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Figure 1 Important elementary excitations in solids. 
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Figure 2 (Dashed lines) Planes of atoms 
when in equilibrium. (Solid lines) Planes 
of atoms when displaced as for a longitudi- 
nal wave. The coordinate u measures the 
displacement of the planes. 

Figure 3 Planes of atoms as displaced during 
passage of a transverse wave. 
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CHAPTER 4: PHONONS I. CRYSTAL VIBRATIONS 

VIBRATIONS OF CRYSTALS WITH MONATOMIC BASIS 

Consider the elastic vibrations of a crystal with one atom in the primitive 
cell. We want to find the frequency of an elastic wave in terms of the wavevec- 
tor that describes the wave and in terms of the elastic constants. 

The mathematical solution is simplest in the [loo], [110], and [ I l l ]  propa- 
gation directions in cubic crystals. These are the directions of the cube edge, 
face diagonal, and body diagonal. When a wave propagates along one of these 
directions, entire planes of atoms move in phase with displacements either 

b 
parallel or perpendicular to the direction of the wavevector. We can describe 
with a single coordinate u, the displacement of the planes from its equilibrium 
position. The problem is now one dimensional. For each wavevector there are 

i three modes as solutions for us, one of longitudinal polarization (Fig. 2) and 
i two of transverse polarization (Fig. 3). 

k We assume that the elastic response of the crystal is a linear function of 

/ the forces. That is equivalent to the assumption that the elastic energy is a 
I quadratic function of the relative displacement of any two points in the crystal. 

Terms in the energy that are linear in the displacements will vanish in 

1 equilibrium-see the minimum in Fig. 3.6. Cubic and higher-order terms may 
i be neglected for sufficiently small elastic deformations. 
! 

1 We assume that the force on the planes caused by the displacement of the 
plane s + p is proportional to the difference us+, -us of their displacements. 

i For brevity we consider only nearest-neighbor interactions, with p = 21. The 

1 total force on s from planes s + 1: 
i 

F, = C(u,+, - us) + C(u,-, - u,) . (1) 

This expression is linear in the displacements and is of the form of Hooke's law. 
The constant C is the force constant between nearest-neighbor planes 

and will differ for longitudinal and transverse waves. It is convenient hereafter 
to regard C as defined for one atom of the plane, so that F, is the force on one 
atom in the planes. 

The equation of motion of an atom in the planes is 

where M is the mass of an atom. We look for solutions with all displacements 
having the time dependence exp(-iot). Then dZu,ldt2 = -ozua, and (2) becomes 



This is a difference equation in the displacements u and has traveling 
wave solutions of the form: 

u,,, = u exp(isKa) exp(+ iKa) , (4) 

where a is the spacing between planes and K is the wavevector. The value to 
use for a will depend on the direction of K. 

With (4), we have from (3): 

-02Mu exp(*iKa) = Cu{exp[i(s + l)Ka]+ exp[i(s - I)&] - 2 exp(isKa)J . ( 5 )  

We cancel u exp(isKa) from both sides, to leave 

With the identity 2 cos Ka = exp(iKa) + exp(-i&), we have the dispersion 
relation w(K). 

oz = (ZC/M)(l- cos Ka) . (7) 

The boundary of the first Brillouiu zone lies at K = +da. We show from 
(7) that the slope of o versus K is zero at the zone boundary: 

do2/dK = (2CaIM) sin Ka = 0 (8) 

at K = ?&a, for here sin Ka = sin (km) = 0. The special significance of 
phonon wavevectors that lie on the zone boundary is developed in (12) below. 

By a trigonometric identity, (7) may be written as 

A plot of o versus K is given in Fig. 4. 

Figure 4 Plot of o versus K .  The region of K * l / n  or A B o corresponds to the contin- 
uum approximation; here o is directly proportional to K. 
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First Brillouin Zone 

What range of K is physically significant for elastic waves? Only those in 
the first Brillouin zone. From (4) the ratio of the displacements of two succes- 
sive planes is given by 

The range -.rr to +.rr for the phase Ka covers all independent values of the 
exponential. 

The range of independent values of K is specified by 

This range is the first Brillouin zone of the linear lattice, as defined in 
Chapter 2. The extreme values are G, = ? d a .  Values of K outside of the 
first Brillouin zone (Fig. 5) merely reproduce lattice motions described by 
values within the limits ?ria. 

We may treat a value of K outside these limits by subtracting the integral 
multiple of 2.rrla that will give a wavevector inside these limits. Suppose K lies out- 
side the first zone, but a related wavevector K' defined K' = K - 2mla  lies within 
the first zone, where n is an integer. Then the displacement ratio (10) becomes 

because exp(i2m) = 1. Thus the displacement can always be described by a 
wavevector within the fust zone. We note that 2 m l a  is a reciprocal lattice vec- 
tor because 2 d a  is a reciprocal lattice vector. Thus by subtraction of an appro- 
priate reciprocal lattice vector from K, we always obtain an equivalent 
wavevector in the first zone. 

At the boundaries K,, = -C.rrla of the Brillouin zone the solution u, = 

u exp(isKa) does not represent a traveling wave, but a standing wave. At the 
zone boundaries sK,,ua = ?ST, whence 

i Figure 5 The wave represented by the solid curve conveys no information not given by the 
dashed curve. Only wavelengths longer than 2n are needed to represent the ,notion. 



This is a standing wave: alternate atoms oscillate in opposite phases, because 
us = ?1 according to whether s is an even or an odd integer. The wave moves 
neither to the right nor to the left. 

This situation is equivalent to Bragg reflection of x-rays: when the Bragg 
condition is satisfied a traveling wave cannot propagate in a lattice, but 
through successive reflections back and forth, a standing wave is set up. 

The critical value K,, = +m/a found here satisfies the Bragg condition 
2d sin 0 = nA: we have 0 = $m, d = a ,  K = 2m/A, n = 1, so that A = 2a. With 
x-rays it is possible to haven equal to other integers besides unity because the 
amplitude of the electromagnetic wave has a meaning in the space between 
atoms, hut the displacement amplitude of an elastic wave usually has a mean- 
ing only at the atoms themselves. 

Group Velocity 

The transmission velocity of a wave packet is the group velocity, given as 

va = do/dK , 

or 

the gradient of the frequency with respect to K. This is the velocity of energy 
propagation in the medium. 

With the particular dispersion relation (9), the group velocity (Fig. 6) is 

vg = ( c ~ ~ / M ) ~  cos $ Ka . (14) 

This is zero at the edge of the zone where K = r/a. Here the wave is a standing 
wave, as in (12) ,  and we expect zero net transmission velocity for a standing wave. 

Long Wavelength Limit 

When Ka < 1 we expand cos Ka - I - ;(Ka)', so that the dispersion rela- 
tion (7) becomes 

w2 = (C/M)@a2 . (15) 

The result that the frequency is directly proportional to the wavevector in the 
long wavelength limit is equivalent to the statement that the velocity of sound 
is independent of frequency in this limit. Thus v = o l K ,  exactly as in the con- 
tinuum theory of elastic waves-in the continuum limit Ka < 1. 

Derivation of Force Constants from Experiment 

In metals the effective forces may be of quite long range and are carried 
from ion to ion through the conduction electron sea. Interactions have been 
found between planes of atoms separated by as many as 20 planes. We can make 
a statement about the range of the forces from the observed experimental 
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Figure 6 Group velocity u, versus K for model of 
Fig. 4. At the zone boundary K = wla the group 
velocity is zero. 

dispersion relation for w .  The generalization of the dispersion relation (7) t o p  
nearest planes is easily found to be 

w2 = (21M) c. Cp(l - cos pKa) . (16a) 
p>n 

We solve for the interplanar force constants C, by multiplying both sides 
by cos rKa, where r is an integer, and integrating over the range of indepen- 
dent values of K :  

via 

MIIT'" dK w: cos rKa = 2~ C p L  dK (1 - cos pKa) ms rKa 
WIO P>O li/o 

The integral vanishes except for p = r. Thus 

,./a 

CP = - dK w$ cos 
,./a 

gives the force constant at range pa, for a structure with a monatomic basis 

TWO ATOMS PER PRIMITIVE BASIS 

The phonon dispersion relation shows new features in crystals with two or 
more atoms per primitive basis. Consider, for example, the NaCl or diamond 
structures, with two atoms in the primitive cell. For each polarization mode in 
a given propagation direction the dispersion relation w versus K develops two 
branches, known as the acoustical and optical branches, as in Fig. 7. We have 
longitudinal LA and transverse acoustical TA modes, and longitudinal LO and 
transverse optical TO modes. 

If there are p atoms in the primitive cell, there are 3p branches to the dis- 
persion relation: 3 acoustical branches and 3p - 3 optical branches. Thus ger- 
manium (Fig. 8a) and KBr (Fig. Sh), each with two atoms in a primitive cell, 
have six branches: one LA, one LO, two TA, and two TO. 



Figure 7 Optical and acoustical branches of the dis- pbonon branch 
persion relation far a diatomic linear lattice, showing 
the limiting frequencies at K = 0 and K = K., = v t a .  ?r 

K 
- 

The lattice constant is a. a 

Kt&,, in [ I l l ]  direction 

Figure 8a Pbonon dispersion relations in the I1111 
direction in germanium at 80 K. The huo TA phonon 
branches are horizontal at the zone boundary position, 
&, = (2/a)(+$+). The LO and TO branches coincide at 
K = 0; this also is a consequence of the crystal symmetry 
of Ge. The results were obtained with neutron inelastic 
scattering by G. Nilsson and G. Nelin. 

0 
Kt&,, in I1111 d i d o n  

Figure 8b Dispersion curves in the [ I l l ]  
direction in KBr at 90 K, after A. D. B. 
Woods, B. N. Bmckhouse, R. A. Cowley, 
and W. Cochran. The extrapolation to K = 0 
of the TO, LO branches are called mr, mL. 

The numerology of the branches follows from the number of degrees of free- 
dom of the atoms. With p atoms in the primitive cell and N primitive cells, there 
are pN atoms. Each atom has three degrees of freedom, one for each of the x ,  y, z 

directions, mahng a total of 3pN degrees of freedom for the crystal. The number 
of allowed K values in a single branch is just N for one Brillouin zone.' Thus the 

'We show in Chapter 5 by application of periodic b o u n d q  conditions to the modes of the 
crystal of volume V that there is one K value in the volume (2w)VV in Fourier space. The volume of a 
Brillouin zone is (Zn)'N, where V. is the volume of a crystal primitive cell. Thus the number of 
allowed Kvalues in a Brillouin zone is VN., which is just N, the number ofprimitive cells in the crystal. 
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Figure 9 A diatomic ctystal structure with masses M,, Mz connected by force constant C be- 
tween adjacent planes. The displacements of atoms M I  are denoted by u,-,, u,, u,,,, . . . , and of 
atoms M, by 0,-,, v., v,,,. The repeat &stance is a in the direction o f  the wavevector K .  The atoms 
are shown in their undisplaced positions. 

LA and the two TA branches have a total of 3N modes, thereby accounting for 3N 
of the total degrees of freedom. The remaining (3p - 3)N degrees of freedom are 
accommodated by the optical branches. 

We consider a cubic clystal where atoms of mass MI lie on one set of planes 
and atoms of mass M, lie on planes interleaved between those of the first set 
(Fig. 9). It is not essential that the masses be different, but either the force con- 
stants or the masses will be different if the two atoms of the basis are in non- 
equivalent sites. Let a denote the repeat distance of the lattice in the direction 
normal to the lattice planes considered. We treat waves that propagate in a 
symmetry direction such that a single plane contains only a single type of ion; 
such directions are [ I l l ]  in the NaCl structure and [loo] in the CsCl structure. 

We write the equations of motion under the assumption that each plane 
interacts only with its nearest-neighbor planes and that the force constants are 
identical between all pairs of nearest-neighbor planes. We refer to Fig. 9 to 
obtain 

We look for a solution in the form of a traveling wave, now with different 
amplitudes u, u on alternate planes: 

We define n in Fig. 9 as the distance between nearest identical planes, not 
nearest-neighbor planes. 

On substitution of (19)  in (18) we have 



The homogeneous linear equations have a solution only if the determinant of 
the coefficients of the unknowns u, o vanishes: 

or 

M,M204 - 2C(M1 + M2)02 + 2C2(1 - cos Ka) = 0 . (22) 

We can solve this equation exactly for w2, but it is simpler to examine the 
limiting cases Xn < 1 and Ka = +TI at the zone boundary. For small Ka we 
have cos Ka E 1 - K2a2 + . . . , and the two roots are 

(optical branch) ; 

02= - ;c 
K2a2 

MI + MZ 
(acoustical branch) 

The extent of the first Brillouin zone is -v/a 5 K 5 d a ,  where a is the repeat 
distance of the lattice. At K,, = ?r/a the roots are 

The dependence of o on K is shown in Fig. 7 for M, > M2. 
The particle displacements in the transverse acoustical (TA) and trans- 

verse optical (TO) branches are shown in Fig. 10. For the optical branch at 
K = 0 we find, on substitution of (23) in (201, 

The atoms vibrate against each other, hut their center of Inass is fured. If the 
two atoms cany opposite charges, as in Fig. 10, we may excite a motion of this 

Figure 10 Transverse optical and 
transverse amustical waves in a di- 
atomic linear lattice, illustrated by the 
particle dqlacements far the two 
modes at the same wavelength. Acoustical mode 
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type with the electric field of a light wave, so that the branch is called the opti- 
cal branch. At a general K the ratio ulu will be complex, as follows from either 
of the equations (20). Another solution for the amplitude ratio at small K is 
u = u, obtained as the K = 0 limit of (24). The atoms (and their center of 
mass) move together, as in long wavelength acoustical vibrations, whence the 
term acoustical branch. 

Wavelike solutions do not exist for certain frequencies, here between 
(2C/M,)'" and (2C/M,)'". This is a characteristic feature of elastic waves in 
polyatomic lattices. There is a frequency gap at the boundary K,, = ? ~ / a  of 
the first Brillouin zone. 

QUANTIZATON OF ELASTIC WAVES 

i The energy of a lattice vibration is quantized. The quantum of energy is 
j called a phonon in analogy with the photon of the electromagnetic wave. The 
; energy of an elastic mode of angular frequency o is 
L 

when the mode is excited to quantum number n; that is, when the mode is occu- 
pied by n phonons. The term $ fiw is the zero point energy of the mode. It occurs 
for both phonons and photons as a consequence of their equivalence to a quan- 
tum harmonic oscillator of frequency w, for which the energy eigenvalues are 
also (n + i)fi~. The quantum theory of phonons is developed in Appendix C. 

We can quantize the mean square phonon amplitude. Consider the stand- 
ing wave mode of amplitude 

Here u is the displacement of a volume element from its equilibrium position 
at x in the crystal. The energy in the mode, as in any harmonic oscillator, is half 
kinetic energy and half potential energy, when averaged over time. The kinetic 
energy density is 2 p(&lat)2, where p is the mass density. In a crystal of volume 
V, the volume integral of the kinetic energy is ipVo2u; sin2&. The time aver- 
age kinetic energy is 

because <sin2 wt> = i. The square of the amplitude of the mode is 

This relates the displacement in a given mode to the phonon occupancy n of 
the mode. 

What is the sign of o ?  The equations of motion such as (2) are equations 
for oZ, and if this is positive then w can have either sign, + or -. But the 



energy of a phonon must be positive, so it is conventional and suitable to view 
o as positive. If the crystal structure is unstable, then o2 will be negative and o 
will be imaginary. 

PHONON MOMENTUM 

A phonon of wavevector K will interact with particles such as photons, 
neutrons, and electrons as if it had a momentum hK. However, a phonon does 
not carry physical momentum. 

The reason that phonons on a lattice do not carry momentum is that a 
phonon coordinate (except for K = 0) involves relative coordinates of the 
atoms. Thus in an Hz molecule the internuclear vibrational coordinate rl - rz 
is a relative coordinate and does not carry linear momentum; the center of 
mass coordinate $(rl + r2) corresponds to the uniform mode K = 0 and can 
carry linear momentum. 

In crystals there exist wavevector selection rules for allowed transitions 
between quantum states. We saw in Chapter 2 that the elastic scattering of an 
x-ray photon by a crystal is governed by the wavevector selection rule 

where G is a vector in the reciprocal lattice, k is the wavevector of the incident 
photon, and k' is the wavevector of the scattered photon. In the reflection 
process the crystal as a whole will recoil with momentum -hG, but this uni- 
form mode momentum is rarely considered explicitly. 

Equation (30) is an example of the rule that the total wavevector of inter- 
acting waves is conserved in a periodic lattice, with the possible addition of a 
reciprocal lattice vector G .  The true momentum of the whole system always is 
rigorously conserved. If the scattering of the photon is inelastic, with the 
creation of a phonon of wavevector K, then the wavevector selection rule 
becomes 

If a phonon K is absorbed in the process, we have instead the relation 

Relations (31) and (32) are the natural extensions of (30). 

INELASTIC SCAWERING BY PHONONS 

Phonon dispersion relations o(K) are most often determined experimen- 
tally by the inelastic scattering of neutrons with the emission or absorption of a 
phonon. A neutron sees the crystal lattice chiefly by interaction with the nuclei 
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of the atoms. The kinematics tttering of a neutron beam by a crystal 
lattice are described by the gc evector selection m1 

and by the requirement of conservation of energy ; the wavevector of 
the phonon created (+) or absorbed ( - )  in the  process, and G is 
any reciprocal lattice vector. 1 (on we choose G such that K lies in the 
first Brillouin zone. 

Wavevector, in units Snla 

Figure 1 1  The dispersion curves of sodium far ~honons  propagating in the [001], [110], and 
[ I l l ]  directions at 90 K, as determined hy inelastic scattering of neutrons, by Woods, Brockhouse, 
March and Bowers. 

i Figure 12 .4 triple ads neutron spectrometer at Bruoklravm. (Coxirtesy oCB. If. Grier.) 



The kinetic energy of the incident neutron is p2/2Mn, where M, is the mass 
of the neutron. The momentum p is given by hk, where k is the wavevector of 
the neutron. Thus h2k2/2M, is the kinetic energy of the incident neutron. If k' 
is the wavevector of the scattered neutron, the energy of the scattered neutron 
is fi2k'2/2M,. The statement of conservation of energy is 

where h o  is the energy of the phonon created (+) or absorbed (-)  in the 
process. 

To determine the dispersion relation using (33) and (34) it is necessary in 
the experiment to find the energy gain or loss of the scattered neutrons as a 
function of the scattering direction k - k'. Results for germanium and KBr are 
given in Fig. 8; results for sodium are given in Fig. 11. A spectrometer used for 
phonon studies is shown in Fig. 12. 

SUMMARY 

The quantum unit of a crystal vibration is a phonon. If the angular fre- 
quency is o, the energy of the phonon is fio. 

When a phonon of wavevector K is created by the inelastic scattering of a 
photon or neutron from wavevector k to k', the wavevector selection rule that 
governs the process is 

k = k l + K + G ,  

where G is a reciprocal lattice vector. 

All elastic waves can be described by wavevectors that lie within the first 
Brillouin zone in reciprocal space. 

If there are p atoms in the primitive cell, the phonon dispersion relation will 
have 3 acoustical phonon branches and 3p - 3 optical phonon branches. 

Problems 

1. Monatomic linear lattice. Consider a longitudinal wave 

u, = u cos(mt - sKa) 

which propagates in a monatomic linear lattice of atoms of mass M, spacing a, and 
nearest-neighbor interaction C. 
(a) Show that the total energy of the wave is 

where s runs over all atoms 



(h) By substitution of u, in this expression, show that the time-average total energy 
per atom is 

where in the last step we have used the dispersion relation (9) for this problem 

2. Continuum wave equation. Show that for long wavelengths the equation of mo- 
tion (2) reduces to the continuum elastic wave equation 

where o is the velocity of sound 

3. Basis oftwo unlike a t o m .  For the problem treated by (18) to (26), find the am- 
~ l i tude  ratios ulv for the two branches at &, = ria. Show that at this value of K 
the two lattices act as if decoupled: one lattice remains at rest while the other lat- 
tice moves. 

4. Kohn anomaly. We suppose that the interplanar force constant C, between planes 
s and s + p is of the form 

sin pk,a 
C, =A- 

Pa 

where A and k, are constants and p runs over all integers. Such a form is expected in 
metals. Use this and Eq. (16a) to find an expression for 0% and also for do2/JK. Prove 
that JwZ/aK is infinite when K = k,. Thus a plot of wZ versus K or of o versus K has a 

vertical tangent at k,: there is a kink at k,  in the phonon dispersion relation o(K). 

5. Diatomic chain. Consider the normal modes of a linear chain in which the force 
constants between nearest-neighbor atoms are alternately C and 10C. Let the 
masses he equal, and let the nearest-neighbor separation be aI2. Find o(K) at 
K = 0 and K = &a. Sketch in the dispersion relation by eye. This problem simu- 
lates a crystal of diatomic molecriles such as H,. 

6.  Atomic vibrations in a metal. Consider point ions of mass M and charge e im- 
mersed in a uniform sea of conduction electrons. The ions are imagined to be in 
stable equilibrium when at regular lattice points. If one ion is displaced a small dis- 
tance r from its equilibrium position, the restoring force is largely due to the elec- 
tnc charge within the sphere of radius r centered at the equilibrium position. Take 
the number density of ions (or of conduction electrons) as 3/4?rR3, which defines R. 
(a) Show that the frequency of a single ion set into oscillation is o = (e2/MR3)1'e. 
(b) Estimate the value of this frequency for sodium, roughly. (c) From (a), (b), and 
some common sense, estimate the order of magnitude of the velocity of sound in 
the metal. 

'7. Soft phonon modes. Consider a Line of ions of equal mass but alternating in 
charge, with e, = e(- 1)P as the charge on the pth ion. The interatomic potential is 

'This problem is rather difficult. 
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