x = 0 D. f is differentiable at x = 3 E. f is not differentiable at $x = \frac{3}{2}$ Answer: B # **Solution:** #### Solution Since greatest integer function is not continuous at 1. # **Question 75** $$\lim_{x \to 0} \frac{e^{x} - 1}{3(1 - e^{2x})} =$$ A. $$\frac{1}{6}$$ B. $$-\frac{1}{6}$$ C. 3 D. 0 E. $$-\frac{1}{3}$$ **Answer: B** ### **Solution:** #### **Solution:** Applying LHospitals rule $$\lim_{x \to 0} \frac{e^x}{-6e^{2x}} = \frac{-1}{6}$$ # **Question 76** Let f (x) = $$\left(1 - \frac{1}{x}\right)^2$$, x > 0. Then ### **Options:** - A. f is increasing in (0, 2) and decreasing in $(2, \infty)$ - B. f is decreasing in (0, 2) and increasing in $(2, \infty)$ - C. f is increasing in (0, 1) and decreasing in (1, ∞) - D. f is decreasing in (0, 1) and increasing in $(1, \infty)$ - E. f is increasing in $(0, \infty)$ **Answer: D** # **Solution:** #### **Solution:** $$f(x) = \left(1 - \frac{1}{x}\right)^2$$ $$f'(x) = 2(1 - \frac{1}{x}) + \frac{1}{x^2}$$ $$\Rightarrow +2 \frac{(x-1)}{x}$$ $$\frac{+t}{0}\frac{1}{1}$$ \therefore f(x) is decreasing in (0, 1) and increasing in (1, ∞) # Let $R \rightarrow R$ defined by **f(x)** = $$\begin{cases} 3e^{x} & \text{if } x < 0 \\ x^{2} + 3x + 3 & \text{if } 0 \le x < 1 \\ x^{2} - 3x - 3 & \text{if } x \ge 1 \end{cases}$$ ### **Options:** - A. f is continuous on R - B. f is not continuous on R - C. f is continuous on $\mathbb{R}\setminus\{0\}$ - D. f is continuous on $R\setminus\{1\}$ - E. f is not continuous on $\mathbb{R}\setminus\{0, 1\}$ **Answer: D** ### **Solution:** #### **Solution:** ``` at x = 0 LHL = RHL At x = 1 LHL = 1 + 3 + 3 = 7 RHL = 1 - 3 - 3 = -5 \thereforef is not continuous at x = 1 \thereforef is continuous on R\{1} ``` # **Question 78** Let $f(x) = \pi \cos x + x^2$. The value of $c \in (0, \pi)$ where f attains its local maximum / minimum is ### **Options:** - A. $\frac{\pi}{4}$ - B. $\frac{\pi}{2}$ - C. $\frac{31}{4}$ - D. $\frac{\pi}{3}$ - E. $\frac{\pi}{6}$ Answer: B $$f'(x) = -\pi \sin x + 2x$$ At $\frac{\pi}{2}$, $f'(x) = 0$ $$\Rightarrow$$ local minimum at $x = \frac{\pi}{2}$ ______ # **Question 79** The minimum of f (x) = $\sqrt{10 - x^2}$ in the interval [-3, 2] is ### **Options:** - A. $\sqrt{4}$ - B. $\sqrt{6}$ - C. 1 - D. 0 - E. √10 **Answer: C** ### **Solution:** #### Solution: $$f(x) = \sqrt{10 - x^2}$$ $$f'(x) = \frac{1}{2\sqrt{10 - x^2}} - 2x = 0$$ $$\Rightarrow x = 0$$ $$f(-3) = \sqrt{10 - 9} = 1$$ $$f(2) = \sqrt{10 - 4} = \sqrt{6}$$ $$f(0) = \sqrt{10 - 0} = \sqrt{10}$$ # **Question 80** The equation of the line passing through origin which is parallel to the tangent of the curve $y = \frac{x-2}{x-3}$ at x=4 is # **Options:** $$A. y = 2x$$ B. $$y = -2x + 1$$ $$C. y = -x$$ D. $$y = x + 2$$ $$E. y = 4x$$ **Answer: C** **Solution:** $$y = \frac{x-2}{x-3}$$ $$\frac{dy}{dx} = \frac{(x-3) - (x-2)}{(x-3)^2} \times$$ at $x = 4$, $\frac{dy}{dx} = \frac{1-2}{1^2} = -1$ $$\therefore \text{ required lime } \Rightarrow y - 0 = -1(x-0)$$ $$\Rightarrow y = -x$$ _____ # **Question 81** Let $f(x) = \alpha \sin^2 3x$. If $f'(\frac{\pi}{12}) = -3$, then the value of α is **Options:** A. -1 В. -п С. п D. $\frac{\pi}{2}$ E. 1 Answer: A #### **Solution:** #### **Solution:** $$f'(x) = \alpha 6 \sin 3x \cos 3x$$ $$f'\left(\frac{\pi}{12}\right) = \alpha 6 \sin \frac{3\pi}{12} \cos \frac{3\pi}{12} = -3$$ $$\Rightarrow 6 \times \alpha \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = -3$$ $$\Rightarrow 3\alpha = -3 \Rightarrow \alpha = -1$$ ----- # **Question 82** ``` Let f: R \to R be defined by f(x)=\{\{\{x \in 2 : 3 : x+\alpha, , x>5 \}. ``` Then the value of α so that f is continuous on R is **Options:** A. 2 B. -2 D. -3 E. 0 **Answer: B** # **Solution:** #### **Solution:** Since f is continuous, $10 + 3 = 15 + \alpha$ $\alpha = -2$ _____ # **Question 83** If $y = x^{e^x} + x^e$ for x > 0, then $\frac{dy}{dx}$ is equal to **Options:** A. $$x^{e^x} \left[\frac{1}{x} + \ln x \right] + e^x$$ B. $$x^{e^x} e^x \left[\frac{1}{x} + \ln x \right] + e^{x^{e^x} - 1}$$ C. $$e^x \cdot x^{e^{x-1}} + ex^e$$ D. $$x^{e^x}e^{-x}\left[\frac{1}{x} - \ln x\right] + ex^{e-1}$$ E. $$x^{e^x}e^x \left[\frac{1}{n} - \ln x \right] + ex^{e^{-1}}$$ **Answer: B** ### **Solution:** ### Solution: $$y = x^{e^{x}} + x^{e}$$ $$= u + v$$ $$u = x^{e^{x}}$$ $$\log u = e^x \log x \quad \frac{v = x^e}{d v} = e x^{e-1}$$ $$\frac{1}{u}\frac{d u}{d x} = \frac{e^x}{x} + \log u \times e^x$$ $$\frac{d u}{d x} = u e^{x} \left(\frac{e^{x}}{x} + \log u \times e^{x} \right)$$ $$\therefore \frac{dy}{dx} = x^{e^x} e^x \left[\frac{1}{x} + \log x \right] + ex^{e^{-1}}$$ ----- # **Question 84** # **Options:** A. 1 B. ln 5 C. -1 D. 5 E. $\frac{1}{5}$ **Answer: A** # **Solution:** #### **Solution:** Applying LH ospitals rule $$\lim_{x \to 0} \frac{\frac{1}{1 + (\ln 5)x} \times \ln 5}{5^{x} \ln 5} = 1$$ ----- # **Question 85** $$\int \frac{1}{x^2 - 2x + 2} \mathbf{dx} =$$ # **Options:** A. $$tan^{-1}(x-1) + C$$ B. $$\sin^{-1}(2x - 1) + C$$ C. $$\sin^{-1}(x-1) + C$$ D. $$tan^{-1}(2x - 1) + C$$ E. $$\frac{1}{(2x-1)^3+C}$$ **Answer: A** # **Solution:** #### Solution: $$\int \frac{1}{x^2 - 2x + 2} dx = \int \frac{1}{(x - 1)^2 + 1} dx$$ $$= \tan^{-1}(x - 1) + c$$ _____ ## $\int \sin^2 \pi x \, dx =$ ### **Options:** A. $$\frac{\pi}{2} - \frac{1}{4\pi} \sin 2\pi x + C$$ B. $$\frac{\pi}{2} - \frac{1}{8\pi} \sin 4\pi x + C$$ C. $$\frac{x}{8} - \frac{1}{4\pi} \sin 2\pi x + C$$ D. $$x + \frac{1}{2\pi} \sin 2\pi x + c$$ E. $$\frac{x}{2} - \frac{1}{2\pi} \cos 2\pi x + C$$ **Answer: A** ### **Solution:** #### **Solution:** $$\int \sin^2 \pi x \, dx = \int \frac{1 - \cos 2 \pi x}{2} \, dx$$ $$= \frac{x}{2} - \frac{1}{2} \frac{\sin 2\pi x}{2\pi} + c$$ $$= \frac{x}{2} - \frac{1}{4\pi} \sin 2\pi x + c$$ ## **Question 87** $$\int \frac{x+5}{x^2-1} \, \mathbf{dx} =$$ ### **Options:** A. $$3 \ln |x - 1| - 2 \ln |x + 1| + C$$ B. $$2 \ln |x - 1| - 3 \ln |x + 1| + C$$ C. $$\ln |x - 2| + \ln |x + 1| + C$$ D. $$\ln |x + 2| + \ln |x - 1| + C$$ E. $$2 \ln |x - 1| + 3 \ln |x + 1| + C$$ **Answer: A** $$\int \frac{x+5}{x^2 - 1} dx = \int \frac{x+5}{(x+1)(x-1)} dx$$ $$\frac{x+5}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1}$$ $$x+5 = A(x-1) + B(x+1)$$ $$6 = 2B \ 4 = -2A$$ $$B = 3 \ A = -2$$ _____ ## **Question 88** $$\int \frac{2\tan x + 3}{\sin^2 x + 2\cos^2 x} \, \mathbf{dx} =$$ #### **Options:** A. $$\frac{3}{\sqrt{2}}\sin^{-1}\left(\frac{\sin x}{\sqrt{2}}\right) + \ln|\sin^2 x + 2| + C$$ B. $$\frac{3}{\sqrt{2}} \tan^{-1} \left(\frac{\tan x}{\sqrt{2}} \right) + \ln |\tan^2 x + 2| + C$$ C. $$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\tan x}{\sqrt{2}} \right) - \ln |\tan^2 x + 2| + C$$ D. $$\frac{3}{\sqrt{2}}\cos^{-1}\left(\frac{\cos x}{\sqrt{2}}\right) + \ln|\sin^2 x + 2| + C$$ E. $$\frac{1}{\sqrt{2}}\cos^{-1}\left(\frac{\cos x}{\sqrt{2}}\right) - \ln|\cos^2 x + 2| + C$$ **Answer: B** #### **Solution:** #### Solution: $$\int \frac{2\tan x + 3}{\sin^2 x + 2\cos^2 x}$$ $$\div \text{ by } \cos^2 x \Rightarrow \int \frac{(2\tan x + 3) \sec^2 x \, dx}{\tan^2 x + 2}$$ $$u = \tan^2 x$$ $$d u = \sec^2 x \, dx$$ $$\Rightarrow \int \frac{(2u + 3)d \, u}{u^2 + 2} = 2 \int \frac{ud \, u}{u^2 + 2} + 3 \int \frac{d \, u}{u^2 + 2}$$ $$= \ln|\tan^2 x + 2| + \frac{3}{\sqrt{2}} \tan^{-1} \left(\frac{\tan x}{\sqrt{2}}\right) + c$$ ----- ## **Question 89** $$\int x \log(1 + x^2) \, dx =$$ A. $$\frac{1}{2}(1 + x^2)\log(1 + x^2) + \frac{x^2}{2} + C$$ B. $$\frac{1}{2}(1+x^2)\log(1+x^2) - \frac{x^2}{2} + C$$ C. $$\frac{1}{2}(1 + x^2)\log(2 + x^2) - \frac{x^2}{2} + C$$ D. $$(1 + x^2) \log(1 + x^2) + (1 + x^2) + C$$ E. $$(1 - x^2) \log(1 + x^2) + (1 - x^2) + C$$ **Answer: B** ### **Solution:** **Solution:** $$\begin{split} &\int x \log(1+x^2) \, dx \\ &= \log(1+x^2) \cdot \frac{x^2}{2} - \int \frac{2x}{(1+x^2)} \cdot \frac{x^2}{2} \, dx \\ &= \frac{x^2}{2} \log(1+x^2) - \frac{1}{2} \int \frac{(u-1)d \, u}{u} \\ &\text{where } u = x^2 + 1 \\ &= \frac{x^2}{2} \log(1+x^2) - \frac{1}{2} (x^2+1) + \frac{1}{2} \log(x^2+1) + C \\ &= \frac{1}{2} (1+x^2) \log(1+x^2) - \frac{x^2}{2} + C \end{split}$$ ## **Question 90** Let R \rightarrow R be defined by f (x) = $\begin{cases} x & \text{if } x \le 1 \\ -x+2 & \text{if } x > 1 \end{cases}$. Then $\int_0^2 f(x) dx = \int_0^2 f$ **Options:** - A. $\frac{\pi}{2}$ - B. 1 - C. 2 - D. 4 - E. $\frac{\pi}{6}$ **Answer: B** ### **Solution:** **Solution:** **Question 91** $$\int \frac{1}{\cos x (\sin x + 2\cos x)} \, \mathbf{dx} =$$ ### **Options:** A. $\ln |1 - \tan x| + C$ B. $\ln |3 + \sin x| + C$ C. $\ln |2 + \tan x| + C$ D. ln | 1 + 2 secx | + C E. $\ln |2 - \tan x| + C$ **Answer: C** ### **Solution:** #### **Solution:** $$\int \frac{dx}{\cos x(\sin x + 2\cos x)}$$ $$\div
\text{ by } \cos x \int \frac{dx}{\cos^2 x(\tan x + 2)}$$ $$= \int \frac{\sec^2 x \, dx}{\tan x + 2}$$ $$= \ln |2 + \tan x| + c$$ ## **Question 92** $$\int_{0}^{2} \frac{2e^{x}}{1+e^{2x}} dx =$$ ### **Options:** A. $4(\tan^{-1}2 - \pi)$ B. $2 \left(\tan^{-1} e - \frac{\pi}{2} \right)$ C. $2 \left(\tan^{-1} e + \frac{\pi}{4} \right)$ D. $2\left(\tan^{-1}e - \frac{\pi}{4}\right)$ E. $4(\tan^{-1}2 + \pi)$ **Answer: D** ### **Solution:** $$\int\limits_0^1 \frac{2e^x}{1+e^{2x}} d\,u$$ put $u=e^x$ when $x=0u=1$ $d\,u=e^x dx$ $x=1$ $u=e$ $$\Rightarrow \int_{1}^{e} \frac{2d u}{1 + u^{2}} = 2(\tan^{-1}u)_{1}^{e} = 2(\tan^{-1}e - \frac{\pi}{4})$$ ----- ## **Question 93** $$\int_{0}^{2} \left(5xe^{2x} - \tan \frac{\pi}{4} \right) dx =$$ ### **Options:** - A. $\frac{5}{4}e^2 + \frac{1}{4}$ - B. $-\frac{5}{4}e^2 \frac{1}{4}$ - C. $\frac{5}{4}e^2 \frac{9}{4}$ - D. $\frac{3}{4}e^2 + \frac{1}{4}$ - E. $\frac{1}{4}e^2 + \frac{5}{4}$ **Answer: A** ### **Solution:** #### **Solution:** $$\begin{split} & \int_{0}^{1} \left(5xe^{2x} - \tan\frac{\pi}{4} \right) dx \\ & = \left(5x \frac{e^{2x}}{2} \right)_{0}^{1} - \int_{0}^{1} 5 \frac{e^{2x}}{2} dx - \int_{0}^{1} \tan\frac{\pi}{4} dx \\ & = \frac{5}{2}e^{2} - \frac{5}{4}(e^{2x})_{0}^{1} - \tan\frac{\pi}{4}(x)_{0}^{1} \\ & = \frac{5}{2}e^{2} - \frac{5}{4}e^{2} + \frac{5}{4} - 1 = \frac{5}{4}e^{2} + \frac{1}{4} \end{split}$$ ## **Question 94** The area of the region in the first quadrant enclosed by the curves $y = \sqrt{x}$, y = -x + 6 and the x-axis is - A. $\frac{22}{7}$ - B. $\frac{22}{3}$ - C. 12 - D. 24 - E. 8 ### **Solution:** **Solution:** Solving $$-x + 6 = \sqrt{x}$$, we get $x = 4$ $$\int_{0}^{4} \sqrt{x} \, dx + \int_{4}^{6} (6 - x) \, dx$$ $$= \left(\frac{2x^{2}}{3}\right)_{0}^{4} + \left(6x - \frac{x^{2}}{2}\right)_{4}^{6} = \frac{22}{3}$$ _____ ## **Question 95** The area of the region in the first quadrant which is above the parabola $y = x^2$ and enclosed by the circle $|x^2 + y^2| = 2$ and the y-axis is **Options:** A. $$\frac{1}{6} + \frac{\pi}{4}$$ B. $$\frac{1}{12} + \frac{\pi}{6}$$ C. $$-\frac{1}{6} + \frac{\pi}{4}$$ D. $$\frac{1}{4} + \frac{\pi}{6}$$ $$E. - \frac{\pi^2}{2} + 4$$ **Answer: A** ### **Solution:** Solution $$\therefore$$ required area $\int\limits_0^1 \sqrt{2-x^2}\,dx - \int\limits_0^1 x^2\,dx \ = \ \frac{\pi}{4} + \ \frac{1}{6}$ ## **Question 96** $$\int_{0}^{2} \frac{x}{x^2 - 4} dx =$$ A. $$-\frac{\pi^2}{6}$$ B. $$-\frac{22}{7}$$ C. $$\ln\left(\frac{\sqrt{3}}{2}\right)$$ D. $$\ln\left(\frac{3}{2}\right)$$ E. $$\ln\left(\frac{3}{\sqrt{2}}\right)$$ **Answer: C** #### **Solution:** #### **Solution:** $$\int_{0}^{1} \frac{x}{x^{2} - 4} dx$$ $$u = x^{2} - 4$$ $$du = 2x dx$$ $$\Rightarrow \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \log u$$ $$= \frac{1}{2} [\log(x^{2} - 4)]_{0}^{1}$$ $$= \frac{1}{2} [\log(-3) - \log(-4)]$$ $$= \frac{1}{2} \left[\log\left(\frac{-3}{4}\right) \right]$$ $$= \log \frac{\sqrt{3}}{2}$$ ## **Question 97** # If (2, -6), (5, 2) and (-2, 2) constitute the vertices of a triangle, then the line joining orgin and its orthocentre is #### **Options:** A. $$x + 4y = 0$$ B. $$x - 4y = 0$$ C. $$4x - y = 0$$ D. $$4x + y = 0$$ E. $$x - y = 0$$ **Answer: B** #### **Solution:** Slope of AB = 0 Slope of CD = $$\frac{1}{0}$$ Eq of CD \Rightarrow y + 6 = $\frac{1}{0}$ (x - 2) \Rightarrow x = 2 ······(i) Slope of BC = $$\frac{8}{-4}$$ = -2 Slope of AE $$=\frac{1}{2}$$ Eq of AE \Rightarrow y $-2 = \frac{1}{2}(x-5)$ $x-2y=1$ sub (1) in (2) $2-2y=+1$ $-2y=-1$ $y=\frac{1}{2}$ Orthocentre Eq of line joining (0, 0) and $\left(2,\frac{1}{2}\right)$ is $y-0=\frac{1}{4}(x-0)$ ## **Question 98** If a straight line in XY plane passes through (-a, -b), (a, b), (k, k), (a^2, a^3) , for some real numbers a, b and k, where $a \neq 0$, then which of the following options is correct? #### **Options:** $\Rightarrow x - 4y = 0$ A. k = 0 when $a \neq b$ B. k is necessarily a positive real number when a = b C. k is any positive real number when $a \neq b$ D. k = a or k = b necessarily E. $k \neq 0$ when $a \neq b$ **Answer: A** ### **Solution:** #### **Solution:** k = 0 Since points are co-planar $$\begin{vmatrix} -a & -b & 1 \\ a & b & 1 \\ k & k & 1 \end{vmatrix} = 0$$ $$R_1 \to R_1 + R_2 \Rightarrow \begin{vmatrix} 0 & 0 & 2 \\ a & b & 1 \\ k & k & 1 \end{vmatrix} = 0$$ $$2(ak - bk) = 0$$ $$\Rightarrow a - b = 0 \text{ or}$$ ## **Question 99** The line perpendicular to 4x - 5y + 1 = 0 and passing through the point of intersection of the straight lines x + 2y - 10 = 0 and 2x + y + 5 = 0 is ### **Options:** A. $$5x + 4y = 0$$ B. $$y + \frac{5}{4}x = \frac{50}{3}$$ C. $$5x + 4y = 1$$ D. $$y + \frac{5}{4}x = -\frac{50}{3}$$ $$E. 4x + 5y = 0$$ **Answer: A** #### **Solution:** #### **Solution:** $$(x + 2y - 10) + \lambda(2x + y + 5) = 0$$ $$\Rightarrow (2\lambda + 1)x + (2 + \lambda)y + (-10 + 5\lambda) = 0 - - (1)$$ $$\frac{-(2\lambda + 1)}{2 + \lambda} \times \frac{4}{5} = -1$$ $$8\lambda + 4 = 10 + 5\lambda$$ $$3\lambda = 6$$ $$\Rightarrow \lambda = 2$$ Sub in (1) $5x + 4y = 0$ ## **Question 100** A thin particle move from (0, 1) and gets reflected upon hitting the x-axis at $(\sqrt{3}, 0)$. Then the slope of the reflected line is #### **Options:** A. $$\frac{1}{\sqrt{3}}$$ B. $$-\frac{1}{\sqrt{3}}$$ D. $$-\sqrt{3}$$ E. 0 Answer: A ### **Solution:** #### **Solution:** $$m = \frac{0-1}{\sqrt{3} - 0} = \frac{-1}{\sqrt{3}}$$ $$\therefore \text{ slope of reflected line } = \frac{1}{\sqrt{3}}$$ _____ ## **Question 101** If the two sides AB and AC of a triangle are along 4x - 3y - 17 = 0 and 3x + 4y - 19 = 0, then the equation of the bisector of the angle between AB and AC is ### **Options:** A. $$x + 7y + 2 = 0$$ B. $$7x - y - 36 = 0$$ C. $$7x - y + 36 = 0$$ D. $$x = y$$ E. $$x - 7y + 2 = 0$$ **Answer: E** #### **Solution:** #### **Solution:** 4x - 3y - 17 = 0 3x + 4y - 19 = 0Solving, we get x = 5, y = 1 x - 7y + 2 = 0 satisfies this point ----- ## **Question 102** A point moves in such a way that it remains equidistant from each of the lines $3x \pm 2y = 5$. Then the path along which the point moves is ### **Options:** A. $$x = -\frac{5}{3}$$ B. $$y = \frac{5}{3}$$ C. $$x = \frac{5}{3}$$ D. $$y = -\frac{5}{3}$$ $$E. \quad x = 0$$ Answer: C ### **Solution:** #### **Solution:** $$3x + 2y = 5$$ $$3x - 2y = 5$$ Solving, we get $x = \frac{5}{3}$. this is the bisector _____ ## **Question 103** Suppose the line mx-y+5m-4=0 meets the lines x+3y=2=0, 2x+3y+4=0 and x-y-5=0 at the points R, S and T, respectively. If R, S and T at distances r_1 , r_2 and r_3 respectively, from (-5, -4) and $\left(\frac{15}{r_1}\right) + \left(\frac{10}{r_2}\right)^2 = \left(\frac{6}{r_3}\right)^2$ then the value of m is #### **Options:** - A. $-\frac{2}{3}$ - B. $\frac{2}{3}$ - C. $\frac{3}{2}$ - D. $-\frac{3}{2}$ - E. 18 **Answer: E** #### **Solution:** #### **Solution:** ``` Coordinates of R will be (-5 + r_1 \cos \theta, -4 + r_1 \sin \theta) Sub in x + 3y + 2 = 0 -5 + r_1 \cos \theta + 3(-4 + r_1 \sin \theta) + 2 = 0 r_1(\cos\theta + 3\sin\theta) = 15 r_1 = \frac{13}{\cos \theta + 3\sin \theta} Coordinates of S will be (-5 + r_2 \cos \theta, -4 + r_2 \sin \theta) Sub in 2x + 3y + 4 = 0 2(-5 + r_2 \cos \theta) + 3(-4 + r_2 \sin \theta) + 4 = 0 r_2(2\cos\theta + 3\sin\theta) = 18 r_2 = \frac{10}{2\cos\theta + 3\sin\theta} Coordinates of T will be (-5 + r_3 \cos \theta, -4 + r_3 \sin \theta) \Rightarrow r_3 = \frac{6}{\cos\theta + \sin\theta} Substituting in \left(\begin{array}{c} \frac{15}{r_1} \right)^2 + \left(\begin{array}{c} \frac{10}{r_2} \end{array}\right)^2 = \left(\begin{array}{c} \frac{6}{r_3} \end{array}\right)^2 we get \tan \theta = 18 now slope of mx - y + 5m - 4 = 0 is m \thereforem = tan \theta = 18 ``` ### **Question 104** Suppose the point P(1, 1) is translated to Q in the direction of y = 2x. If ### PQ = 1, then Q is #### **Options:** A. (2, 0) B. (0, 2) C. $$\left(\frac{\sqrt{2}+1}{\sqrt{2}}, \frac{\sqrt{2}+1}{\sqrt{2}}\right)$$ D. $$\left(\frac{\sqrt{5}+1}{\sqrt{5}}, \frac{\sqrt{5}+2}{\sqrt{5}}\right)$$ E. $$\left(\frac{2+\sqrt{3}}{2}, \frac{3}{2}\right)$$ **Answer: D** #### **Solution:** #### **Solution:** point (1, 1)PQ = 1 = rTranslation $x_1 + r\cos\theta$, $y_1 + r\sin\theta$ $$\left(1 + \frac{1}{\sqrt{5}}, 1 + \frac{2}{\sqrt{5}}\right)$$ $$= \left(\frac{\sqrt{5} + 1}{\sqrt{5}}, \frac{\sqrt{5} + 2}{\sqrt{5}}\right)$$ ------ ## **Question 105** Suppose the line joining distinct points P and Q on $(x-2)^2 + (y-1)^2 = r^2$ is the diameter of $(x-1)^2 + (y-3)^2 = 4$. Then the value of r is ### **Options:** A. 2 B. 3 C. 1 D. 9 E. 4 **Answer: B** ## **Solution:** $$S_1 : (x - 2)^2 + (y - 1)^2 = r^2$$ $S_1 : (x - 1)^2 + (y - 3)^2 = 4$ $S_1 - S_2 = 0$ $$-2x + 4y - 5 = r^2 - 4$$ _____ ## **Question 106** The equation of the circle that can be inscribed in the square formed by $x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 = 0$ is #### **Options:** A. $$x^2 - 8x - 14y + 61 = 0$$ B. $$x^2 - 8x - 14y + 71 = 0$$ C. $$x^2 - 4x - 7y + 61 = 0$$ D. $$x^2 - 4x - 7y + 71 = 0$$ E. $$x^2 + y^2 - 8x - 14y + 61 = 0$$ **Answer: E** #### **Solution:** #### **Solution:** $x^{2} - 8x + 12 = 0$ y = 9, 5 x = 6, 2 y = 14y + 45 = 0 \Rightarrow centre = (4, 7)Radius = 2 $\Rightarrow (x - 4)^{2} + (y - 7)^{2} = 4$ $\Rightarrow x^{2} + y^{2} - 8x - 14y + 61 = 0$ ## **Question 107** For the circle $C: x^2 + y^2 - 6x + 2y = 0$, which of the following is incorrect ### **Options:** A. the radius of C is $\sqrt{10}$ B. (3, -1) lies inside of C C. (7, 3) lies outside of C D. the line x + 3y = 0 intersects C E. one of diameter of C is not along x + 3y = 0 **Answer: E** #### Solution: ``` x^2 + y^2 - 6x + 2y = 0 g = -3 f = 1 centre = (3, -1) r = \sqrt{9 + 1} = \sqrt{10} substituting (3, -1), 9 + 1 - 18 - 2 < 0 substituting (7, 3), 49 + 9 - 42 + 6 > 0 (3, -1) satisfy x + 3y = 0 ``` _____ ### **Question 108** For i = 1, 2, 3, 4, suppose the points $(\cos\theta_i, \sec\theta_i)$ lie on the boundary of a circle, where $\theta_i \in \left[0, \frac{\pi}{6}\right]$ are distinct. Then
$\cos\theta_1 \cos\theta_2 \cos\theta_3 \cos\theta_4$ equals #### **Options:** - A. $\frac{1}{2}$ - B. $\frac{1}{4}$ - C. $\frac{1}{8}$ - D. $\frac{1}{16}$ - E. 1 **Answer: E** #### **Solution:** #### Solution: ``` points are (\cos \theta, \sec \theta) = \left(\cos \theta, \frac{1}{\cos \theta}\right) x^2 + \frac{1}{x^2} = r^2 \Rightarrow x^4 + 1 = r^2 x^2 \Rightarrow x_1 x_2 x_3 x_4 = 1 (using relations between coefficient and roots) Since all point lie on the circle, \cos \theta, \cos \theta_2 \cos \theta_3 \cos \theta_4 = 1 ``` _____ ## **Question 109** The set of points of the form ($t^2 + t + 1$, $t^{2+} - t + 1$) where t is a real number, represents a / an #### **Options:** A. circle - B. parabola - C. ellipse - D. hyperbola - E. pair of straight line **Answer: B** #### **Solution:** #### **Solution:** ``` x = t^{2} + t + 1 \quad y = t^{2} - t + 1 x + y = 2t^{2} + 2 - (1) x - y = 2t t = \frac{x - y}{2} Sub in (1) x + y = \frac{2(x - y)^{2}}{4} + 2, represents a parabola ``` ### **Question 110** Suppose a and b are the lengths of major and minor axes of an ellipse that passes through the points (4, 3) and (-1, 4). If the major axis of the ellipse lies along the x-axis, then the value of $\frac{1}{a^2} + \frac{16}{b^2}$ is #### **Options:** - A. 4 - B. $\frac{1}{4}$ - C. 2 - D. $\frac{1}{2}$ - E. 1 **Answer: A** #### **Solution:** #### **Solution:** Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Since it passes through (-1, 4) $\frac{1}{a^2} + \frac{16}{b^2} = 1$ _____ ## **Question 111** # For a real number t, the equation $(1 + t)x^2 + (t - 1)y^2 + t^2 - 1 = 0$ represents a hyperbola provided ### **Options:** A. $$|t| < 1$$ B. $$|t| > 1$$ C. $$|t| = 1$$ D. $$t \in (1, \infty]$$ E. $$t \in (-\infty, -1]$$ **Answer: A** ### **Solution:** #### **Solution:** $$(1+t)x^{2} + (t-1)y^{2} + t^{2} - 1 = 0$$ $$\frac{x^{2}}{1-t} - \frac{y^{2}}{1+t} = 1$$ $$1-t > 0$$ $$\Rightarrow t < 1$$ $$\Rightarrow |t| < 1$$ ______ ## **Question 112** Given the points A(6, -7, 0), B(16, -19, -4). C(0, 3, -6) and D(2, -5, 10), the point of intersection of the lines AB and CD is ### **Options:** A. $$(-1, 1, 2)$$ B. $$(1, -1, 2)$$ C. $$(1, -1, -2)$$ D. $$(-1, 1, -2)$$ **Answer: B** ### **Solution:** #### Solution: $$\begin{array}{l} AB: -\frac{x-6}{10} = \frac{y+7}{-12} = \frac{z-0}{-4} = \lambda \\ CD: -\frac{x-0}{2} = \frac{y-3}{-8} = \frac{z+6}{16} = \mu \\ General point \, AB(10\lambda+6,-12\lambda-7,-4\lambda) \\ General point \, CD(2\mu,-8\mu+3,16\mu-6) \\ Solving \, \mu = \frac{1}{2} \end{array}$$ \Rightarrow required point = (1, -1, 2) ----- ## **Question 113** If the xz-plane divides the straight line joining the points (2, 4, 7) and (3, -5, 8) in the ratio α : 1, then the value of α is **Options:** - A. $\frac{5}{4}$ - B. $\frac{1}{3}$ - C. $\frac{7}{8}$ - D. $\frac{4}{5}$ - E. $\frac{5}{2}$ **Answer: D** **Solution:** **Solution:** Since xz plane, $$y = 0$$ $$\Rightarrow \frac{-5\alpha + 4}{\alpha + 1} = 0$$ $$\Rightarrow \alpha = \frac{4}{5}$$ ## **Question 114** If θ_1 , θ_2 and θ_3 are the angles made by a line with the positive directions of the x, y, z axes, then the value of $\cos 2\,\theta_1 + \cos 2\,\theta_2 + \cos 2\,\theta_3$ is **Options:** - A. -1 - B. 1 - C. 2 - D. -2 - E. 0 Answer: A **Solution:** Solution: $\cos^2\theta_1 + \cos^2\theta_2 + \cos^2\theta_3 = 1$ _____ ## **Question 115** The angle between the lines, whose direction cosines are proportional to 4, $\sqrt{3}-1$, $-\sqrt{3}-1$ and 4, $\sqrt{3}-1$, is **Options:** - A. $\frac{\pi}{6}$ - B. $\frac{\pi}{4}$ - C. $\frac{\pi}{3}$ - D. $\frac{\pi}{2}$ - Е. п **Answer: A** #### **Solution:** #### **Solution:** $$\cos \theta = \frac{4 \times 4 + (\sqrt{3} - 1)(-\sqrt{3} - 1)}{\sqrt{16 + (\sqrt{3} - 1)^2 + (-\sqrt{3} - 1)^2}}$$ $$= \frac{12}{24} = \frac{1}{2}$$ $$\Rightarrow \theta = \frac{\pi}{6}$$ ----- ## **Question 116** Suppose P is the point on the line joining (-9, 4, 5) and (11, 0, -1) that lies closest to the origin O. Then $|OP|^2$ equals to **Options:** - A. 3 - B. 4 - C. 2 - D. 9 - E. 1 **Answer: D** #### **Solution:** Given line is $$\frac{x+9}{20} = \frac{y-4}{-4} = \frac{z-5}{-6}$$ $|OP|^2$ $\frac{x-0}{20} = \frac{y-0}{-4} = \frac{z-0}{-6}$ $\therefore SD = \left| \frac{(-9i+4j+5k) \times (20i-4j-6k)}{\sqrt{400+16+36}} \right| = 9$ ## **Question 117** The plane that is perpendicular to the planes x - y + 2z - 4 = 0 and 2x - 2y + z = 0 and passes through (1, -2, 1) is #### **Options:** A. $$x + y + 1 = 0$$ B. $$2x + y + z - 1 = 0$$ C. $$x + y + z = 0$$ D. $$2x + y - z + 1 = 0$$ $$E. x + z - 2 = 0$$ **Answer: A** #### **Solution:** #### **Solution:** $$\hat{n} = \begin{vmatrix} i & j & k \\ 1 & -1 & 2 \\ 2 & -2 & 1 \end{vmatrix} = 3i + 3j + 0k$$ $$a(x - 1) + b(y + 2) + c(z - 1) = 0$$ $$3(x - 1) + 3(y + 2) + 0 = 0$$ $$3x + 3y + 3 = 0$$ $$\Rightarrow x + y + 1 = 0$$ ### **Question 118** The line of intersection of the planes 3x - 6y - 2z - 15 = 0 and 2x + y - 2x - 5 = 0 is A. $$\frac{x+3}{14} = \frac{y+1}{-2} = \frac{z}{15}$$ B. $$\frac{x+3}{-14} = \frac{y+1}{2} = \frac{z}{15}$$ C. $$\frac{x+3}{14} = \frac{y+1}{2} = \frac{z}{-15}$$ D. $$\frac{x+3}{14} = \frac{y-1}{2} = \frac{z+1}{15}$$ E. $$\frac{x-3}{14} = \frac{y+1}{2} = \frac{z}{15}$$ **Answer: E** #### **Solution:** **Solution:** $$\overline{b} = \begin{bmatrix} i & j & k \\ 3 & -6 & -2 \\ 2 & 1 & -2 \end{bmatrix} = 14i + 2j + 15k$$ $$Now (3, -1, 0) satisfy$$ $$3x - 6y - 2z - 15 = 0$$ ----- ### **Question 119** The plane passing through the points (2, 1, 0) (5, 0, 1) and (4, 1, 1) intersects the x-axis at **Options:** A. (3, 0, 0) B. (-3, 0, 0) C.(0,0,0) D. (1, 0, 0) E. (-1, 0, 0) **Answer: A** #### **Solution:** Solution: $$\begin{vmatrix} x-2 & y-1 & z-0 \\ 3 & -1 & 1 \\ -1 & 1 & 0 \end{vmatrix} = 0$$ $$\Rightarrow (x-2)(-1) - (y-1)(1) + z(2) = 0$$ $$\Rightarrow -x + 2 - y + 1 + 2z = 0$$ $$\Rightarrow x + y - 2z - 3 = 0$$ When y, z = 0, x = 3 _____ ### **Question 120** Suppose a line parallel to ax + by = 0 (where $b \neq 0$) intersects 5x - y + 4 = 0 and 3x + 4y - 4 = 0, respectively, at P and Q. If the midpoint of PQ is (1, 5), then the value of $\frac{a}{b}$ is A. $$\frac{107}{3}$$ B. $$-\frac{107}{3}$$ C. $$\frac{3}{107}$$ D. $$-\frac{3}{107}$$ E. 1 **Answer: B** ### **Solution:** #### **Solution:** $$(1,\,5) = \left[\,\left(\,\,\frac{x_1+x_2}{2}\,\right),\,\left(\,\,\frac{y_1+y_2}{2}\,\right)\,\right]$$ $$\frac{\mathbf{x}_1 + \mathbf{x}_2}{2} = 1$$ $$\Rightarrow \mathbf{x}_2 = 2 - \mathbf{x}_1$$ $$\frac{y_1 + y_2}{2} = 5$$ $$\Rightarrow v_2 = 10 - v_4$$ $$\Rightarrow y_2 = 10 - y_1$$ Now Q(x₂, y₂) satisfies the equations $$3x + 4y - 4 = 0$$ i.e, $$3x_2 + 4y_2 - 4 = 0$$ i.e, $$3[2 - x_1] + 4[10 - y_1] - 4 = 0$$ $$6 - 3x_1 + 40 - 4y_1 - 4 = 0$$ $$3x_1 + 4y_1 = 42 --- - (1)$$ $$P(x_1, y_1)$$ satisfies the equation $$5x - y + 4 = 0$$ i.e, $$5x_1 - y_1 = -4$$ ----(2) solving (1) and (2) $$3x_1 + 4y_1 = 42$$ $$5x_1 - y_1 = -4$$ $$20x_1 - 4y_1 = -16$$ $$(1) + (2) \Rightarrow$$ $$23v = 26$$ $$23x_1 = 26$$ $$x_1 = \frac{26}{23}$$ $$y_1 = 5x_1 + 4$$ $$=\frac{5(26)}{4}$$ $$= \frac{5(26)}{23} + 4$$ $$= \frac{(130 + 92)}{23}$$ $$= \frac{222}{23}$$ $$=\frac{222}{23}$$ Now slope of the curve $$ax + by = 0$$ is $$y' = \frac{-a}{b}$$ Slope of line joining PQ is $$\frac{\overline{x_2 - x_1}}{x_2 - x_1} = \frac{10 - y_1 - y_1}{2 - x_1 - x_1}$$ $$= \frac{10 - 2y_1}{2 - 2x_1} = \frac{10 - 2\left(\frac{222}{23}\right)}{2 - 2\left(\frac{26}{23}\right)}$$ $$= \frac{230 - 444}{46 - 52} = \frac{-a}{b}$$ $$\frac{a}{b} = \frac{444 - 230}{-6}$$ $$= \frac{214}{-6}$$ $$= \frac{-107}{3}$$ -----