Fundamental Concepts (Including Fundamental Operations)

POINTS TO REMEMBER

- 1. **Constants and Variables :** The numbers which has fixed value is called constant and same at English alphabet which can be assigned any value according to the requirement is called variables.
- 2. **Term :** A term is a number, (constant), a variable or a combination of numbers and variables.
- 3. **Algebraic Expression :** An algebraic expression is a collection of one or more terms, which are separated from each other by addition (+) or subtraction (-) signs.
- 4. Types of algebraic expressions :
 - (i) Monomial : It has only one term
 - (ii) Binomial : It has two terms
 - (iii) Trinomial : It has three terms
 - (iv) Multinomial : It has more than three terms
 - (v) Polynomial : It has two or more than two terms.

Note : An expression of the type $\frac{2}{5}$ does not form a monomial unless JC is not equal to zero.

- 5. **Product:** When two or more quantities are multiplied together, the result is called their product.
- 6. **Factors :** Each of the quantities (numbers or variables) multiplied together to form a term is called a factor of the given term.
- 7. **Co-efficient:** In a monomial, any factor or group of factors of a term is called the co-efficient of the remaining part of the monomial.
- 8. **Degree of a monomial:** The degree of a monomial is the exponent of its variable or the sum of the exponents of its variables.
- 9. **Degree of a polynomial:** The degree of a polynomial is the degree of its highest degree term.
- 10. Like and unlike terms : Terms having the same literal co-efficients or alphabetic letters are called like terms ; whereas the terms with different literal co-efficients are called unlike terms.
- 11. Addition and subtraction : Addition and subtraction of only like terms is possible by adding or subtracting the numerical co-efficients.

12. Multiplication and division :

(A) Multiplication :

- (i) Multiplications of monomials.
- (a) Multiply the numerical co-efficient together
- (ii) Multiply the literal co-efficients separately together.
- (iii) Combine the like terms.

(B) Division :

(i) Dividing a polynomial by a monomial Divide each term of the polynomial by monomial and simplify each fractions.

(ii) While dividing one polynomial by another polynomial ; arrange the terms of both the dividend and the divisior both in descending or in ascending order of their powers and then divide.

SOME IMPORTANT POINTS

TYPES OF BRACKETS:

The name of different types of brackets and the order in which they are removed is shown below:

- (a) ____; Bar (Vinculum) bracket
- (b) (); Circular bracket.
- (c) { }; Curly bracket and then
- (d) []; square bracket

EXERCISE 11 (A)

Question 1.

Separate constant terms and variable terms from tile following :

(i) 8, x, 6xy, 6 + x,
$$-5xy^2$$
, $15az^2$, $\frac{32z}{xy}$, $\frac{y^2}{3x}$

Solution:

Constant is only 8 others are variables

Question 2. Constant is only 8 others are variables (i) $2x \div 15$ (ii) ax + 9(iii) $3x^2 \times 5x$ (iv) 5 + 2a - 3b(v) $2y - \frac{7}{3}z \div x$ (vi) $3p \times q \div z$ (vii) $12z \div 5x + 4$ (viii) 12 - 5z - 4(ix) $a^3 - 3ab^2 \times c$ Answer:

(*i*) $2x \div 15 = \frac{2x}{15}$ It is a monomial as it has one term. (ii) ax + 9: It is binomial (:: It has two terms) (iii) $3x^2 \times 5x = 15x^3$: It is monomial (:: It has one term) (iv) 5 + 2a - 3b: It is trinomial (:: It has three terms) < (v) $2y - \frac{7}{3}z \div x = 2y - \frac{7z}{3x}$: It is binomial (:: It has two terms) (vi) $3p \times q \div z = \frac{3pq}{z}$: It is monomial (:: It has one term) (*vii*) $12z \div 5x + 4 = \frac{12z}{5r} + 4$: It is binomial (:: It has two terms) (*viii*) 12 - 5z - 4 = 8 - 5z : It is binomial (:: It has two terms) (ix) $a^3 - 3ab^2 \times c = a^3 - 3ab^2c$: It is binomial (:: It has two terms)

Question 3. Write the coefficient of: (i) xy in – 3axy (ii) z² in p²yz² (iii) mn in -mn (iv) 15 in – 15p²

Solution:

(i) Co-efficient of xy in -3 axy = -3a(ii) Co-efficient of z^2 in $p^2yz^2 = p^2y$ (iii) Co-efficient of mn in - mn = -1(iv) Co-efficient of 15 in $-15p^2$ is $-p^2$

Question 4.

For each of the following monomials, write its degree : (i) 7y (ii) - x²y (iii) xy²z (iv) - 9y²z³

(v) 3 m³n⁴ (vi) – 2p²q³r⁴

Solution:

(i) Degree of 7y = 1(ii) Degree of $-x^2y = 2+1=3$ (iii) Degree of $xy^2z = 1 + 2 + 1 = 4$ (iv) Degree of $-9y^2z^3 = 2 + 3 = 5$ (v) Degree of $3m^3n^4 = 3 + 4 = 7$ (vi) Degree of $-2p^2q^3r^4 = 2 + 3 + 4 = 9$

Question 5.

Write the degree of each of the following polynomials : (i) $3y^3-x^2y^2 + 4x$ (ii) $p^3q^2 - 6p^2q^5 + p^4q^4$ (iii) $-8mn^6+5m^3n$ (iv) $7 - 3x^2y + y^2$ (v) 3x - 15(vi) $2y^2z + 9yz^3$

Solution:

(i) The degree of 3y³ - x²y² + 4x is 4 as x²
y² is the term which has highest degree.
(ii) The degree of p³q² - 6p²q⁵ - p⁴q⁴ is 8 as p⁴ q⁴ is the term which has highest degree.
(iii) The degree of - 8mn⁶ + 5m³n is 7 as - 8mx⁶ is the term which has the highest degree.
(iv) The degree of 7 - 3x² y + y² is 3 as - 3x²y is the term which has the highest degree.
(v) The degree of 3x - 15 is 1 as 3x is the term which is highest degree.
(vi) The degree of 2y² z + 9y z³ is 4 as 9yz³ has the highest degree.

Question 6.

Group the like term together : (i) $9x^2$, xy, $-3x^2$, x^2 and -2xy(ii) ab, $-a^2b$, -3ab, $5a^2b$ and $-8a^2b$ (iii) 7p, 8pq, -5pq - 2p and 3p

(i) $9x^2$, $-3x^2$ and x^2 are like terms xy and -2xy are like terms (ii) ab, -3ab, are like terms, $-a^2b$, $5a^2b$, $-8a^2b$ are like terms (iii) 7p, -2p and 3p are like terms, 8pq, -5pq are like terms.

Question 7.

Write numerical co-efficient of each of the followings :

(i) y (ii) -y (iii) 2x²y (iv) - 8xy³ (v) 3py² (vi) - 9a²b³

Solution:

(i) Co-efficient of y = 1(ii) Co-efficient of -y = -1(iii) Co-efficient of 2x2y is = 2(iv) Co-efficient of -8xy3 is = -8(v) Co-efficient of 1py2 is = 3(vi) Co-efficient of -9a2b3 is = -9

Question 8.

In -5x³y²z⁴; write the coefficient of: (i) z² (ii) y² (iii) yz² (iv) x³y (v) -xy² (vi) -5xy²z Also, write the degree of the given algebraic expression.

Solution:

- $5x^3y^2z^4$ (i) Co-efficient of z2 is $-5x^3y^2z^2$ (ii) Co-efficient of y2 is $-5x^3z^4$ (iii) Co-efficient of yz² is $-5x^3yz^2$ (iv) Co-efficient of x³y is $-5yz^4$ (v) Co-efficient of $-xy^2$ is $5x^2z^4$ (vi) Co-efficient of $-5xy^2z$ is x^2z^3 Degree of the given expression is 3 + 2 + 4 = 9

EXERCISE 11 (B)

Question 1.

Fill in the blanks : (i) 8x + 5x =(ii) 8x - 5x =(iii) $6xy^2 + 9xy^2 =$ (iv) $6xy^2 - 9xy^2 =$ (v) The sum of 8a, 6a and 5b = (v) The addition of 5, 7xy, 6 and 3xy =(vi) The addition of 5, 7xy, 6 and 3xy =(vii) 4a + 3b - 7a + 4b =(viii) -15x + 13x + 8 =(ix) $6x^2y + 13xy^2 - 4x^2y + 2xy^2 =$ (x) $16x^2 - 9x^2 = and 25xy^2 - 17xy^2 =$

- (i) 8x + 5x = 13x
- (*ii*) 8x 5x = 3x
- (*iii*) $6xy^2 + 9xy^2 = 15xy^2$
- $(iv) \ 6xy^2 9xy^2 = -3xy^2$
- (v) The sum of 8a, 6a and 5b = 8a + 6a + 5b = 14a + 5b
- (vi) The addition of 5, 7xy, 6 and 3xy= 5 + 6 + 7xy + 3xy = 11 + 10xy
- (vii) 4a + 3b 7a + 4b
- =4a-7a+3b+4b=-3a+7b=7b-3a
- (viii) 15x + 13x + 8

$$= -2x + 8 = 8 - 2x$$

(ix)
$$6x^2y + 13xy^2 - 4x^2y + 2xy^2$$

= $6x^2y - 4x^2y + 13xy^2 + 2xy^2 = 2x^2y + 15xy^2$
(x) $16x^2 - 9x^2 = 7x^2$ and
 $25xy^2 - 17xy^2 = 8xy^2$

Question 2. Add : (i)- 9x, 3x and 4x (ii) 23y², 8y² and – 12y² (iii) 18pq – 15pq and 3pq

Solution:

$$(i) - 9x + 3x + 4x$$

= -9x + 7x = -2x
(ii) 23y² + 8y² - 12y²
= 31y² - 12y² = 19y²
(iii) 18pq - 15pq + 3pq
= 18pq + 3pq - 15pq = 21pq - 15pq = 6pq

Question 3.

Simplify : (i) 3m + 12m - 5m(ii) $7n^2 - 9n^2 + 3n^2$ (iii) 25zy-8zy-6zy(iv) $-5ax^2 + 7ax^2 - 12ax^2$ (v) - 16am + 4mx + 4am - 15mx + 5am

(i)
$$3m + 12m - 5m = 15m - 5m = 10m$$

(ii) $7n^2 - 9n^2 + 3n^2$
 $= 7n^2 + 3n^2 - 9n^2 = 10n^2 - 9n^2 = n^2$
(iii) $25zy - 8zy - 6zy$
 $= 25zy - 14zy = 11zy$
(iv) $-5ax^2 + 7ax^2 - 12ax^2$
 $= -5ax^2 - 12ax^2 + 7ax^2$
 $= -17ax^2 + 7ax^2 = -10ax^2$
(v) $-16am + 4mx + 4am - 15mx + 5am$
 $= -16am + 4am + 5am + 4mx - 15mx$
 $= -16am + 9am + 4mx - 15mx = -7am - 11mx$

Question 4. Add : (i) a + i and 2a + 3b (ii) 2x + y and 3x - 4y (iii)- 3a + 2b and 3a + b (iv) 4 + x, 5 - 2x and 6x

Solution:

(i)
$$a + b$$
 and $2a + 3b$ (ii) $2x + y$ and $3x - 4y$
(iii) $- 3a + 2b$ and $3a + b$ (iv) $4 + x$, $5 - 2x$ and $6x$
(i) $a + b + 2a + 3b$
 $= a + 2a + b + 3b = 3a + 4b$
(ii) $2x + y + 3x - 4y$
 $= 2x + 3x + y - 4y = 5x - 3y$
(iii) $- 3a + 2b + 3a + b$
 $= -3a + 3a + 2b + b = 0 + 3b = 3b$
(iv) $4 + x + 5 - 2x + 6x$
 $= x - 2x + 6x + 4 + 5$
 $= 7x - 2x + 9 = 5x + 9$

Question 5.

Find the sum of: (i) 3x + 8y + 7z, 6y + 4z - 2x and 3y - 4x + 6z(ii) 3a + 5b + 2c, 2a + 3b-c and a + b + c. (iii) $4x^2 + 8xy - 2y^2$ and $8xy - 5y^2 + x^2$ (iv) $9x^2 - 6x + 7$, 5 - 4x and $6 - 3x^2$ (v) $5x^2 - 2xy + 3y^2$ and $-2x^2 + 5xy + 9y^2$ and 3x² -xy- 4y² (vi) $a^2 + b^2 + 2ab$, $2b^2 + c^2 + 2bc$ and $4c^2-a^2 + 2ac$ (vii) 9ax - 6bx + 8, 4ax + 8bx - 7and - 6ax - 46x - 3(viii) abc + 2 ba + 3 ac, 4ca - 4ab + 2 bcaand 2ab – 3abc – 6ac (ix) $4a^2 + 5b^2 - 6ab$, 3ab, $6a^2 - 2b^2$ and $4b^2 - 5ab$ (x) $x^2 + x - 2$, $2x - 3x^2 + 5$ and $2x^2 - 5x + 7$ (xi) $4x^3 + 2x^2 - x + 1$, $2x^3 - 5x^2 - 3x + 6$, $x^2 + 8$ and $5x^3 - 7x$

(i)
$$3x + 8y + 7z + 6y + 4z - 2x$$

 $+ 3y - 4x + 6z$
 $= 3x - 2x - 4x + 8y + 6y + 3y + 7z + 4z + 6z$
 $= 3x - 6x + 17y + 17z$
(ii) $3a + 5b + 2c + 2a + 3b - c + a + b + c$
 $= 3a + 2a + a + 5b + 3b + b + 2c - c + c$
 $= 6a + 9b + 3c - c = 6a + 9b + 2c$
(iii) $4x^2 + 8xy - 2y^2$ and $8xy - 5y^2 + x^2$
 $4x^2 + 8xy - 2y^2 + 8xy - 5y^2 + x^2$
 $= 4x^2 + x^2 + 8xy + 8xy - 2y^2 - 5y^2$
 $= 5x^2 + 16xy - 7y^2$
(iv) $9x^2 - 6x + 7, 5 - 4x$ and $6 - 3x^2$
 $9x^2 - 6x + 7 + 5 - 4x + 6 - 3x^2$
 $= 9x^2 - 3x^2 - 6x - 4x + 7 + 5 + 6$
 $= 6x^2 - 10x + 18$
(v) $5x^2 - 2xy + 3y^2, -2x^2 + 5xy + 9y^2$
 and $3x^2 - xy - 4y^2$
 $5x^2 - 2xy + 3y^2 - 2x^2 + 5xy + 9y^2$
 $+ 3x^2 - xy - 4y^2$

$$= 5x^{2} - 2x^{2} + 3x^{2} - 2xy + 5xy - xy$$

+ $3y^{2} + 9y^{2} - 4y^{2}$
= $8x^{2} - 2x^{2} + 5xy - 3xy + 12y^{2} - 4y^{2}$
= $6x^{2} + 2xy + 8y^{2}$
(vi) $a^{2} + b^{2} + 2ab, 2b^{2} + c^{2} + 2bc$
and $4c^{2} - a^{2} + 2ac$
 $a^{2} + b^{2} + 2ab + 2b^{2} + c^{2} + 2bc$
+ $4c^{2} - a^{2} + 2ac$
= $a^{2} - a^{2} + b^{2} + 2b^{2} + c^{2} + 4c^{2} + 2ab$
+ $2bc + 2ac$
= $3b^{2} + 5c^{2} + 2ab + 2bc + 2ac$.
(vii) $9ax - 6bx + 8, 4ax + 8bx - 7$
and $- 6ax - 4bx - 3$
 $9ax - 6bx + 8 + 4ax + 8bx - 7$
 $- 6ax - 4bx - 3$
= $9ax + 4ax - 6ax - 6bx + 8bx - 4bx$
+ $8 - 7 - 3$
= $13ax - 6ax + 8bx - 10bx + 8 - 10$
= $7ax - 2bx - 2$
(viii) $abc + 2ba + 3ac, 4ca - 4ab + 2bca$
and $2ab - 3abc - 6ac$
 $abc + 2ab - 3abc - 6ac$
 $= abc + 2abc - 3abc + 2ab - 4ab + 2ab$
+ $3ca + 4ca - 6ca$
= $3abc - 3abc + 4ab - 4ab + 7ca - 6ca$
= $0 + 0 + ca = ca$

(ix)
$$4a^2 + 5b^2 - 6ab$$
, $3ab$, $6a^2 - 2b^2$
and $4b^2 - 5ab$
 $4a^2 + 5b^2 - 6ab + 3ab + 6a^2 - 2b^2$
 $+ 4b^2 - 5ab$
 $= 4a^2 + 6a^2 + 5b^2 - 2b^2 + 4b^2 - 6ab$
 $+ 3ab - 5ab$
 $= 10a^2 + 9b^2 - 2b^2 - 11ab + 3ab$
 $= 10a^2 + 7b^2 - 8ab$
(x) $x^2 + x - 2$, $2x - 3x^2 + 5$ and $2x^2 - 5x + 7$
 $= x^2 + x - 2 + 2x - 3x^2 + 5 + 2x^2 - 5x + 7$
 $= x^2 - 3x^2 + 2x^2 + x + 2x - 5x - 2 + 5 + 7$
 $= 3x^2 - 3x^2 + 3x - 5x - 2 + 12$
 $= 0 - 2x + 10$
 $= -2x + 10$
(xi) $4x^3 + 2x^2 - x + 1, 2x^3 - 5x^2 - 3x + 6, x^2 + 8$
and $5x^3 - 7x$
 $4x^3 + 2x^2 - x + 1 + 2x^3 - 5x^2 - 3x + 6, x^2 + 8$
 $and 5x^3 - 7x$
 $4x^3 + 2x^2 - x + 1 + 2x^3 - 5x^2 - 3x + 6$
 $+ x^2 + 8 + 5x^3 - 7x$
 $= 4x^3 + 2x^3 + 5x^3 + 2x^2 - 5x^2 + x^2 - x$
 $-3x - 7x + 1 + 6 + 8$
 $= 11x^3 + 3x^2 - 5x^2 - 11x + 15$

Question 6.

Find the sum of: (i) x and 3y (ii) -2a and +5 (iii) - $4x^2$ and +7x (iv) +4a and -7b (v) x^3+3x^2y and $2y^2$ (vi) 11 and -by

(i)
$$x + 3y$$
 (ii) $-2a + 5$
(iii) $-4x^2 + 7x$ (iv) $4a - 7b$
(v) $x^3 + 3x^2y + 2y^2$ (vi) $11 - by$

Question 7.

The sides of a triangle are 2x + 3y, x + 5y and 7x - 2y, find its perimeter.

Solution:

Sides of a triangle are 2x + 3y, x + 5y, 7x - 2y

... Perimeter = sum of three sides of the triangle

= 2x + 3y + x + 5y + 7x - 2y= 2x + x + 7x + 3y + 5y - 2y = 10x + 8y - 2x = 10x + 6y

Question 8.

The two adjacent sides of a rectangle are 6a + 96 and 8a – 46. Find its, perimeter.

Solution

Sides of a rectangle are 6a + 9band 8a - 4bLet, length = 6a + 9band breadth = 8a - 4b \therefore Perimeter = 2 (length + breadth) = 2 (6a + 9b + 8a - 4b) = 2 (14a + 5b) = 28a + 10b

Question 9.

Subtract the second expression from the first:

(i)
$$2a + b, a + b$$
 (ii) $-2b + 2c, b + 3c$
(iii) $5a + b, -6b + 2a$ (iv) $a^3 - 1 + a, 3a - 2a^2$
(v) $p + 2, 1$
(vi) $x + 2y + z, -x - y - 3z$
(vii) $3a^2 - 8ab - 2b^2, 3a^2 - 4ab + 6b^2$
(viii) $4pq - 6p^2 - 2q^2, 9p^2$
(ix) $10abc, 2a^2 + 2abc - 4b^2$
(x) $a^2 + ab + c^2, a^2 - d^2$

$$(i) (2a + b) - (a + b)$$

$$= 2a + b - a - b = 2a - a + b - b$$

$$= a + 0 = a$$

$$(ii) (-2b + 2c) - (b + 3c)$$

$$= -2b + 2c - b - 3c$$

$$= -2b - b + 2c - 3c$$

$$= -3b - c$$

$$(iii) (5a + b) - (-6b + 2a)$$

$$= 5a + b + 6b - 2a$$

$$= 5a - 2a + b + 6b$$

$$= 3a + 7b$$

$$(iv) (a^{3} - 1 + a) - (3a - 2a^{2})$$

$$= a^{3} - 1 + a - 3a + 2a^{2}$$

$$= a^{3} + 2a^{2} - 2a - 1$$

$$(v) (p + 2) - 1 = p + 2 - 1 = p + 1$$

$$(vi) (x + 2y + z) - (-x - y - 3z)$$

$$= x + 2y + z + x + y + 3z$$

$$= 2x + 3y + 4z$$

$$(vii) (3a^{2} - 8ab - 2b^{2}) - (3a^{2} - 4ab + 6b^{2})$$

$$= 3a^{2} - 8ab - 2b^{2} - 3a^{2} + 4ab - 6b^{2}$$

$$= 3a^{2} - 3a^{2} - 2b^{2} - 6b^{2} - 8ab + 4ab$$

$$= 0 - 8b^{2} - 4ab$$

$$= -4ab - 8b^{2}$$

$$(viii) (4pq - 6p^{2} - 2q^{2}) - (9p^{2})$$

$$= 4pq - 6p^{2} - 2q^{2} - 9p^{2}$$

$$= 4pq - 15p^{2} - 2q^{2}$$

(ix)
$$10abc - (2a^2 + 2abc - 4b^2)$$

= $10abc - 2a^2 - 2abc + 4b^2$
= $10abc - 2abc - 2a^2 + 4b^2$
= $8abc - 2a^2 + 4b^2$
(x) $(a^2 + ab + c^2) - (a^2 - d^2)$
= $a^2 + ab + c^2 - a^2 + d^2$
= $a^2 - a^2 + ab + c^2 + d^2$
= $ab + c^2 + d^2$

Question 10. Subtract:

(i)
$$4x \text{ from } 8 - x$$

(ii) $-8c \text{ from } c + 3d$
(iii) $-5a - 2b \text{ from } b + 6c$
(iv) $4p + p^2 \text{ from } 3p^2 - 8p$
(v) $5a - 3b + 2c \text{ from } 4a - b - 2c$
(vi) $-xy + yz - zx \text{ from } xy - yz + xz$
(vii) $2x^2 - 7xy - y^2 \text{ from } 3x^2 - 5xy + 3y^2$
(viii) $a^2 - 3ab - 6b^2 \text{ from } 2b^2 - a^2 + 2ab$
(ix) $4x^2 - 5x^2y + y^2 \text{ from } - 3y^2 + 5xy^2$
 $-7x^2 - 9x^2y$
(x) $6m^3 + 4m^2 + 7m - 3 \text{ from } 3m^3 + 4$

(i)
$$4x \text{ from } 8 - x$$

 $(8 - x) - 4x = 8 - x - 4x = 8 - 5x$
(ii) $-8c \text{ from } c + 3d$
 $(c + 3d) - (-8c)$
 $c + 3d + 8c = 9c + 3d$
(iii) $-5a - 2b \text{ from } b + 6c$
 $(b + 6c) - (-5a - 2b)$
 $= b + 6c + 5a + 2b = 5a + 3b + 6c$
(iv) $4p + p^2 \text{ from } 3p^2 - 8p$
 $(3p^2 - 8p) - (4p + p^2)$
 $= 3p^2 - 8p - 4p - p^2 = 2p^2 - 12p$
(v) $5a - 3b + 2c \text{ from } 4a - b - 2c$
 $(4a - b - 2c) - (5a - 3b + 2c)$
 $= 4a - b - 2c - 5a + 3b - 2c$
 $= 4a - 5a - b + 3b - 2c - 2c$
 $= -a + 2b - 4c$

(vi)
$$-xy + yz - zx$$
 from $xy - yz + xz$
 $(xy - yz + zx) - (-xy + yz - xz)$
 $= xy - yz + zx + xy - yz + xz$
 $= xy + xy - yz - yz + zx + xz$
 $= 2(xy - yz + zx)$
(vii) $2x^2 - 7xy - y^2$ from $3x^2 - 5xy + 3y^2$
 $(3x^2 - 5xy + 3y^2) - (2x^2 - 7xy - y^2)$
 $= 3x^2 - 5xy + 3y^2 - 2x^2 + 7xy + y^2$
 $= 3x^2 - 2x^2 - 5xy + 7xy + 3y^2 + y^2$
 $= x^2 + 2xy + 4y^2$
(viii) $a^2 - 3ab - 6b^2$ from $2b^2 - a^2 + 2ab$
 $(2b^2 - a^2 + 2ab) - (a^2 - 3ab - 6b^2)$
 $= 2b^2 - a^2 + 2ab - a^2 + 3ab + 6b^2$
 $= -a^2 - a^2 + 2b^2 + 6b^2 + 2ab + 3ab$
 $= -2a^2 + 8b^2 + 5ab$
 $= 8b^2 + 5ab - 2a^2$
(ix) $4x^2 - 5x^2y + y^2$ from $-3y^2 + 5xy^2 - 7x^2 - 9x^2y$
 $(-3y^2 + 5xy^2 - 7x^2 - 9x^2y) - (4x^2 - 5x^2y + y^2)$
 $= -3y^2 + 5xy^2 - 7x^2 - 9x^2y - 4x^2$
 $+ 5x^2y - y^2$
 $= -3y^2 - y^2 + 5xy^2 - 7x^2 - 4x^2$
 $-9x^2y + 5x^2y$
 $= -4y^2 + 5xy^2 - 11x^2 - 4x^2y$
(x) $6m^3 + 4m^2 + 7m - 3$ from $3m^3 + 4$
 $(3m^3 + 4) - (6m^3 + 4m^2 - 7m + 3)$
 $= 3m^3 - 6m^3 - 4m^2 - 7m + 4 + 3$
 $= -3m^3 - 4m^2 - 7m + 7$

Question 11. Subtract $-5a^2 - 3a + 1$ from the sum of $4a^2 + 3 - 8a$ and 9a - 7.

Solution:
Sum of
$$4a^2 + 3 - 8a$$
 and $9a - 7$
 $= 4a^2 + 3 - 8a + 9a - 7 = 4a^2 + a - 4$
 $\therefore (4a^2 + a - 4) - (-5a^2 - 3a + 1)$
 $= 4a^2 + a - 4 + 5a^2 + 3a - 1$
 $= 4a^2 + 5a^2 + a + 3a - 4 - 1$
 $= 9a^2 + 4a - 5$

Question 12. By how much does $8x^3 - 6x^2 + 9x - 10$ exceed $4x^3 + 2x^2 + 7x - 3$?

Solution:

$$8x^{3} - 6x^{2} + 9x - 10 \text{ exceeds } 4x^{3} + 2x^{2} + 7x - 3$$

$$= (8x^{3} - 6x^{2} + 9x - 10) - (4x^{3} + 2x^{2} + 7x - 3)$$

$$= 8x^{3} - 6x^{2} + 9x - 10 - 4x^{3} - 2x^{2} - 7x + 3$$

$$= 8x^{3} - 4x^{3} - 6x^{2} - 2x^{2} + 9x - 7x - 10 + 3$$

$$= 4x^{3} - 8x^{2} + 2x - 7$$

Question 13. What must be added to $2a^3 + 5a - a^2 - 6$ to get $a^2 - a - a^3 + 1$?

Solution:

We get, the required result by subtracting $2a^3 - a^2 + 5a - 6$ from $-a^3 + a^2 - a + 1$ $= (-a^3 + a^2 - a + 1) - (2a^3 - a^2 + 5a - 6)$ $= -a^3 + a^2 - a + 1 - 2a^3 + a^2 - 5a + 6$ $= -a^3 - 2a^3 + a^2 + a^2 - a - 5a + 1 + 6$ $= -3a^3 + 2a^2 - 6a + 7$

Question 14. What must be subtracted from $a^2 + b^2 + lab$ to get – 4ab + 2b²?

Solution:

We get, the required result by subtracting $-4ab + 2b^2$ from $a^2 + b^2 + 2ab$. $= a^2 + b^2 + 2ab - (-4ab + 2b^2)$ $= a^2 + b^2 + 2ab + 4ab - 2b^2$ $= a^2 + b^2 - 2b^2 + 2ab + 4ab$ $= a^2 - b^2 + 6ab$.

Question 15. Find the excess of $4m^2 + 4n^2 + 4p^2$ over $m^2 + 3n^2 - 5p^2$

Solution:

The required result will be by subtracting

$$m^2 + 3n^2 - 5p^2$$
 from $4m^2 + 4n^2 + 4p^2$
 $= 4m^2 + 4n^2 + 4p^2 - (m^2 + 3n^2 - 5p^2)$
 $= 4m^2 + 4n^2 + 4p^2 - m^2 - 3n^2 + 5p^2$
 $= 4m^2 - m^2 + 4n^2 - 3n^2 + 4p^2 + 5p^2$
 $= 3m^2 + n^2 + 9p^2$

Question 16.

By how much is $3x^3 - 2x^2y + xy^2 - y^3$ less than $4x^3 - 3x^2y - 7xy^2 + 2y^3$

Solution:

We can get the required result by subtracting $3x^3 - 2x^2y + xy^2 - y^3$ from $4x^3 - 3x^2y$

$$= (4x^{3} - 3x^{2}y - 7xy^{2} + 2y^{3})$$

$$= (4x^{3} - 3x^{2}y - 7xy^{2} + 2y^{3})$$

$$= 4x^{3} - 3x^{2}y - 7xy^{2} + 2y^{3} - 3x^{3} + 2x^{2}y$$

$$= 4x^{3} - 3x^{3} - 3x^{2}y + 2x^{2}y - 7xy^{2} - xy^{2}$$

$$= 4x^{3} - 3x^{3} - 3x^{2}y + 2x^{2}y - 7xy^{2} - xy^{2}$$

$$= 4x^{3} - 3x^{3} - 3x^{2}y + 2x^{2}y - 7xy^{2} - xy^{2}$$

$$= x^{3} - x^{2}y - 8xy^{2} + 3y^{3}$$

Question 17.

Subtract the sum of $3a^2 - 2a + 5$ and $a^2 - 5a - 7$ from the sum of $5a^2 - 9a + 3$ and $2a - a^2 - 1$

Solution:

Sum of
$$3a^2 - 2a + 5$$
 and $a^2 - 5a - 7$
= $3a^2 - 2a + 5 + a^2 - 5a - 7$
= $3a^2 + a^2 - 2a - 5a + 5 - 7$
= $4a^2 - 7a - 2$
and sum of $5a^2 - 9a + 3$ and $2a - a^2 - 1$
= $5a^2 - 9a + 3 + 2a - a^2 - 1$
= $5a^2 - a^2 - 9a + 2a + 3 - 1$
= $4a^2 - 7a + 2$
Now $(4a^2 - 7a + 2) - (4a^2 - 7a - 2)$
= $4a^2 - 7a + 2 - 4a^2 + 7a + 2$
= $4a^2 - 4a^2 - 7a + 7a + 2 + 2$
= $0 + 0 + 4 = 4$.

Question 18.

The perimeter of a rectangle is $28x^3 + 16x^2 + 8x + 4$. One of its sides is $8x^2 + 4x$. Find the other side

Perimeter of a rectangle
$$(2l + 2b)$$

= $28x^3 + 16x^2 + 8x + 4$
Let one side $(l) = 8x^2 + 4x$
 $\therefore 2l = 2 (8x^2 + 4x) = 16x^2 + 8x$
 $\therefore 2b = (28x^3 + 16x^2 + 8x + 4)$
 $- (16x^2 + 8x)$
= $28x^3 + 16x^2 + 8x + 4 - 16x^2 - 8x$
= $28x^3 + 4$
 \therefore Other side $(b) = \frac{28x^3 + 4}{2}$

$$= 14x^3 + 2$$

Question 19.

The perimeter of a triangle is $14a^2 + 20a + 13$. Two of its sides are $3a^2 + 5a + 1$ and $a^2 + 10a - 6$. Find its third side.

Solution:

Perimeter of a triangle = $14a^2 + 20a + 13$ Sum of two sides = $3a^2 + 5a + 1 + a^2 + 10a - 6$ = $3a^2 + a^2 + 5a + 10a + 1 - 6$ = $4a^2 + 15a - 5$ \therefore Third side = $(14a^2 + 20a + 13)$ $-(4a^2 + 15a - 5)$ = $14a^2 + 20a + 13 - 4a^2 - 15a + 5$ = $14a^2 - 4a^2 + 20a - 15a + 13 + 5$ = $10a^2 + 5a + 18$

Question 20. $x = 4a^2 + b^2 - 6ab$ $y = 3b^2 - 2a^2 + 8ab$ $z = 6a^2 + 8b^2 - 6ab$ (i) $x + y + z = 4a^2 + b^2 - 6ab + 3b^2 - 2a^2$ $+ 8ab + 6a^2 + 8b^2 - 6ab$ $=4a^2-2a^2+6a^2+b^2+3b^2+8b^2-6ab$ + 8ab - 6ab $= 10a^2 - 2a^2 + 12b^2 - 12ab + 8ab$ $= 8a^2 + 12b^2 - 4ab$ (ii) $x - y - z = (4a^2 + b^2 - 6ab)$ $-(3b^2-2a^2+8ab)-(6a^2+8b^2-6ab)$ $=4a^{2}+b^{2}-6ab-3b^{2}+2a^{2}-8ab$ $-6a^2 - 8b^2 + 6ab$ $=4a^2+2a^2-6a^2+b^2-3b^2-8b^2$ -6ab - 8ab + 6ab $= 6a^2 - 6a^2 + b^2 - 11b^2 - 14ab + 6ab$ $= -10b^2 - 8ab$

If
$$x = 4a^2 + b^2 - 6ab$$
. $y = 3b^2 - 2a^2 + 8ab$
and $z = 6a^2 + 8b^2 - 6ab$ find :
(i) $x + y + z$ (ii) $x - y - z$

Question 21.
If
$$m = 9x^2 - 4xy + 5y^2$$
 and $n = -3x^2 + 2xy - y^2$ find :
(i) $2m - n$
(ii) $m + 2n$
(iii) $m - 3n$.

Solution:

$$m = 9x^2 - 4xy + 5y^2$$

 $n = -3x^2 + 2xy - y^2$
(i) $2m - n = 2(9x^2 - 4xy + 5y^2)$
 $-(-3x^2 + 2xy - y^2)$
 $= 18x^2 - 8xy + 10y^2 + 3x^2 - 2xy + y^2$
 $= 18x^2 + 3x^2 - 8xy - 2xy + 10y^2 + y^2$
 $= 21x^2 - 10xy + 11y^2$
(ii) $m + 2n = (9x^2 - 4xy + 5y^2)$
 $+ 2(-3x^2 + 2xy - y^2)$
 $= 9x^2 - 4xy + 5y^2 - 6x^2 + 4xy - 2y^2$
 $= 9x^2 - 6x^2 - 4xy + 4xy + 5y^2 - 2y^2$
 $= 3x^2 + 3y^2$
(iii) $m = 9x^2 - 4xy + 5y^2$
 $n = -3x^2 + 2xy - y^2$
Now,
 $m - 3n = 9x^2 - 4xy + 5y^2 - 3(-3x^2 + 2xy - y^2)$
 $= 9x^2 - 4xy + 5y^2 - 3(-3x^2 + 2xy - y^2)$
 $= 9x^2 - 4xy + 5y^2 + 9x^2 - 6xy + 3y^2$
 $= 18x^2 - 10xy + 8y^2$

Question 22. Simplify: (i) 3x + 5(2x + 6) - 7x(ii) 3(4y - 10) + 2(y - 1)(iii) -(7 + 6x) - 7(x + 2)(iv) x - (x - y) - y - (y - x)(v) 4x + 7y - [5y - 8] - 2x(vi) -2m + 5 + 4(m - 3)(vii) 2x - y + 5 - (x - y)(viii) 2(x - y) - (x - 8)(ix) 4(3x - 8) - 3(5x + 3) - 2(6x - 8)(x) 5(x - 4) - 3(x - 4) + 7(x - 4)

Solution:

(i) 3x + 5(2x + 6) - 7x \Rightarrow 3x + 10x + 30 - 7x \Rightarrow 3x + 10x - 7x + 30 $\Rightarrow 13x - 7x + 30$ $\Rightarrow 6x + 30$ (*ii*) 3(4y - 10) + 2(y - 1) \Rightarrow 12y - 30 + 2y - 2 \Rightarrow 12y + 2y - 30 - 2 $\Rightarrow 14y - 32$ (*iii*) -(7+6x) - 7(x+2) $\Rightarrow -7 - 6x - 7x - 14$ $\Rightarrow -7x - 6x - 7 - 14$ $\Rightarrow -13x - 21$ (iv) x - (x - y) - y - (y - x) \Rightarrow x - x + y - y - y + x $\Rightarrow 2x - x - 2y + y$ $\Rightarrow x - y$ (v) 4x + 7y - [5y - 8] - 2x \Rightarrow 4x + 7y - 5y + 8 - 2x \Rightarrow 4x - 2x + 7y - 5y + 8 $\Rightarrow 2x + 2y + 8$ (vi) -2m + 5 + 4(m - 3) $\Rightarrow -2m + 5 + 4m - 12$ $\Rightarrow -2m + 4m + 5 - 12$ $\Rightarrow 2m - 7$

$$(vii) 2x - y + 5 - (x - y)$$

$$\Rightarrow 2x - y + 5 - x + y$$

$$\Rightarrow 2x - x + 5$$

$$\Rightarrow x + 5$$

$$(viii) 2(x - y) - (x - 8)$$

$$\Rightarrow 2x - 2y - x + 8$$

$$\Rightarrow 2x - 2y + 8$$

$$(ix) 4(3x - 8) - 3(5x + 3) - 2(6x - 8)$$

$$\Rightarrow 12x - 32 - 15x - 9 - 12x + 16$$

$$\Rightarrow 12x - 15x - 12x - 32 - 9 + 16$$

$$\Rightarrow 12x - 27x - 41 + 16$$

$$\Rightarrow -15x - 25$$

$$(x) 5(x - 4) - 3(x - 4) + 7(x - 4)$$

$$\Rightarrow 5x - 20 - 3x + 12 + 7x - 28$$

$$\Rightarrow 5x + 7x - 3x - 20 - 28 + 12$$

$$\Rightarrow 9x - 36$$

EXERCISE 11 (C)

Question 1.

- Multiply: (i) 3x, $5x^2y$ and 2y
 - (*ii*) 5, 3*a* and $2ab^2$
 - (11) 5, 54 414 245
 - (iii) 5x + 2y and 3xy
 - (iv) 6a 5b and -2a
 - (v) 4a + 5b and 4a 5b
 - (vi) $9xy + 2y^2$ and 2x 3y
 - $(vii) 3m^2n + 5mn 4mn^2$ and $6m^2n$
- (viii) $6xy^2 7x^2y^2 + 10x^3$ and $-3x^2y^3$

Solution: (i) Product of 3x, $5x^2y$ and 2y $= 3x + 5x^2y \times 2y$ $= 3 \times 5 \times 2 \times x \times x^2 \times y \times y$ $= 30x^3y^2$ (ii) Product of 5, 3a and $2ab^2$ $= 5 \times 3a \times 2ab^2$ $= 5 \times 3 \times 2 \times a \times ab^2$ $= 30a^2b^2$ (iii) Product of 5x + 2y and 3xy= 3xy(5x + 2y) $= 3xy \times 5x + 3xy \times 2y$ $= 15x^2y + 6xy^2$ (iv) Product of 6a - 5b and -2a= -2a(6a - 5b) $= -2a \times 6a + (-2a) (-5b)$ $= -12a^2 + 10ab$ (v) Product of 4a + 5b and 4a - 5b16.2 2512

$$= 16a^2 - 25b^2$$

$$4a + 5b$$

$$\times 4a - 5b$$

$$16a^2 + 20ab$$

$$- 20ab - 25b^2$$

$$16a^2 - 25b^2$$

(vi) Product of $9xy + 2y^2$ and 2x - 3y= $18x^2y - 23xy^2 - 6y^3$

$$9xy + 2y^{2}$$

$$\times 2x - 3y$$

$$18x^{2}y + 4xy^{2}$$

$$-27xy^{2} - 6y^{3}$$

$$18x^{2}y - 23xy^{2} - 6y^{3}$$

(vii) Proudct of
$$-3m^2n + 5mn - 4mn^2$$
 and
 $6m^2n$
 $= 6m^2n (-3m^2n + 5mn - 4mn^2)$
 $= 6m^2n \times (-3m^2n) + 6m^2n \times 5mn$
 $+ 6m^2n \times (-4mn^2)$
 $= -18m^4n^2 + 30m^3n^2 - 24m^3n^3$
(viii) Product of $6xy^2 - 7x^2y^2 + 10x^3$ and $-3x^2y^3$
 $= -3x^2y^3 (6xy^2 - 7x^2y^2 + 10x^3)$
 $= -3x^2y^3 \times 6xy^2 + (-3x^2y^3) (-7x^2y^2)$
 $+ (-3x^2y^3) \times 10x^3$
 $= -18x^3y^5 + 21x^4y^5 - 30x^5y^3$

Question 2.

Copy and complete the following multi-plications :

- (i) 3a + 2b $\times -3xy$ (ii) 9x + 5y $\times -3xy$ (iii) $3xy - 2x^2 - 6x$ $\times -5x^2y$ (iv) a + b $\times a + b$
- (v) ax b $\times 2ax + 2b^2$ (vi) 2a - b + 3c $\times 2a - 4b$
- (vii) $3m^2 + 5m 2n$ (viii) $6 3x + 2x^2$ × 5n - 3m × $1 + 5x - x^2$

(ix)
$$4x^3 - 10x^2 + 6x - 8$$

 $\times \qquad 3 + 2x - x^2$

(i)
$$3a + 2b$$

$$\frac{\times -3xy}{-9axy - 6bxy}$$
(ii)
$$9x - 5y$$

$$\frac{\times -3xy}{-27x^2y + 15xy^2}$$
(iii)
$$3xy - 2x^2 - 6x$$

$$\frac{\times -5x^2y}{-15x^3y^2 + 10x^4y + 30x^3y}$$
(iv)
$$a + b$$

$$x a + b$$

$$a^2 + ab$$

$$\frac{ab + b^2}{a^2 + 2ab + b^2}$$
(v)
$$ax - b$$

$$\frac{\times 2ax + 2b^2}{2a^2x^2 - 2abx + 2ab^2x - 2b^3}$$

(vi)
$$2a - b + 3c$$

 $\times 2a - 4b$
 $4a^2 - 2ab + 6ac$
 $-8ab + 4b^2 - 12bc$
 $4a^2 - 10ab + 6ac + 4b^2 - 12bc$.

(vii)
$$3m^2 + 6m - 2n$$

 $\times 5n - 3m$
 $15m^2n + 30mn - 10n^2 - 9m^3 - 18m^2$
 $+ 6mn$
 $15m^2n + 36mn - 10n^2 - 9m^3 - 18m^2$

(viii) $\begin{array}{r} 6 - 3x + 2x^{2} \\ \times 1 + 5x - x^{2} \\ \hline 6 - 3x + 2x^{2} \\ + 30x - 15x^{2} + 10x^{3} \\ \hline - 6x^{2} + 3x^{3} - 2x^{4} \\ \hline 6 + 27x - 19x^{2} + 13x^{3} - 2x^{4} \\ \hline \end{array}$ (ix) $\begin{array}{r} 4x^{3} - 10x^{2} + 6x - 8 \\ \hline \end{array}$

$$\begin{array}{rcl} 4x^{3} - 10x^{2} + 6x - 8 \\ \times & 3 + 2x - x^{2} \\ 12x^{3} - 30x^{2} + 18x - 24 \\ 8x^{4} - 20x^{3} + 12x^{2} - 16x \\ \hline & \frac{4x^{5} + 10x^{4} - 6x^{3} + 8x^{2}}{4x^{5} + 18x^{4} - 14x^{3} - 10x^{2} + 2x - 24} \end{array}$$

Question 3. Evaluate :

(i)
$$(c + 5) (c - 3)$$
 (ii) $(3c - 5d) (4c - 6d)$
(iii) $\left(\frac{1}{2}a + \frac{1}{2}b\right) \left(\frac{1}{2}a - \frac{1}{2}b\right)$
(iv) $(a^2 + 2ab + b^2) (a + b)$
(v) $(3x - 1) (4x^3 - 2x^2 + 6x - 3)$
(vi) $(4m - 2) (m^2 + 5m - 6)$
(vii) $(8 - 12x + 7x^2 - 6x^3) (5 - 2x)$
(viii) $(4x^2 - 4x + 1) (2x^3 - 3x^2 + 2)$
(ix) $(6p^2 - 8pq + 2q^2) (-5p)$
(x) $-4y (15x + 12y - 8z) (x - 2y)$
(xi) $(a^2 + b^2 + c^2 - ab - bc - ca) (a + b + c)$

(i)
$$(c + 5) (c - 3) = c (c - 3) + 5 (c - 3)$$

 $= c^{2} - 3c + 5c - 15$
 $= c^{2} + 2c - 15$
(ii) $(3c - 5d) (4c - 6d)$
 $= 3c (4c - 6d) - 5d (4c - 6d)$
 $= 12c^{2} - 18cd - 20cd + 30d^{2}$
 $= 12c^{2} - 38cd + 30d^{2}$
(iii) $\left(\frac{1}{2}a + \frac{1}{2}b\right) \left(\frac{1}{2}a - \frac{1}{2}b\right)$
 $= \frac{1}{2a} \left(\frac{1}{2}a - \frac{1}{2}b\right) + \frac{1}{2}b\left(\frac{1}{2}a - \frac{1}{2}b\right)$
 $= \frac{1}{4}a^{2} - \frac{1}{4}ab + \frac{1}{4}ab - \frac{1}{4}b^{2}$
 $= \frac{1}{4}a^{2} - \frac{1}{4}b^{2}$
(iv) $(a^{2} + 2ab + b^{2}) (a + b)$
 $= a (a^{2} + 2ab + b^{2}) + b (a^{2} + 2ab + b^{2})$
 $= a^{3} + 2a^{2}b + ab^{2} + a^{2}b + 2ab^{2} + b^{3}$
 $= a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$
(v) $(3x - 1) (4x^{3} - 2x^{2} + 6x - 3)$
 $= 3x (4x^{3} - 2x^{2} + 6x - 3) - 1$
 $(4x^{3} - 2x^{2} + 6x - 3)$
 $= 12x^{4} - 6x^{3} + 18x^{2} - 9x - 4x^{3} + 2x^{2} - 6x + 3$
 $= 12x^{4} - 6x^{3} - 4x^{3} + 18x^{2} + 2x^{2} - 9x - 6x + 3$
 $= 12x^{4} - 10x^{3} + 20x^{2} - 15x + 3$

$$(vi) \ (4m-2) \ (m^2+5m-6) \\ = 4m \ (m^2+5m-6) - 2 \ (m^2+5m-6) \\ = 4m^3+20m^2-24m-2m^2-10m+12 \\ = 4m^3+20m^2-2m^2-24m-10m+12 \\ = 4m^3+18m^2-34m+12 \ Ans. \\ (vii) \ (8-12x+7x^2-6x^3) \ (5-2x) \\ = 5 \ (8-12x+7x^2-6x^3) \\ -2x \ (8-12x+7x^2-6x^3) \\ -2x \ (8-12x+7x^2-6x^3) \\ = 40-60x+35x^2-30x^3-16x+24x^2 \\ -14x^3+12x^4 \\ = 40-60x-16x+35x^2+24x^2-30x^3 \\ -14x^3+12x^4 \\ = 40-60x-16x+35x^2+24x^2-30x^3 \\ -14x^3+12x^4 \\ = 40-76x+59x^2-44x^3+12x^4 \\ (viii) \ (4x^2-4x+1) \ (2x^3-3x^2+2) \\ = 4x^2 \ (2x^3-3x^2+2) - 4x \ (2x^3-3x^2+2) \\ = 4x^2 \ (2x^3-3x^2+2) - 4x \ (2x^3-3x^2+2) \\ = 8x^5-12x^4+8x^2-8x^4+12x^3-8x+2x^3 \\ -3x^2+2 \\ = 8x^5-12x^4-8x^4+12x^3+8x^2 \\ -3x^2-8x+2 \\ = 8x^5-20x^4+14x^3+5x^2-8x+2 \\ (ix) \ (6p^2-8pq+2q^2) \ (-5p) \\ = -5p \times 6p^2-5p \times (-8pq) - 5p \ (2q^2) \\ = -30p^3+40p^2q-10pq^2 \\ (x) -4y \ (15+12y-8z) \ (x-2y) \\ = -4xy \ (15x+12y-8z) \\ = (-4xy+8y^2) \ (15x+12y-8z) \\ = -4xy \ (15x+12y-8z) \\ = -60x^2y-48xy^2+32xyz+120xy^2 \\ + 96y^3-64y^2z \\ = -60x^2y-48xy^2+120xy^2-64y^2z+96y^3 + 32xyz \\ = -60x^2y-72xy^2-64y^2z+96y^3+32xyz \\$$

$$(xi) (a^{2} + b^{2} + c^{2} - ab - bc - ca) (a + b + c)$$

$$= a (a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

$$+ b (a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

$$+ c (a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

$$= a^{3} + ab^{2} + ac^{2} - a^{2}b - abc - ca^{2} + a^{2}b$$

$$+ b^{3} + bc^{2} - ab^{2} - b^{2}c$$

$$- abc + a^{2}c + b^{2}c + c^{3} - abc - bc^{2} - c^{2}a$$

$$= a^{3} + b^{3} + c^{3} - a^{2}b + a^{2}b - ca^{2} + a^{2}c$$

$$+ bc^{2} - bc^{2} - ab^{2} + ab^{2}$$

$$- abc - abc - abc + ac^{2} - ac^{2} + b^{2}c - b^{2}c$$

$$= a^{3} + b^{3} + c^{3} - 3abc$$

Question 4.

Evaluate:

- (i) (a + b) (a b)
- (*ii*) $(a^2 + b^2) (a + b) (a b)$; using the result of (*i*).
- (*iii*) $(a^4 + b^4) (a^2 + b^2) (a + b) (a b)$; using the result of (*ii*).

$$(i) (a + b) (a - b)$$

= $a (a - b) + b (a - b)$
= $a^2 - ab + ab - b^2 = a^2 - b^2$
(ii) $(a^2 + b^2) (a + b) (a - b)$
= $(a^2 + b^2) (a^2 - b^2)$ {from (i)}
= $a^2 (a^2 - b^2) + b^2 (a^2 - b^2)$
= $a^4 - a^2b^2 + a^2b^2 - b^4 = a^4 - b^4$
(iii) $(a^4 + b^4) (a^2 + b^2) (a + b) (a - b)$
= $(a^4 + b^4) (a^4 - b^4)$ {from (ii)}
= $a^4 (a^4 - b^4) + b^4 (a^4 - b^4)$
= $a^8 - a^4b^4 + a^4b^4 - b^8 = a^8 - b^8$

Question 5. Evaluate :

(i)
$$(3x - 2y) (4x + 3y)$$

(ii) $(3x - 2y) (4x + 3y) (8x - 5y)$
(iii) $(a + 5) (3a - 2) (5a + 1)$
(iv) $(a + 1) (a^2 - a + 1)$ and $(a - 1) (a^2 + a + 1)$;
and then : $(a + 1) (a^2 - a + 1)$
 $+ (a - 1) (a^2 + a + 1)$
(v) $(5m - 2n) (5m + 2n) (25m^2 + 4n^2)$

Solution:
(i)
$$(3x - 2y) (4x + 3y)$$

 $= 3x (4x + 3y) - 2y (4x + 3y)$
 $= 12x^2 + 9xy - 8xy - 6y^2$
 $= 12x^2 + xy - 6y^2$
(ii) $(3x - 2y) (4x + 3y) (8x - 5y)$
 $= (12x^2 + xy - 6y^2) (8x - 5y) {from (i)}$
 $= 8x (12x^2 + xy - 6y^2) - 5y (12x^2 + xy - 6y^2)$
 $= 96x^3 + 8x^2y - 48xy^2 - 60x^2y - 5xy^2 + 30y^3$
 $= 96x^3 - 52x^2y - 53 xy^2 + 30y^3$
(iii) $(a + 5) (3a - 2) (5a + 1)$
 $= \{a (3a - 2) + 5 (3a - 2) (5a + 1)$

$$= (3a^{2} - 2a + 15a - 10) (5a + 1)$$

$$= (3a^{2} + 13a - 10) (5a + 1)$$

$$= 5a (3a^{2} + 13a - 10) + 1(3a^{2} + 13a - 10)$$

$$= 15a^{3} + 65a^{2} - 50a + 3a^{2} + 13a - 10$$

$$= 15a^{3} + 68a^{2} - 37a - 10$$

(iv) $(a + 1) (a^{2} - a + 1)$ and $(a - 1) (a^{2} + a + 1)$;

$$= a (a^{2} - a + 1) + 1 (a^{2} - a + 1)$$

$$= a^{3} - a^{2} + a + a^{2} - a + 1 = a^{3} + 1$$

 $(a - 1) (a^{2} + a + 1)$

$$= a (a^{2} + a + 1) - 1 (a^{2} + a + 1)$$

$$= a^{3} + a^{2} + a - a^{2} - a - 1 = a^{3} - 1$$

Now, $(a + 1) (a^{2} - a + 1) + (a - 1) (a^{2} + a + 1)$

$$= a^{3} + 1 + a^{3} - 1 = 2a^{3}$$

(v) $(5m - 2n) (5m + 2n) (25m^{2} + 4n^{2})$

$$= \{5m (5m + 2n) - 2n (5m + 2n)\}$$

 $(25m^{2} + 4n^{2})$

$$= (25m^{2} + 10mn - 10mn - 4n^{2})$$

 $(25m^{2} + 4n^{2})$

$$= (25m^{2} - 4n^{2}) (25m^{2} + 4n^{2})$$

$$= (25m^{4} + 100m^{2}n^{2} - 100m^{2}n^{2} - 16n^{4}$$

$$= 625m^{4} - 16n^{4}$$

Question 6. Multiply: (i) mn^4 , m^3n and $5m^2n^3$ (ii) 2mnpq, 4mnpq and 5mnpq(iii) pq - pm and p^2m (iv) $x^3 - 3y^3$ and $4x^2y^2$ (v) $a^3 - 4ab$ and $2a^2b$ (vi) $x^2 + 5yx - 3y^2$ and $2x^2y$.

Solution:
(i)
$$mn^4$$
, m^3n and $5m^2n^3$
 $\Rightarrow 5m^2n^3 \times mn^4 \times m^3n$)
 $\Rightarrow 5m^{(2+1+3)}n^{(3+4+1)}$
 $= 5m^6n^8$
(ii) $2mnpq$, $4mnpq$ and $5mnpq$.
 $\Rightarrow 5mnpq \times 2mnpq \times 4mnpq$)
 $\Rightarrow 5 \times 2 \times 4 m^{(1+1+1)}n^{(1+1+1)}p^{(1+1+1)}$
 $q^{(1+1+1)}$
 $\Rightarrow 40m^3n^3p^3q^3$
(iii) $pq - pm$ and $p^2m \Rightarrow p^2m \times (pq - pm)$
 $\Rightarrow p^3qm - p^3m^2$
(iv) $x^3 - 3y^3$ and $4x^2y^2$
 $\Rightarrow 4x^2y^2 \times (x^3 - 3y^3)$
 $\Rightarrow 4x^5y^2 - 12x^2y^5$
(v) $a^3 - 4ab$ and $2a^2b$
 $\Rightarrow 2a^2b \times (a^3 - 4ab)$
 $\Rightarrow 2a^5b - 8a^3b^2$
(vi) $x^2 + 5yx - 3y^2$ and $2x^2y$
 $\Rightarrow 2x^2y \times (x^2 + 5yx - 3y^2)$
 $\Rightarrow 2x^4y + 10x^3y^2 - 6x^2y^3$

Question 7.
Multiply:
(i)
$$(2x + 3y) (2x + 3y)$$
 (ii) $(2x - 3y) (2x + 3y)$
(iii) $(2x + 3y) (2x - 3y)$ (iv) $(2x - 3y) (2x - 3y)$
(v) $(-2x + 3y) (2x - 3y)$ (vi) $(xy + 2b) (xy - 2b)$
(vii) $(x - a) (x + 3b)$
(viii) $(2x + 5y + 6) (3x + y - 8)$
(ix) $(3x - 5y + 2) (5x - 4y - 3)$
(x) $(6x - 2y) (3x - y)$
(xi) $(1 + 6x^2 - 4x^3) (-1 + 3x - 3x^2)$

$$(i) (2x + 3y) (2x + 3y)$$

$$\Rightarrow 2x (2x + 3y) + 3y (2x + 3y)$$

$$\Rightarrow 4x^{2} + 6xy + 6xy + 9y^{2}$$

$$\Rightarrow 4x^{2} + 12xy + 9y^{2}$$

$$(ii) (2x - 3y) (2x + 3y)$$

$$\Rightarrow 2x (2x + 3y) - 3y (2x + 3y)$$

$$\Rightarrow 2x (2x + 3y) - 3y (2x + 3y)$$

$$\Rightarrow 2x \times 2x + 2x \times 3y - 3y \times 2x - 3y \times 3y$$

$$\Rightarrow 4x^{2} + 6xy - 6xy - 9y^{2}$$

$$\Rightarrow 4x^{2} + 0 - 9y^{2}$$

$$\Rightarrow 4x^{2} - 9y$$

$$(iii) (2x + 3y) (2x - 3y)$$

$$\Rightarrow 2x (2x - 3y) + 3y (2x - 3y)$$

$$\Rightarrow 2x (2x - 3y) + 3y (2x - 3y)$$

$$\Rightarrow 4x^{2} - 6xy + 6xy - 9y^{2}$$

$$\Rightarrow 4x^{2} - 0 - 9y^{2}$$

$$\Rightarrow 4x^{2} - 0 - 9y^{2}$$

$$\Rightarrow 4x^{2} - 9y^{2}$$

$$(iv) (2x - 3y) (2x - 3y)$$

$$\Rightarrow 2x (2x - 3y) - 3y (2x - 3y)$$

$$\Rightarrow 2x \times 2x - 2x \times 3y - 3y \times 2x + 3y \times 3y$$

$$\Rightarrow 4x^{2} - 6xy - 6xy + 9y^{2}$$

$$\Rightarrow 4x^{2} - 12xy + 9y^{2}$$

$$(v) (-2x + 3y) (2x - 3y)$$

$$\Rightarrow -2x (2x - 3y) + 3y (2x - 3y)$$

$$\Rightarrow -2x (2x - 3y) + 3y (2x - 3y)$$

$$\Rightarrow -2x (2x - 3y) + 3y (2x - 3y)$$

$$\Rightarrow -2x (2x - 3y) + 3y (2x - 3y)$$

$$\Rightarrow -2x (2x - 3y) + 3y (2x - 3y)$$

$$\Rightarrow -2x (2x - 3y) + 3y (2x - 3y)$$

$$\Rightarrow -4x^{2} + 6xy + 6xy - 9y^{2}$$

$$\Rightarrow -4x^{2} + 12xy - 9y^{2} (vi) (xy + 2b) (xy - 2b) \Rightarrow xy (xy - 2b) + 2b (xy - 2b) \Rightarrow x^{2}y^{2} - 2bxy + 2bxy - 4b^{2} \Rightarrow x^{2}y^{2} - 4b^{2} (vii) (x - a) (x + 3b) \Rightarrow x (x + 3b) - a (x + 3b) \Rightarrow x^{2} + 3bx - ax - 3ab (viii) (2x + 5y + 6) (3x + y - 8) \Rightarrow 2x (3x + y - 8) + 5y (3x + y - 8) + 6 (3x + y - 8) \Rightarrow 6x^{2} + 2xy - 16x + 15xy + 5y^{2} - 40y + 18x + 6y - 48 \Rightarrow 6x^{2} + 2xy + 15xy - 16x + 18x + 5y^{2} - 40y + 6y - 48 \Rightarrow 6x^{2} + 17xy + 2x + 5y^{2} - 34y - 48 (ix) (3x - 5y + 2) (5x - 4y - 3) + 2(5x - 4y - 3) \Rightarrow 3x(5x - 4y - 3) - 5y(5x - 4y - 3) + 2(5x - 4y - 3) \Rightarrow 15x^{2} - 12xy - 9x - 25xy + 20y^{2} + 15y + 10x - 8y - 6 \Rightarrow 15x^{2} - 37xy + x + 20y^{2} + 7y - 6 (x) (6x - 2y) (3x - y) \Rightarrow 6x (3x - y) - 2y (3x - 2y) \Rightarrow 18x^{2} - 6xy - 6xy + 2y^{2} \Rightarrow 18x^{2} - 12xy + 2y^{2} (xi) (1 + 6x^{2} - 4x^{3}) (-1 + 3x - 3x^{2}) -4x^{3} (-1 + 3x - 3x^{2}) -1 + 3x - 3x^{2} - 6x^{2} + 18x^{3} - 18x^{4} + 4x^{3} -12x^{4} + 12x^{5} -1 + 3x - 9x^{2} + 22x^{3} - 30x^{4} + 12x^{5}$$

EXERCISE 11 (D)

Question 1.

Divide: (i) $-16ab^2c$ by 6abc (ii) $25x^2y$ by $-5y^2$ (iii) 8x + 24 by 4 (iv) $4a^2 - a$ by - a(v) 8m - 16 by - 8 (vi) -50 + 40p by 10p(vii) $4x^3 - 2x^2$ by - x(viii) $10a^3 - 15a^2b$ by $-5a^2$ (ix) $12x^3y - 8x^2y^2 + 4x^2y^3$ by 4xy(x) $9a^4b - 15a^3b^2 + 12a^2b^3$ by $-3a^2b$

(i)
$$-16ab^{2}c$$
 by $6abc$

$$= -\frac{16ab^{2}c}{6abc} = -\frac{8}{3}b$$
(ii) $25x^{2}y$ by $-5y^{2}$

$$= \frac{25x^{2}y}{-5y^{2}} = -5\frac{x^{2}}{y}$$
(iii) $8x + 24$ by 4

$$= \frac{8x + 24}{4} = \frac{8x}{4} + \frac{24}{4} = 2x + 6$$
(iv) $4a^{2} - a$ by $-a$

$$= \frac{4a^{2} - a}{-a} = \frac{4a^{2}}{-a} - \frac{a}{-a}$$

$$= -4a + 1$$
 Ans.
(v) $8m - 16$ by -8

$$= \frac{8m - 16}{-8} = \frac{8m}{-8} - \frac{16}{-8} = -m + 2$$
(vi) $-50 + 40p$ by $10p$

$$= -\frac{50 + 40p}{10p} = \frac{-50}{10p} + \frac{40p}{10p}$$

$$= -\frac{5}{p} + 4$$
(vii) $4x^{3} - 2x^{2}$ by $-x$

$$= \frac{4x^{3} - 2x^{2}}{-x} = \frac{4x^{3}}{-x} - \frac{2x^{2}}{-x}$$

$$= -4x^{2} + 2x$$

$$(viii) \ 10a^3 - 15a^2b \ by - 5a^2$$

$$= \frac{10a^3 - 15a^2b}{-5a^2} = \frac{10a^3}{-5a^2} - \frac{15a^2b}{-5a^2}$$

$$= -2a + 3b \ Ans.$$

$$(ix) \ 12x^3y - 8x^2y^2 + 4x^2y^3 \ by \ 4xy$$

$$= \frac{12x^3y - 8x^2y^2 + 4x^2y^3}{4xy}$$

$$= \frac{12x^3y - 8x^2y^2 + 4x^2y^3}{4xy}$$

$$= \frac{3x^2 - 2xy + xy^2}{4xy} + \frac{4x^2y^3}{4xy}$$

$$(x) \ 9a^4b - 15a^3b^2 + 12a^2b^3 \ by - 3a^2b$$

$$= \frac{9a^4b - 15a^3b^2 + 12a^2b^3}{-3a^2b}$$

$$= \frac{9a^4b}{-3a^2b} - \frac{15a^3b^2}{-3a^2b} + \frac{12a^2b^3}{-3a^2b}$$

$$= -3a^2 + 5ab - 4b^2$$

Question 2. Divide : (i) $n^2 - 2n + 1$ by n - 1(ii) $m^2 - 2mn + n^2$ by m - n(iii) $4a^2 + 4a + 1$ by 2a + 1(iv) $p^2 + 4p + 4$ by p + 2(v) $x^2 + 4xy + 4y^2$ by x + 2y(vi) $2a^2 - 11a + 12$ by a - 4(vii) $6x^2 + 5x - 6$ by 2x + 3(viii) $8a^2 + 4a - 60$ by 2a - 5(ix) $9x^2 - 24xy + 16y^2$ by 3x - 4y(x) $15x^2 + 31xy + 14y^2$ by 5x + 7y(xi) $35a^3 + 3a^2b - 2ab^2$ by 5a - b(xii) $6x^3 + 5x^2 - 21x + 10$ by 3x - 2

Solution:

(i)
$$n^2 - 2n + 1$$
 by $n - 1$
 $n^2 - 2n + 1$
 $n^2 - n$
 $- +$
 $- +$
 $- n + 1$
 $- n + 1$

q.

(ii)
$$m^2 - 2mn + n^2$$
 by $m - n$
 $m - n$
 $m - n$) $m^2 - 2mn + n^2$ (
 $m^2 - mn$
 $- +$
 $- mn + n^2$
 $- mn$

(vii) $6x^2 + 5x - 6$ by $2x + 3$		
3x - 2		
$2x+3) \overline{)6x^2+5x-6()6x^2+9x-6()}$		
· /		
-4x-6 $-4x-6$		
+ + ×		
= 3x - 2		
(viii) $8a^2 + 4a - 60$ by $2a - 5$		
4a + 12		
$2a-5\overline{)8a^2+4a-60(8a^2-20a)}$		
· _ +		
24a - 60		
24a - 60		
+		
×		
= 4a + 12		
$(ix) \ 9x^2 - 24xy + 16y^2 \ by \ 3x - 4y$		
3x - 4y		
$3x - 4y) 9x^{2} - 24xy + 16y^{2} (9x^{2} - 12xy)$		
_ +		
$-12xy + 16y^2$		
$-12xy + 16y^2$		
+		
×		
=3x-4y		

(x)
$$15x^{2} + 31xy + 14y^{2}$$
 by $5x + 7y$
 $3x + 2y$
 $5x + 7y$) $15x^{2} + 31xy + 14y^{2}$ (
 $15x^{2} + 21xy$
 $-$
 $-$
 $10xy + 14y^{2}$
 $10xy + 14y^{2}$
 $10xy + 14y^{2}$
 $10xy + 14y^{2}$
 $-$
 $= 3x + 2y$ Ans.
(xi) $35a^{3} + 3a^{2}b - 2ab^{2}$ by $5a - b$
 $7a^{2} + 2ab$
 $5a - b$) $35a^{3} + 3a^{2}b - 2ab^{2}$ (
 $35a^{3} - 7a^{2}b$
 $-$
 $+$
 $10a^{2}b - 2ab^{2}$
 $10a^{2}b - 2ab^{2}b - 2a^{2}b - 2a^{2}b - 2a^{2$

Question 3.

The area of a rectangle is $6x^2 - 4xy - 10y^2$ square unit and its length is 2x + 2y unit. Find its breadth

Solution:

Area of a rectangle

$$= 6x^2 - 4xy - 10y^2$$
 sq. units

Length = 2x + 2y units

 $\therefore \text{ Breadth} = \frac{\text{Area}}{\text{Length}}$

Hence breadth = 3x - 5y units

Question 4.

The area of a rectangular field is $25x^2 + 20xy + 3y^2$ square unit. If its length is $5x + 3y^2$ 3y unit, find its breadth, Hence find its perimeter.

Solution:

.

Area of a rectangular field

$$= 25x^{2} + 20xy + 3y^{2}$$
Length = $(5x + 3y)$ unit

$$\therefore \quad \text{Breadth} = \frac{\text{Area}}{\text{Length}} = \frac{25x^{2} + 20xy + 3y^{2}}{5x + 3y}$$

$$\frac{5x + y}{5x + 3y} \frac{5x + y}{25x^{2} + 20xy + 3y^{2}} (25x^{2} + 15xy) - \frac{-5xy + 3y^{2}}{5xy + 3y^{2}} \frac{5xy + 3y^{2}}{5xy + 3y^{2}}$$

Hence Breadth = 5x + y

Hence perimeter of rectangular field

$$= 2 (l + b)$$

= 2 (5x + 3y + 5x + y)
= 2 (10x + 4y)
= 20x + 8y

Question 5. Divide: (i) $2m^3n^5$ by -mn(ii) $5x^2 - 3x$ by x(iii) $10x^3y - 9xy^2 - 4x^2y^2$ by xy(iv) $3y^3 - 9ay^2 - 6ab^2y$ by -3y(v) $x^5 - 15x^4 - 10x^2$ by $-5x^2$ (vi) $12a^2 + ax - 6x^2$ by 3a - 2x(vii) $6x^2 - xy - 35y^2$ by 2x - 5y(viii) $x^3 - 6x^2 + 11x - 6$ by $x^2 - 4x + 3$ (ix) $m^3 - 4m^2 + m + 6$ by $m^2 - m - 2$

Solution:
(i)
$$2m^3n^5$$
 by $-mn$
 $= \frac{2m^3n^5}{-mn} = -2m^2n^4$
(ii) $5x^2 - 3x$ by x
 $= \frac{5x^2 - 3x}{x} = \frac{5x^2}{x} - \frac{3x}{x} = 5x - 3$
(iii) $10x^3y - 9xy^2 - 4x^2y^2$ by xy
 $= \frac{10x^3y - 9xy^2 - 4x^2y^2}{xy}$
 $= \frac{10x^2 - 9y - 4xy}{xy}$
(iv) $3y^3 - 9ay^2 - 6ab^2y$ by $-3y$
 $= \frac{3y^3 - 9ay^2 - 6aby^2}{-3y}$
 $= \frac{3y^3 - 9ay^2 - 6aby^2}{-3y}$

$$= \frac{-1}{5}x^{3} + 3x^{2} + 2$$
(vi) $12a^{2} + ax - 6x^{2}$ by $3a - 2x$
 $3a - 2x)\overline{12a^{2} + ax - 6x^{2}}(4a + 3x)$
 $12a^{2} + 8ax$
 $-\frac{-}{9ax - 6x^{2}}$
 $9ax - 6x^{2}$
 $2x - 5y)\overline{6x^{2} - xy - 35y^{2}}(3x + 7y)$
 $6x^{2} - 15xy$
 $-\frac{+}{14xy - 35y^{2}}$
 $14xy - 35y^{2}$
 $14xy - 35y^{2}$
 $-\frac{+}{x}$
 $= 3x + 7y$
(viii) $x^{3} - 6x^{2} + 11x - 6$ by $x^{2} - 4x + 3$
 $x^{2} - 4x + 3)\overline{x^{3} - 6x^{2} + 11x - 6}(x - 2x^{2} + 8x - 6x^{2} + 11x - 6x^{2} + 8x - 6x^{2} + 11x^{2} + 8x - 6x^{2} + 11x^{2} + 8x^{2} - 4x^{2} - 4x^{2} + 8x^{2} - 4x^{2} - 4x^{2} - 4x^{2} + 8x^{2} - 4x^{2} - 4x^{$

(ix)
$$m^3 - 4m^2 + m + 6$$
 by $m^2 - m - 2$
 $m^2 - m - 2)\overline{m^3 - 4m^2 + m + 6}(m - 3)$
 $m^3 - m^2 - 2m$
 $- + +$
 $- 3m^2 + 3m + 6$
 $- 3m^2 + 3m + 6$
 $+ - -$
 $- -$
 \times

= m - 3

EXERCISE 11 (E)

Simplify Question 1.

 $\frac{x}{2} + \frac{x}{4}$

Solution:

 $\frac{x}{2} + \frac{x}{4}$

$$\frac{2x+x}{4} = \frac{3x}{4}$$

Question 2.

 $\frac{a}{10} + \frac{2a}{5}$

Solution:

 $\frac{a}{10} + \frac{2a}{5}$

$$\frac{a+4a}{10} = \frac{5a}{10} = \frac{a}{2}$$

Question 3.

 $\frac{y}{4} + \frac{3y}{5}$

Solution:

$$\frac{y}{4} + \frac{3y}{5}$$

$$\frac{5y+12y}{20} = \frac{17y}{20}$$

Question 4.

 $\frac{x}{2} - \frac{x}{8}$

Solution:

 $\frac{x}{2} - \frac{x}{8}$

$$\frac{4x-x}{8} = \frac{3x}{8}$$

Question 5.

 $\frac{3y}{4} - \frac{y}{5}$

Solution:

$$\frac{3y}{4} - \frac{y}{5}$$

$$\frac{15y - 4y}{20} = \frac{11y}{20}$$

Question 6.

 $\frac{2p}{3} - \frac{3p}{5}$

Solution:

$$\frac{2p}{3} - \frac{3p}{5} = \frac{10p - 9p}{15} = \frac{p}{15}$$

Question 7.

 $\frac{k}{2} + \frac{k}{3} + \frac{2k}{5}$

Solution:

$$\frac{\frac{k}{2} + \frac{k}{3} + \frac{2k}{5}}{\frac{15k + 10k + 12k}{30}} = \frac{37 k}{30}$$
(L.C.M. of 2, 3, 5 = 30)

Question 8.

 $\frac{2x}{5} + \frac{3x}{4} - \frac{3x}{5}$

Solution:

$\frac{2x}{5} + \frac{3x}{4} - \frac{3x}{5}$	(LCM o	of 5, 4 = 20)
8x + 15x - 12x	23x - 12x	11x
20 -	20	20

Question 9.

 $\frac{4a}{7} - \frac{2a}{3} + \frac{a}{7}$

Solution: $\frac{4a}{7} - \frac{2a}{3} + \frac{a}{7}$ $\frac{12a - 14a + 3a}{21} = \frac{15a - 14a}{21} = \frac{a}{21}$ (LCM of 7, 3 = 21)

Question 10.

 $\frac{2b}{5} - \frac{7b}{15} + \frac{13b}{3}$

Solution:

$$\frac{2b}{5} - \frac{7b}{15} + \frac{13b}{3} \qquad \text{(L.C.M. of 3, 5, 15 =} \\ \frac{6b - 7b + 65b}{15} = \frac{71b - 7b}{15} = \frac{64b}{15}$$

Question 11.

$$\frac{6k}{7} - \left(\frac{8k}{9} - \frac{k}{3}\right)$$

Solution:

$$\frac{6k}{7} - \left(\frac{8k}{9} - \frac{k}{3}\right) = \frac{54k - (56k - 21k)}{63}$$

(L.C.M. of 7, 9, 3 = 63)
$$= \frac{54k - (35k)}{63}$$
$$= \frac{54k - 35k}{63} = \frac{19k}{63}$$

Question 12.

 $\frac{3a}{8} + \frac{4a}{5} - \left(\frac{a}{2} + \frac{2a}{5}\right)$

Solution:

$$\frac{3a}{8} + \frac{4a}{5} - \left(\frac{a}{2} + \frac{2a}{5}\right)$$

= $\frac{15a + 32a - (20a + 16a)}{40}$
(L.C.M. of 8, 5, 2 = 40)

$$=\frac{47a-36a}{40}=\frac{11a}{40}$$

Question 13.

$$x+\frac{x}{2}+\frac{x}{3}$$

Solution:

$$\frac{x}{1} + \frac{x}{2} + \frac{x}{3} = \frac{6x + 3x + 2x}{6} = \frac{11x}{6}$$

Question 14.

$$\frac{y}{5} + y - \frac{19y}{15}$$

Solution:

$$\frac{y}{5} + \frac{y}{1} - \frac{19y}{15}$$
$$= \frac{3y + 15y - 19y}{15} = \frac{18y - 19y}{15}$$
$$= \frac{-y}{15}$$

Question 15.

 $\frac{x}{5} + \frac{x+1}{2}$

Solution: $\frac{x}{5} + \frac{x+1}{2} = \frac{2x+5x+5}{10} = \frac{7x+5}{10}$ (L.C.M. of 5, 2 = 10)

Question 16.

$$x + \frac{x+2}{3}$$

Solution:

$$\frac{x}{1} + \frac{x+2}{3} = \frac{3x+x+2}{3} = \frac{4x+2}{3}$$

Question 17.

 $\frac{3y}{5} - \frac{y+2}{2}$

Solution:

$$\frac{3y}{5} - \frac{y+2}{2}$$

= $\frac{6y - (5y+10)}{10}$
= $\frac{6y - 5y - 10}{10} = \frac{y - 10}{10}$.

Question 18.

 $\frac{2a+1}{3} + \frac{3a-1}{2}$

Solution:

$$\frac{2a+1}{3} + \frac{3a-1}{2}$$

$$\frac{4a+2+9a-3}{6} = \frac{13a-1}{6}$$
(L.C.M. of 3, 2 = 6)

Question 19.

$$\frac{k+1}{2} + \frac{2k-1}{3} - \frac{k+3}{4}$$

Solution:

$$\frac{k+1}{2} + \frac{2k-1}{3} - \frac{k+3}{4}$$

$$\frac{6k+6+8k-4-3k-9}{12}$$
(L.C.M. of 2, 3, 4 = 12)
$$= \frac{14k-3k+6-13}{12} = \frac{11k-7}{12}$$

Question 20.

$$\frac{m}{5} - \frac{m-2}{3} + m$$

Solution:

$$\frac{m}{5} - \frac{m-2}{3} + \frac{m}{1}$$

$$\frac{3m-5(m-2)+15m}{15}$$

$$= \frac{3m-5m+10+15m}{15}$$

$$= \frac{18m-5m+10}{15} = \frac{13m+10}{15}$$

Question 21.

$$\frac{5(x-4)}{3} + \frac{2(5x-3)}{5} + \frac{6(x-4)}{7}$$

Solution:

$$\frac{5(x-4)}{3} + \frac{2(5x-3)}{5} + \frac{6(x-4)}{7}$$

$$\frac{175(x-4) + 42(5x-3) + 90(x-4)}{105}$$
(L.C.M. of 3, 5, 7 = 105)

$$= \frac{175x - 700 + 210x - 126 + 90x - 360}{105}$$

$$= \frac{175x + 210x + 90x - 700 - 126 - 360}{105}$$

$$= \frac{475x - 1186}{105}$$

Question 22.

$$\left(p+\frac{p}{3}\right)\left(2p+\frac{p}{2}\right)\left(3p-\frac{2p}{3}\right)$$

Solution:

$$\begin{pmatrix} p + \frac{p}{3} \end{pmatrix} \left(2p + \frac{p}{2} \right) \left(3p - \frac{2p}{3} \right)$$

$$= p \left(1 + \frac{1}{3} \right) p \left(2 + \frac{1}{2} \right) p \left(3 - \frac{2}{3} \right)$$

$$= p^3 \left(\frac{3+1}{3} \right) \left(\frac{4+1}{2} \right) \left(\frac{9-2}{3} \right)$$

$$= p^3 \times \frac{4}{3} \times \frac{5}{2} \times \frac{7}{3} = p^3 \times \frac{70}{9} = \frac{70 p^3}{9}$$

Question 23. $\frac{7}{30} \operatorname{of} \left(\frac{p}{3} + \frac{7p}{15} \right)$

Solution:

$$\frac{7}{30} \operatorname{of} \left(\frac{p}{3} + \frac{7p}{15} \right)$$

$$= \frac{7}{30} \operatorname{of} \left(\frac{5p + 7p}{15} \right) = \frac{7}{30} \times \frac{12}{15} p = \frac{14p}{75}$$

Question 24.

$$\left(2p+\frac{p}{7}\right)\div\left(\frac{9p}{10}+4p\right)$$

Solution:

$$\begin{pmatrix} 2p + \frac{p}{7} \end{pmatrix} \div \left(\frac{9p}{10} + 4p \right)$$

= $\frac{14p + p}{7} \div \frac{9p + 40p}{10} = \frac{15}{7}p \div \frac{49}{10}p$
= $\frac{15}{7}p \times \frac{10}{49p} = \frac{150}{343}$

Question 25.

$$\left(\frac{5k}{8} - \frac{3k}{5}\right) \div \frac{k}{4}$$

Solution:

$$\left(\frac{5k}{8} - \frac{3k}{5}\right) \div \frac{k}{4}$$
$$= \frac{25k - 24k}{40} \div \frac{k}{4} = \frac{k}{40} \div \frac{k}{4}$$
$$= \frac{k}{40} \div \frac{4}{k} = \frac{1}{10}$$

Question 26.

$$\left(\frac{y}{6} + \frac{2y}{3}\right) \div \left(y + \frac{2y - 1}{3}\right)$$

Solution:

$$\left(\frac{y}{6} + \frac{2y}{3}\right) \div \left(y + \frac{2y - 1}{3}\right)$$

$$= \left(\frac{y + 4y}{6}\right) \div \left(\frac{3y + 2y - 1}{3}\right)$$

$$= \frac{5y}{6} \div \frac{5y - 1}{3} = \frac{5y}{6} \times \frac{3}{5y - 1}$$

$$= \frac{5y}{2(5y - 1)} = \frac{5y}{10y - 2}$$

EXERCISE 11 (F)

Enclose the given terms in brackets as required :

Question 1. x - y - z = x-{.....)

Solution:

x - y - z = x - (y + z)

Question 2.

 $x^2 - xy^2 - 2xy - y^2 = x^2 - (\dots)$

Solution:

 $x^2 - xy^2 - 2xy - y^2$ = $x^2 - (xy^2 + 2xy + y^2)$

Question 3.

 $4a - 9 + 2b - 6 = 4a - (\dots)$

Solution:

4a - 9 + 2b - 6= 4a - (9 - 2b + 6) Question 4. $x^2 - y^2 + z^2 + 3x - 2y = x^2 - (.....)$

Solution:

 $\begin{aligned} x^2 - y^2 + z^2 + 3x - 2y \\ = x^2 - (y^2 - z^2 - 3x + 2y) \end{aligned}$

Question 5.

 $-2a^{2} + 4ab - 6a^{2}b^{2} + 8ab^{2} = -2a$ (......)

Solution:

 $-2a^{2} + 4ab - 6a^{2}b^{2} + 8ab^{2}$ = -2a (a - 2b + 3ab^{2} - 4b^{2})

Simplify :

Question 6. 2x - (x + 2y - z)

Solution:

2x-(x + 2y-z) = 2x - x - 2y + z= x - 2y + z

Question 7. p + q - (p - q) + (2p - 3q)

Solution:

p + q - (p - q) + (2p - 3q)= p + q - p + q + 2p - 3q = 2p - q

Question 8.

9x - (-4x + 5)

Solution:

9x - (-4x + 5) = 9x + 4x - 5= 13x- 5

Question 9. 6a – (- 5a – 8b) + (3a + b)

Solution:

6a - (-5a - 8b) + (3a + b)

= 6a + 5a + 8b + 3a + b= 6a + 5a + 3a + 8b + b= 14a + 9b

Question 10.

(p - 2q) - (3q - r)

Solution:

(p-2q) - (3q - r) = p - 2q - 3q + r = p - 5q + r

Question 11.

9a (2b – 3a + 7c)

Solution:

9a (2b - 3a + 7c)= 18ab - 27a² + 63ca

Question 12.

-5m (-2m + 3n – 7p)

Solution:

 $\begin{array}{l} -5m (-2m + 3n - 7p) \\ = -5m x (-2m) + (-5m) (3n) - (-5m) (7p) \\ = 10m^2 - 15mn + 35 mp. \end{array}$

Question 13.

-2x (x + y) + x²

Solution:

- 2x (x + y) + x²= -2x x x + (-2x)y + x² = - 2x² - 2xy + x² = - 2x² + x² - 2xy = - x² - 2xy

Question 14.

$$b\left(2b-\frac{1}{b}\right)-2b\left(b-\frac{1}{b}\right)$$

Solution:

$$b\left(2b - \frac{1}{b}\right) - 2b\left(b - \frac{1}{b}\right)$$
$$= b \times 2b - b \times \frac{1}{b} - 2b \times b + 2b \times \frac{1}{b}$$
$$= 2b^2 - 1 - 2b^2 + 2$$
$$= 2b^2 - 2b^2 - 1 + 2 = 1$$

Question 15. 8 (2a + 3b - c) - 10 (a + 2b + 3c)

Solution:

8 (2a + 3b - c) - 10 (a + 2b + 3c)= 16a + 24b - 8c - 10a - 20b - 30c = 16a - 10a + 24b - 20b - 8c - 30c = 6a + 4b - 38c

Question 16.

$$a\left(a+\frac{1}{a}\right)-b\left(b-\frac{1}{b}\right)-c\left(c+\frac{1}{c}\right)$$

Solution:

$$a\left(a + \frac{1}{a}\right) - b\left(b - \frac{1}{b}\right) - c\left(c + \frac{1}{c}\right)$$

= $a^2 + 1 - b^2 + 1 - c^2 - 1$
= $a^2 - b^2 - c^2 + 1$

Question 17. 5 x (2x + 3y) - 2x (x - 9y)

Solution:

5x (2x + 3y) - 2x (x - 9y)= 10x² + 15xy - 2x² + 18xy = 10x² - 2x² + 15xy + 18xy = 8x² + 33 xy

Question 18.

a + (b + c - d)

Solution:

a + (b + c - d) = a + (b + c - d)= a + b + c - d

Question 19.

5 - 8x - 6 - x

Solution:

5 - 8x - 6 - x= 5 - 6 - 8x - x = -1 -7x

Question 20.

 $2a + (6 - \overline{a - b})$

Solution:

 $2a + (6 - \overline{a - b})$ = 2a + (b - a + b)= 2a + b - a + b= a + 2b

Question 21.

3x + [4x - (6x - 3)]

Solution:

3x + [4x - (6x - 3)]= 3x + [4x - 6x + 3] = 3x + 4x - 6x + 3 = 3x + 4x - 6x + 3 = 7x - 6x + 3 = x + 3

Question 22.

 $5b - \{6a + (8 - b - a)\}$

Solution:

5b- {6a + 8- 6-a} = 5b - 6a - 8 + b + a = -6a + a + 5b +b - 8 = -5a + 6b-8 Question 23. 2x-[5y- (3x -y) + x]

Solution:

2x - [5y - (3x - y) + x]= 2x - {5y - 3x + y + x} = 2x - 5y + 3x - y - x = 2x + 3x - x - 5y - y = 4x - 6y

Question 24.

6a – 3 (a + b – 2)

Solution:

6a - 3 (a + b - 2)= 6a - 3a - 3b + 6= 3a - 3b + 6

Question 25. 8 [m + 2n-p – 7 (2m -n + 3p)]

Solution:

8 [m + 2n-p -1 (2m - n + 3p)] 8 [m + 2n-p- 14m + 7n-21p] = 8m+ 16n -8p- 112m + 56n - 168p = 8m - 112m + 16n + 56n -8p - 168p = -104m + 72n - 176p

Question 26.

 ${9 - (4p - 6q)} - {3q - (5p - 10)}$

Solution:

 $\{9 - \{4p - 6q\}\} - \{3q - (5p - 10)\}\$ $\{9 - 4p + 6q\} - \{3q - 5p + 10\}\$ $= 9 - 4p + 6q - 3q + 5p - 10\$ $= 9 - 4p + 5p + 6q - 3q - 10\$ = p + 3q - 1

Question 27. 2 [a – 3 {a + 5 {a – 2) + 7}]

Solution:

 $2[a-3{a+5{a-2}+7}]$

= 2 [a- 3 {a + 5a- 10 + 7}] = 2 [a -3a- 15a + 30 -21] = 2a-6a- 30a + 60-42 = 2a- 36a + 60-42 = -34a + 18

Question 28.

 $5a - [6a - {9a - (10a - <math>\overline{4a - 3a})}]$

Solution:

 $5a - [6a - {9a - (10a - 4a + 3a)}]$ = 5a - [6a - {9a - (10a - 4a + 3a)}] = 5a - [6a - {9a - 10a + 4a - 3a}] = 5a - [6a - 9a + 10a - 4a + 3a] = 5a - 6a + 9a - 10a + 4a - 3a = 5a + 9a + 4a - 6a - 10a - 3a = 18a - 19a = - a

Question 29. 9x + 5 - [4x - {3x - 2 (4x - 3)}]

Solution:

 $9x + 5 - [4x - {3x - 2 (4x - 3)}]$ = 9x + 5 - [4x - {3x - 8x + 6}] = 9x + 5 - [4x - 3x + 8x - 6] = 9x + 5 - 4x + 3x - 8x + 6 = 9x + 3x - 4x - 8x + 5 + 6 = 12x - 12x + 11 = 11

Question 30.

(x + y - z)x + (z + x - y)y - (x + y - z)z

Solution:

(x + y - z)x + (z + x - y)y - (x + y - z)z= $x^{2} + xy - zx + yz + xy - y^{2} - zx - yz + z^{2}$ = $x^{2} - y^{2} + z^{2} + 2xy - 2zx$

Question 31.

-1 [a-3 {b -4 (a-b-8) + 4a} + 10]

Solution:

 $-1 [a - 3 {b - 4(a - b - 8) + 4a} + 10]$ = -1 [a-3 {b-4{a-b-8} + 4a} + 10]

Question 32. $p^2 - [x^2 - \{x^2 - (q^2 - \overline{x^2 - q^2}) - 2y^2\}]$

Solution:

$$p^{2} - [x^{2} - \{x^{2} - (q^{2} - \overline{x^{2} - q^{2}}) - 2y^{2}\}]$$

$$= p^{2} - [x^{2} - \{x^{2} - (q^{2} - x^{2} + q^{2}) - 2y^{2}\}]$$

$$= p^{2} - [x^{2} - \{x^{2} - (2q^{2} - x^{2}) - 2y^{2}\}]$$

$$= p^{2} - [x^{2} - \{x^{2} - 2q^{2} + x^{2} - 2y^{2}\}]$$

$$= p^{2} - x^{2} + 2x^{2} - 2q^{2} - 2y^{2}$$

$$= p^{2} + x^{2} - 2q^{2} - 2y^{2}$$

Question 33.
10 – {4a – (7 –
$$\overline{a-5}$$
) – (5a – $\overline{1+a}$)}

Solution:

$$10 - \{4a - (7 - \overline{a - 5}) - (5a - \overline{1 + a})\} = 10 - \{4a - (7 - a + 5) - (5a - 1 - a)\} = 10 - \{4a - (12 - a) - (4a - 1)\} = 10 - \{4a - 12 + a - 4a + 1\} = 10 - 4a + 12 - a + 4a - 1 = 10 + 12 - 1 - 4a - a + 4a = 21 - a$$

Question 34. 7a- [8a- (11a-(12a- $\overline{6a-5a}$)}]

Solution:

 $7a - [8a - {1 | a - (12a - 6a - 5a)}]$ = 7a-[8a-{11a-(12a-6a + 5a)}] = 7a -[8a -{11a -(17a -6a)}] = 7a - [8a - {11a -(11a)}] = 7a- [8a- {11a- 11a}] = 7a - 8a = -a

Question 35. $8x - [4y - \{4x + (2x - \overline{2y - 2x})\}]$

Solution:

$$8x - [4y - \{4x + (2x - 2y - 2x)\}]$$

$$= 8x - [4y - \{4x + (2x - 2y + 2x)\}]$$

$$= 8x - [4y - \{4x + (4x - 2y)\}]$$

$$= 8x - [4y - \{4x + 4x - 2y\}]$$

$$= 8x - [4y - 4x - 4x + 2y]$$

$$= 8x - [-8x + 6y]$$

$$= 8x + 8x - 6y$$

$$= 16x - 6y$$

Question 36. x-(3y-4z - 3x +2z-5y - 7x)

Solution:

 $\begin{array}{l} x-(3y-\overline{4z-3x}+2z-\overline{5y-7x}) \\ = x-(3y-4z+3x+2z-5y+7x) \\ = x-(-2y-2z+10x) \\ = x+2y+2z-10x \\ = -9x+2y+2z \end{array}$