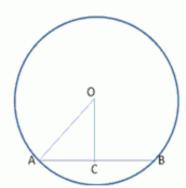
Ex 17.1



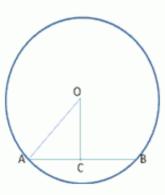
In right Δ ACO,

By Pythagoras theorem, $OA^2 = OC^2 + AC^2$

 \therefore length of chord AB = 2AC (from (1))

13² - 12² = AC² AC² = 169 - 144 = 25 AC = 5cm

(ii)



In right ΔACO ,

By Pythagoras theorem, $OA^2 = OC^2 + AC^2$

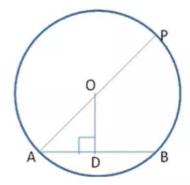
AC² = $(1.7)^2 - (1.5)^2$ = 2.89 - 2.25 = .64 AC = 0.8cm ∴ length of chord AB = 2AC (from (1)) = 2(0.8) = 1.6cm (iii)

BA = AC ----(1) (Perpendicular from centre to a chord bisects the chord)

In right ΔOAB ,

By Pythagoras theorem, $OB^2 = OA^2 + AB^2$ $AB^2 = 6.5^2 + 2.5^2$ = 42.25 - 6.25 = 36 AB = 6 cm \therefore length of chord BC = 2AB (from (1)) = 2(6) = 12 cm

Answer 2.

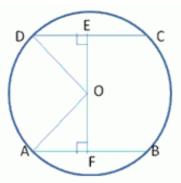


AD = DB = 1.6cm (Perpendicular from centre to a chord bisects the chord) In right \triangle ODA, By Pythagoras theorem, OA² = OD² + AD² = $1.6^2 + 1.2^2$

= 2.56 + 1.44OA² = 4 OA = 2cm

Diameter(AP) = 2(OA) = 2(1) = 4cm

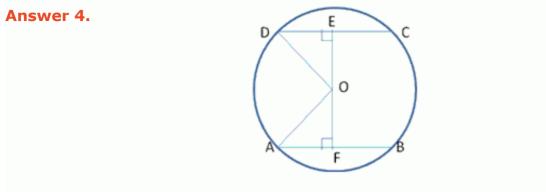
Answer 3.



AF = FB = 8.4cm

And DE = EC ----(1) (Perpendicular from centre to a chord bisects the chord) In right \triangle ODA, By Pythagoras theorem, OA² = OF² + AF² = $(11.2)^2 + (8.4)^2$

= 125.44 + 70.56 $OA^2 = 196$ OA = 14cmOA = OD = 14cm (radii of same circle) Similarly, In △ DEO $OD^2 = OE^2 + DE^2$ $DE^2 = 14^2 + 8.4^2$ = 196 - 70.56 $DE^2 = 125.44$ DE = 11.2cm \therefore length of chord DC = 2DE = 2(11.2) = 22.4cm



AF = FB = 3cm

CE = ED = 7.2cm (Perpendicular from centre to a chord bisects the chord)

In right Δ AFO, By Pythagoras theorem,

 $OA^{2} = OF^{2} + AF^{2}$ $OA^{2} = (7.2)^{2} + (3)^{2}$ $OA^{2} = 51.84 + 9$ $OA^{2} = 60.84$ OA = 7.8 cm

OA = OC = 7.8 cm (radii of same circle)

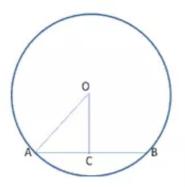
Similarly, In right Δ OFC,

$$OC^2 = OE^2 + EC^2$$

 $OE^2 = (7.8)^2 - (7.2)^2$
 $= 60.84 - 51.84$
 $OE^2 = 9$
 $OE = 3cm$

Distance from centre of chord CD with length 14.4cm is 3cm.

Answer 5.



AC = CB = 4cm (Perpendicular from centre to a chord bisects the chord)

In right Δ ABO,

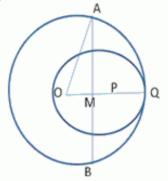
By Pythagoras theorem, $OA^2 = OC^2 + AC^2$

$$OC^2 = 6^2 + 4^2$$

 $OC = 36 - 16 = 20$
 $OC^2 = 2\sqrt{5}cm$

Perpendicular distance of chord from centre is $2\sqrt{5}$ cm

Answer 6.



OA = OQ = 5cm (Radius of bigger circle)

- PQ = 3cm (Radius of smaller circle)
- OP = 2cm

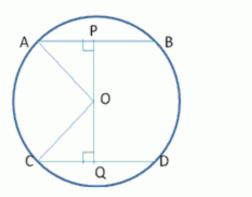
Perpendicular bisector of OP, i.e. AB meets OP at M.

 $\mathsf{OM} = \mathsf{MP} = \frac{1}{2}\mathsf{OP} = 1\mathsf{cm}$

In right Δ OMA,

By Pythagoras theorem,

 $OA^{2} = OM^{2} + MA^{2}$ $MA^{2} = 5^{2} - 1^{2}$ = 25 - 1 = 24 $AM = 2\sqrt{6}cm$ $AM = MB = 2\sqrt{6}cm$ $AB = AM + MB = 2\sqrt{6} + 2\sqrt{6} = 4\sqrt{6}$



AP = PB = 3cm

CQ = QD = 6cm (Perpendicular from centre to a chord bisects the chord)

OA = OC = r (say)

Let $OP = x_1 \therefore OQ = 3 - x_1$

In right $\triangle OQC$,

By Pythagoras theorem,

 $OC^2 = OQ^2 + CQ^2$

 $r^2 = (3 - x)^2 + 6^2 - (1)$

Similarly, In \triangle OPA, OA² = AP² + PO²

 $r^2 = 3^2 + x^2 - (2)$

From (1) and (2)

 $(3-x)^2 + 6^2 = 3^2 + x^2$

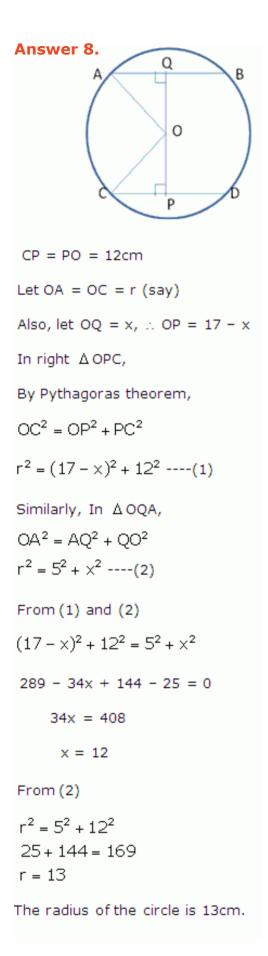
-6x + 36 = 0

$$x = 6$$

from (2)

 $r^2 = 3^2 + 6^2 = 9 + 36 = 45$ r = $3\sqrt{5}$

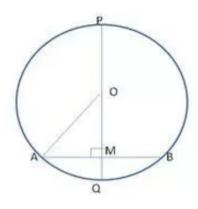
Thus, radius of the circle is $3\sqrt{5}$ cm



Answer 9.

Given: AB = 18cm, MQ = 3cm

To find: PQ



OQ = OA = r cm(say)∴ OM = OQ = MQ = (r - 3)cmAM = MB = 9cm (PQ ⊥ AB)

In right ∆OMA,

$$OM^{2} + MA^{2} = OA^{2}$$

$$\Rightarrow (r - 3)^{2} + 9^{2} = r^{2}$$

$$\Rightarrow r^{2} - 6r + 9 + 81 = r^{2}$$

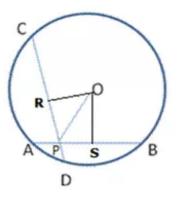
$$\Rightarrow 6r = 90$$

$$\Rightarrow r = 15cm$$

$$PQ = 2r$$

(Perpendicular bisector of a chord passes through the centre of the circle)

Answer 10.



Draw perpendiculars OR and OS to CD and AB respectively.

In triangle ORP and triangle OSP

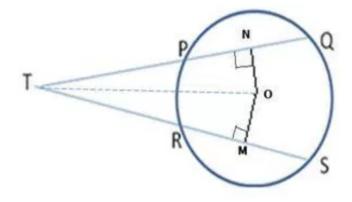
OP = OP OR = OS (Distance of equal chords from centre are equal) ∠PRO = ∠PSO (right angles)

Therefore, $\Delta ORP \simeq \Delta OSP$

Hence, ∠RPO = ∠SPO

Thus OP bisects ∠CPB.

Answer 11.



Given: PQ = RS

To Prove: TP = TR and TQ = TS.

Construction: Draw ON \perp PO and OM \perp RS.

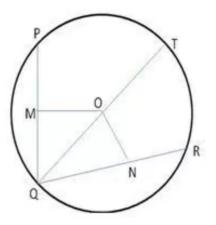
Proof: Since equal chords are equidistant from the circle therefore

 $PQ = RS \Rightarrow ON = OM$... (1)

Also perpendicular drawn from the centre bisects the chord.

So, PN = NQ = $\frac{1}{2}$ PQ and RM = MS = $\frac{1}{2}$ RS ButPQ = RS, we get ...(2) PN = RMAnd, NQ = MS... (3) Now in \triangle TMO and \triangle TNO, TO = TO (Common) MO = NO (By (1)) $\angle TMO = \angle TNO$ (Each 90 degrees) Therefore, ∆TMO ≅ ∆TNO (By RHS) \Rightarrow TN = TM (By CPCT) (4) Subtracting, (2) from (4), we get TN - PN = TM - RM \Rightarrow TP = TR Adding (3) and (4), we get TN + NQ = TM + MS⇒TQ = TS Hence Proved.

Answer 12.



Let QT be the diameter of ∠PQR

Since, PQ = QR

: OM = ON

In $\triangle OMQ$ and $\triangle ONQ$

OM = ON (equal chords are equidistant from the centre)

$$\angle OMQ = \angle ONQ (90^{\circ} each)$$

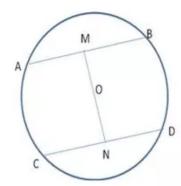
OQ = OQ (common)

∆OMQ ≅ ∆ONQ (RHS)

∴∠OQM = ∠OQN (CPCT)

Thus QT i.e. diameter of the circle bisects ∠PQR

Answer 13.



CN = ND

 $:: \mathsf{OM} \perp \mathsf{AB}$

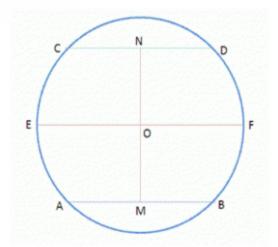
and ON \perp CD (A line bisecting the chord and passing through the centre of the circle is perpendicular to the chord)

 $\therefore \angle OMA = \angle OND = 90^{\circ} each$

But these are alternate interior angles

.: AB || CD

Answer 14.



Given: AB and CD are two chords of a circle with centre 0.

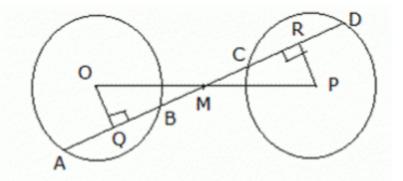
AB||CD, M and N are midpoints of AB and CD respectively.

To prove: MN passes through centre O.

- Construction: Join OM, ON, and through O, draw a straight line EF parallel to AB.
- Proof: OM^ AB (line joining the midpoint of a chord to the centre of a circle is perpendicular to it)

```
DAMO = 90°
Q DMOE = 90° [cointerior angle of DAMO]
DNOE = 90° [corresponding angle of DAMO]
DMOE + DNOE = 180°
MON is a straight line.
Hence, MN passes through centre O.
```

Answer 15.



Given: Two congruent circles with centre O and P. M is the mid-point of OP

To prove: Chord AB and CD are equal.

Construction: Draw OQ LAB and PR LCD.

Proof: In **ΔOQM** and **ΔPRM**

∠ OQM = ∠ PRC	(Each 90°)
OM = MP	(As M is the mid-point)
$\angle OMQ = \angle PMR$	(Vertically opposite angles)
Therefore, $\triangle OQM \cong \triangle PRM$	(By AAS)

Now the perpendicular distances of two chords in two congruent circles are equal, therefore chords are also equal.

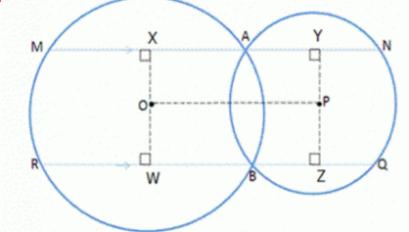
(By CPCT)

 $\Rightarrow AB = CD.$

⇒OQ = PR

Hence Proved.

Answer 16.



Given: Two circles with centres O and P, and MN||OP||RQ

To prove: (i) MN = 2OP (ii) MN = RQ.

Construction: OX ±MN, PY ±MN, OW ±RZ, PZ ±RQ

Proof: Since each angle of the quadrilateral XYZW is a right angle, XYZW is a rectangle.

Also, XYPO is a rectangle. ...(1)

Now, perpendicular drawn from the centre to the chord bisects the chord

Therefore, MA = 2 XA and $AN = 2 AY \dots (2)$

Now, MN = MA + AN = 2XA + 2AY [from (2)]

$$\Rightarrow$$
 MN = 2(XA + AY) = 2 XY

$$\Rightarrow$$
 MN = 2 OP [As XYPO is a rectangle, XY = OP] ... (3)

This proves part (i).

By similar arguments, we have RQ = 2 OP ... (4)

Using (3) and (4), we get

MN = RQ.

This proves part (ii).

Answer 17.

ABC is an equilateral triangle,

Also AN = MB (radii of same circle)

 \Rightarrow NC = MB

- In ΔBNC and ΔCMB
- NC = MB (proved above)
- $\angle B = \angle C (60^{\circ}each)$
- BC = BC (Common)
- $\therefore \quad \Delta BNC \cong \Delta CMB (SAS)$
- ∴ BN = CM (CPCT)

Answer 18.

```
In \Delta \text{DAM} and \Delta \text{BAN}
```

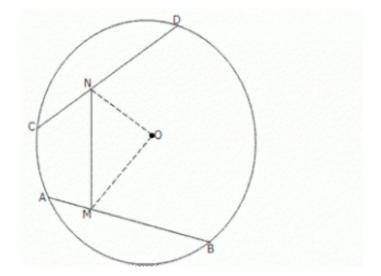
AN = AM (radii of same circle)

AD = AB (sides of square ABCD)

∠DAM =∠BAN (Common)

∴ ∆DAM ≅ ∆BAN (SAS)

Answer 19.



and N are mid points of equal chords AB and CD respectively.

)N \perp CD and OM \perp AB

 $\angle ONC = \angle OMA (90^{\circ} \text{ each}) - --(1) (A line bisecting the chord and passing rough the centre of the dirde is perpendicular to the chord)$

AB = CD

ON = OM (equal chords are equidistant from the centre)

ι ΔMON,

MO = NO

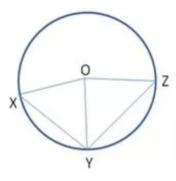
∴ ∠ONM = ∠OMN ----(2)

ubtracting (2) from (1)

ONC - ∠ONM = ∠OMA - ∠OMN

∠CNM = ∠AMN

Answer 20.



Join OX and OZ

In $\triangle XOY$ and $\triangle ZOY$

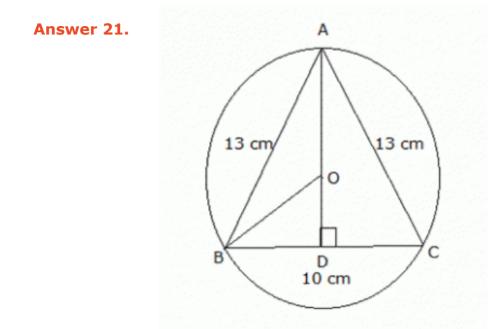
OX = YZ (radii of same circle)

XY = YZ (given)

OY = OY (common)

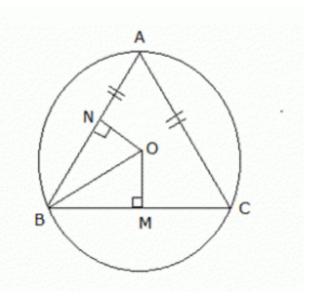
∴ ∠OYX = ∠OYZ (CPCT)

Hence, OY is the bisector of ∠XYZ passing through O



ince ABC is an isosceles triangle, AOD is the perpendicular bisector of BC.

Triangle ADC, by Pythagoras theorem we have $\sqrt{D^2} = AC^2 - DC^2 = 13^2 - 5^2 = 169 - 25 = 144$ $\Rightarrow AD = 12 \text{ cm} \Rightarrow AO + OD = 12 \Rightarrow AO = 12 - x$ (Assuming OD = x cm) gain in triangle OBD, $O^2 = BD^2 + OD^2 = 25 + x^2$ (As BD = 5 cm) $\Rightarrow (12 - x)^2 = 25 + x^2$ (As AO = BO = radius) $\Rightarrow 144 + x^2 - 24x = 25 + x^2$ $\Rightarrow - 24x = 25 - 144 = -119$ $\Rightarrow x = 4.96 \text{ cm}$ $\Rightarrow AO = 12 - 4.96 = 7.04 \text{ cm}$ Answer 22.



Given: AB = AC, $\angle ABO = \angle CBO$

To Prove: AB = BC

Construction: Draw ON $\perp AB$ and $OM \perp BC$

Proof: In triangles BNO and BMO,

	∠NBO = ∠MBO	(Given)
	∠BNO = ∠BMO	(Each 90°)
	BO = BO	(Common)
Thus	, ∆BNO ≝ ∆BMO	(By AAS)

⇒BN = BM

 \Rightarrow 2BN = 2 BM (Since perpendicular drawn from the centre bisects the chord)

⇒AB = BC

Hence Proved.

Ex 17.2

Answer 1.

Since arc AB makes \angle AOB at the centre and \angle APB = 50° on the remaining part of the circle.

 $\angle AOB = 2\angle APB$ $\angle AOB = 2(50)$ $= 100^{\circ}$ $AO = OB = \times (radii of same circle)$ In $\triangle AOB$ $\angle AOB + \angle BAO + \angle ABO = 180$ $180 + \times + \times = 180$ 2x = 80 x = 40 $\therefore \angle OAB = 40^{\circ}$

Answer 2.

 $\angle AOC = 150^{\circ}$ Reflex $\angle AOC = 360^{\circ} - 150^{\circ} = 210^{\circ}$ $\angle ABC = \frac{1}{2}$ reflex $\angle AOC = \frac{1}{2}$ (210°) $\angle ABC = 105^{\circ}$

Answer 3.

BOC is the diameter of cirde,

∴∠BOC = 180º

Since arc BC makes \angle BOA at the centre and \angle BAC on the remaining part of the circle

$$\therefore \angle BAC = \frac{1}{2} \angle BOC$$
$$\therefore \angle BAC = \frac{1}{2}(180)$$
$$= 90^{\circ}$$

Answer 4.

Since arc BC makes $\angle \text{BOC}$ at the centre and $\angle \text{BDC}$ on the remaining part of the circle

$$\therefore \angle BDC = \frac{1}{2} \angle BOC = \frac{1}{2} (\times) = \frac{1}{2} \times$$

 $\angle BDC = \angle BEC = \angle \frac{x}{2}$ (angles in the same segment)

 $\angle ADB = AEP = 180 - \angle \frac{x}{2}$ Also, $\angle BPC = \angle DPE = \angle y$ (vertically opposite) In quadrilateral ADPE, $\angle ADP + \angle DEP + \angle PEA + \angle EAD = 360^{\circ}$ $180 - \angle \frac{x}{2} + \angle y + 180 - \angle \frac{x}{2} + z = 360^{\circ}$ $-\angle x + \angle y + \angle z = 0$ $\angle x = \angle y + \angle z$

Answer 5.

: Let O be the centre of the circle on diameter AC of the circle

Since, EC make ∠EOC at the centre and ∠EBC on the remaining part of the circle

 $\therefore \angle EOC = 2\angle EBC$ = 2(65) $= 130^{\circ}$ In $\triangle EOC$, $\angle EOC + \angle OCE + \angle CEO = 180^{\circ}$ $130 + x + x = 180^{\circ} (OE = OC, \therefore \angle OEC = \angle OCE = x)$ 2x = 50 x = 25 $\angle OCE = \angle OEC = 25^{\circ}$ Also, $\angle OCE = \angle CED = 25^{\circ} (alternate interior angles)$

Answer 6.

∠AOB = q

Reflex ∠AOB = 360 – q

Since arc AB subtends reflex $\angle AOB = (360 - q)^{\circ}$ at the centre and $\angle ACB$ on the remaining part of the circle.

 $\therefore \angle ACB = \frac{1}{2} (reflex \angle AOB)$

If OACB is a parallelogram

- ∠AOB = ∠ACB q = p 360 - 2p = p 3p = 360
- $P = 120^{\circ}$

Answer 7.

In ∆PQR,

PQ = PR

 $\therefore \angle PQR = \angle PRQ = 35^{\circ}$

Also, $\angle PQR + \angle PRQ + \angle QPR = 180^{\circ}$

35 + 35 +∠QPR = 180

 $\angle QPR = 110^{\circ}$

In cyclic quadrilateral PQSR,

 \angle QPR + \angle QSR = 180

110 + ∠QSR = 180

∠QSR = 70

Also, \angle QSR = \angle QTR = 70° (Angles in the same segment)

Answer 8.

In cyclic quadrilateral ABCD,

 \angle BCD + \angle DAB = 180° (Opposite angles of a cyclic quadrilateral)

100 + ∠DAB = 180

 $\angle DAB = 80^{\circ}$

In ∆DAB,

 $\angle DAB + \angle ABD + \angle BDA = 180^{\circ}$

80 + 70° +∠BDA = 180°

∠BDA = 30°

Answer 9.

It is given that ∠AOC = 100°

Arc AC subtends \angle AOC at the centre of dirde and \angle APC on the dircumference of the dirde.

∴ ZAOC = 2ZAPC

 $\Rightarrow \angle APC = \frac{100^{\circ}}{2} = 50^{\circ}$

It can be seen that APCB is a cyclic quadrilateral.

 $\therefore \angle APC + \angle ABC = 180^{\circ}$ (Sum of opposite angles of a cyclic quadrilateral)

 $\Rightarrow \angle ABC = 180^{\circ} - 50^{\circ} = 130^{\circ}$

Now, $\angle ABC + \angle CBD = 180^{\circ}$ (Linear pair angles)

 $\Rightarrow \angle CBD = 180^{\circ} - 130^{\circ} = 50^{\circ}$

Answer 10.

PQ is a diameter of the circle

∴ CPRQ = 90° (angle is a semi dirde)

 $\angle RPQ = 40^{\circ}$ (given)

In ∆PQR,

 \angle PRQ + \angle RQP + \angle QPR = 180 (Angle sum property)

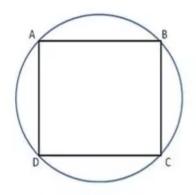
 $90 + \angle RQP + 40 = 180$

∠RQP = 50°

Answer 11.

 $\begin{array}{l} \angle B = 65^{\circ}(\text{ given}) \\ \angle B + \angle D = 180 \text{ (Opposite angles of a cyclic quadrilateral)} \\ 65 + \angle D = 180 \\ \angle D = 115 \\ \text{Also, AB || CD} \\ \therefore \ \angle B + \angle C = 180 \text{ (Sum of angles on same side of transversal)} \\ \angle C = 180 - 65 = 115 \\ \text{Again, } \angle A + \angle C = 180^{\circ} \text{ (Opposite angles of a cyclic quadrilateral)} \\ \angle A = 180 - 115 \\ = 65^{\circ} \end{array}$

Answer 12.



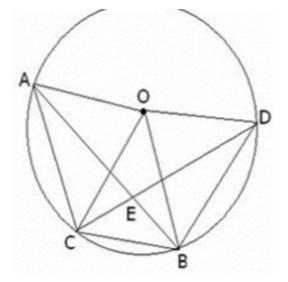
 $\angle A + \angle C = 180$ (Opposite angles of a cyclic quadrilateral)

 $3\angle C + \angle C = 180$ $4\angle C = 180$ $\angle C = 45$ $m \angle A = 3(m \angle C)$ $= 3 \times 45$

= 135

m∠A = 135°

Answer 13.



Arc AC subtends \angle AOC at the centre of circle and \angle ABC on the circumference of the circle.

 $\therefore \angle AOC = 2 \angle ABC \dots (1)$

Similarly, \angle BOD and \angle DCB are the angles subtended by the arc DB at the centre and on the discumference of the circle respectively.

∴ ∠BOD = 2 ∠DCB... (2)

Adding (1) and (2),

 $\angle AOC + \angle BOD = 2(\angle ABC + \angle DCB)$... (3)

In triangle ECB,

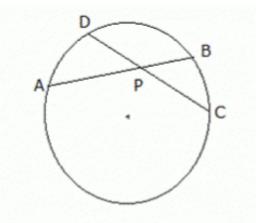
 $\angle AEC = \angle ECB + \angle EBC = \angle DCB + \angle ABC$

From (3),

∠AOC+∠BOD = 2∠AEC

Hence Proved.

Answer 14.



If two chords of a circle interest internally then the products of the lengths of segments are equal, then

 $AP \times BP = CP \times DP \qquad \dots (1)$ But, AP = CP (Given) $\dots (2)$ Then from (1) and (2), we have $BP = DP \qquad \dots (3)$ Adding (2) and (3), AP + BP = CP + DP $\Rightarrow AB = CD$ Hence Proved.

Answer 15.

 \angle NYB = 50° \angle YNB = 20° In \triangle NYB, 20° + \angle NBY + 50° = 180° $\Rightarrow \angle$ NBY = 180° - 70° = 110° Now, \angle MAN = \angle NBM = 110° (Angles in the same segment) \angle MON = 2 \angle MAN (Arc MN subtends \angle MON at centre and \angle MAN at remaining part of the circle) \angle MON = 2(110°) = 220° Reflex \angle MON = 360° - \angle MON = 360° - 220°

Reflex \angle MON = 140°.

Answer 16.

Given AP and AQ are diameters of circles with centre O and O¹ respectively.

 $\therefore \angle APB = 90^{\circ} ---(1)$ (Angle in a semicircle is a right angle)

Similarly, ∠ABQ = 90° ---(2)

Adding (1) and (2)

 $\angle APB + \angle ABQ = 90^{\circ} + 90^{\circ}$

 $\angle PBQ = 180^{\circ}$

Hence, PBQ is a straight line

∴ P, B and Q are collinear.

Answer 17.

AB and AC are diameters of circles with centre O and O¹ respectively.

 $\therefore \angle ADB = 90^{\circ} ---(1)$ (Angle in a semi-dirde is a right angle)

Similarly, ∠ADB = 90° ---(2)

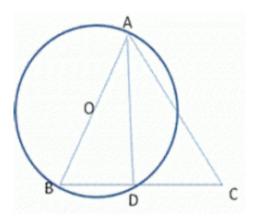
Adding (1) and (2)

 $\angle ADB + \angle ADC = 90 + 90$

 $\angle BDC = 180^{\circ}$

Hence, BDC is a straight line.

Answer 18.



BD - DC

AB be the diameter of the circle with centre O.

= 90° (Angles in a semicirde is a right triangle)

ADC = 180 (linear pair)

= 180 - 90 = 90°

Ind AAD C

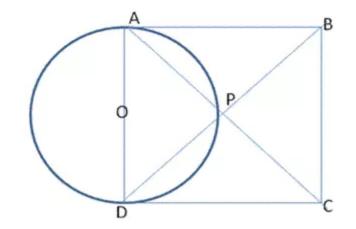
given)

ADC (90°each)

(Common)

≰∆ADC (RHS)

= DC (CPCT)



We know that the diagonals of a rhombus bisect each other at right angles.

∴ ∠APD=90° - (1)

Also, AD is the diameter of the circle with centre O.

∴ ∠APD=90° - (2) (Angle in semi circle)

From (1) and (2), we get, The circle drawn with any side of a rhombus as a diameter, passes through point of intersection of its diagonals.

Answer 20.

In cyclic quadrilateral ABCD,

 $\angle BAD + \angle BCD = 180^{\circ}$ - (1)

Opposite angles of cyclic quadrilateral

Also, $\angle BCD + \angle BCE = 180^\circ$ - (2) (Linear pair)

From (1) and (2), we get

∠BAD = ∠BCE

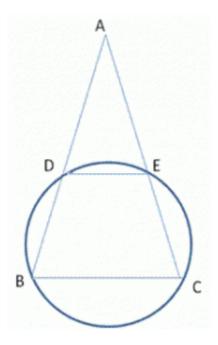
In Δ EBC and Δ EDA

 \angle BAD = \angle BCE (proved above)

 $\angle BEC = \angle DEA (common)$

: ΔEBC ~ ΔEDA (AA corollary)

Answer 21.



prove = DE ||BC

of: In cydic quadrilateral DECB

 $EC + \angle DBC = 80^{\circ} - (1)$ (Opposite angles of cyclic quadrilateral)

b, ∠AED + ∠DEC = 80° - (2) (Linear pair)

m (1) and (2), we get,

 $3C = \angle AED - (3)$

= AC (given)

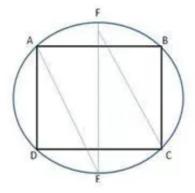
 $(ABC = \angle ACB - (4)$ (angles opposite to equal sides of triangle)

m (3) and (4) $\Rightarrow \angle AED = \angle ACB$

; these are corresponding angles.

E || BC

Answer 22.



In cyclic quadrilateral ABCD

∠A + ∠C=180°

1/2∠A + 1/2∠C=90°

 $\angle EAB + \angle BCF = 90^{\circ} - (1)$ (AE bisects $\angle A$; CF bisects $\angle C$)

Also,

 \angle BCF= \angle BAF - (2) (Angles in the same segment)

Using (1) in (2) we get,

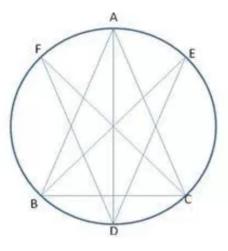
∠EAB+∠BAF=90°

 $\angle FAE = 90^{\circ}$

EF is the diameter of the circle,

∴ angle in a semi circle is a right angle

Answer 24.

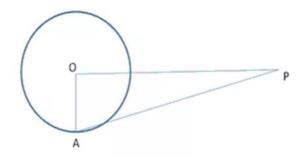


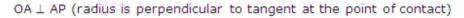
Since AD, BE and CF are bisectors of $\angle A$, $\angle B$ and $\angle C$ respectively.

 $\therefore \angle 1 = \angle 2 = \angle \frac{A}{2}$ $\angle 3 = \angle 4 = \angle \frac{B}{2}$ $\angle 5 = \angle 6 = \angle \frac{C}{2}$ $\angle ADE = \angle 3 ----(1)$ Also $\angle ADF = \angle 6 - (2)$ (angles in the same segment) Adding (1) and (2) $\angle ADE + \angle ADF = \angle 3 + \angle 6$ $\angle D = \frac{1}{2} \angle B + \frac{1}{2} \angle C$ $\angle \mathsf{D} = \frac{1}{2}(\mathsf{B} + \angle \mathsf{C}) = \frac{1}{2}(180 - \angle \mathsf{A})(\angle \mathsf{A} + \angle \mathsf{B} + \angle \mathsf{C} = 180^\circ)$ $\angle D = 90 - \frac{1}{2} \angle A$ Similarly, $\angle E = 90 - \frac{1}{2} \angle B, \angle F = 90 - \frac{1}{2} \angle C$

Ex 17.3

Answer 1.



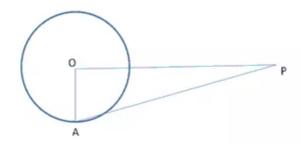


In right $\triangle OAP$,

 $OP^2 = OA^2 + AP^2$ $AP^2 = 5^2 - 3^2$ = 25 - 9 = 16AP = 4cm

The length of the tangent is 4cm.

Answer 2.



In right ∆OAP,

 $OP^2 = OA^2 + AP^2$ $AP^2 = 17^2 + 15^2$ = 289 - 225 = 64AP = 8

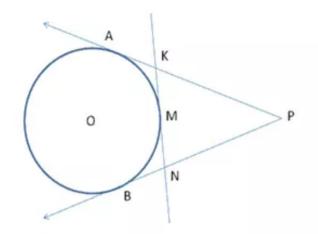
The radius of the circle is 8cm.

Answer 3.

XP = XQ AR = AP {Length of tangents drawn from an external point to a circle are BR = BQ equal}

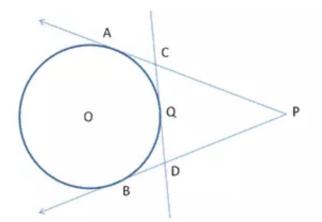
XP = XQ XA + AP = XB + BRXA + AR = XB + BR {Using (1)}

Answer 4.



- KA = KM ---(1) {Length of tangents drawn from an external point to a
- NM = NB circle are equal}
- KN = KM + MN
- KN = KA + BM {Using (1)}

Answer 5.



PA = PB = 20 Units ---(1) {Length of tangents drawn from an external point

CQ = CA and DQ = DB to a circle are equal}

Perimeter of ∆PCD

Answer 6.

To prove: - AF + BD + CE = AE + BF + CD

Proof:- AF = AE ----(1) {Length of tangents drawn from an external point

BD = BF ----(2) to a circle are equal }

CE = CD ----(3)

Adding (1), (2) and (3)

AF + BD + CE = AE + BF + CD

Answer 7.

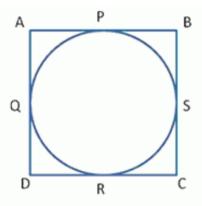
To prove:- $AQ = \frac{1}{2}$ (Perimeter of $\triangle ABC$) Proof:- BQ = BR = 5 - r ---(1)PC = CR = 12 - r ---(2) drawn from an external point to a circle are equal) (1) (Ler

(1) (Lengths of tangents

```
Perimeter of \triangle ABC = AB + BC + AC
```

```
= AB + BP + PC + AC= AB + BQ + CR + AC \qquad Using (1)= AQ + AR= 2 AQ2 AQ = Perimeter of <math>\triangle ABC
```

$$AQ = \frac{1}{2}$$
 (Perimeter of $\triangle ABC$)



Let the sides of parallelogram ABCD touch the circle at points P, Q, R and S.

AP = AS - (1)

PB = BQ - (2) (Length of tangents drawn from an external point to a circle a equal)

- DR = DS (3)
- RC = CQ (4)

Adding (1), (2), (3) and (4)

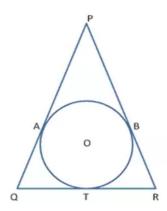
AP + PB + DR + RC = AS + BQ + DS + CQ

AB + CD = AD + BC

 $2 AB = 2 BC \Rightarrow AB = BC$ (Opposite sides of a parallelogram are equal)

 $\therefore AB = BC = CD = DA,$

Hence , ABCD is a rhombus.



To proof:- QT = TR

Proof: Let the circle touches sides PQ and PR at points A and B respectively.

PA = PB AQ = QTBR = TR (Lengths of tangents drawn from an external point to a circle are equal)

Given, PQ = PR

PA + AQ = PB + BR AQ = BR (Using (1)) $\Rightarrow QT = TR$

Answer 10.

In $\triangle AOP = \triangle BOP$

AP = PB (lengths of tangents drawn from and external point to a circle are equal)

OP = PO (common)

 \angle PAO = \angle PBO = 90° (radius is \perp to tangent at the point of contact)

- ∴ △ AOP ≅ △ BOP (By RHS)
- \triangle AOP = \triangle BOP (By CPCT)
- In $\triangle AMO$ and $\triangle BMO$

AO = OB (radius of same circle)

∠ MOA = ∠ MOB (Proved above)

```
OM = MO (Common)
```

```
\therefore \Delta AMO \cong \Delta BMO (By CPCT)
```

∠ AMO = ∠ BMO

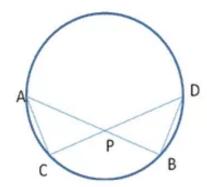
 \angle AMO + \angle BMO = 180°

∴ 2 ∠ AMO = 180°

∠ BMO = ∠ AMO = 90°

Hence, OP is the perpendicular bisector of AB.

Answer 11.



Let DP = x cm

In $\triangle APC$ and $\triangle DPB$

 \angle PAC = \angle PDB (angles in the some segment)

 \angle APC = \angle DPB (vertically opposite angle)

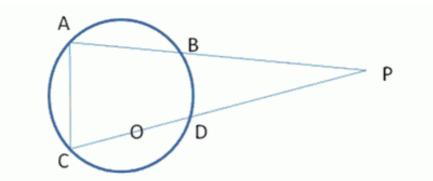
∴ Δ APC ~ Δ DPB (AA corollary)

$$\frac{AP}{DP} = \frac{PC}{PB} \quad \text{(similar sides of similar triangles)}$$
$$\frac{5}{x} = \frac{2.5}{3}$$
$$\Rightarrow x = \frac{15}{2.5} = \frac{150}{25} = 6\text{cm}$$

Answer 12.

Let TQ = x cm
In
$$\triangle$$
 PTR and \triangle STQ
 \angle TPR = \angle TSQ (angles in the same segment)
 \angle PTR = \angle STQ (vertically opposite \angle 's)
 $\therefore \angle$ PTR = \angle STQ (AA corollary)
 $\frac{PT}{ST} = \frac{TR}{TQ}$ (similar sides of similar triangles)
 $\frac{18}{6} = \frac{12}{x}$
= x = 4
 \Rightarrow TQ = 4 cm

Answer 13.



Let OD = OC = r (say)

```
PO = 14.5 , CP = r + 14.5
```

PD = 14.5 - r

In ΔBPD and ΔAPC

 $\angle BPD = \angle APC$ (Common)

 $\angle ABD + \angle DBP = 180^{\circ} - - - (1)$ (Linear pair)

Also, $\angle ABD + \angle ACD = 180^{\circ} ---(2)$ (Opposite angles of a cyclic quadrilateral)

From (1) and (2)

∠DBP = ∠ACD

∴∆BPD ~ ∆CPA (AA corollary)

 $\frac{8}{r+14.5} = \frac{4.5-r}{15}$ $120^{\circ} = 14.5^2 - r^2$

r² = 210.25- 120

r² = 90.25

r = 9.50

Radius of the circle is 9.5cm.

Answer 14.

Let PT = x cm

Since, PAB is a secant and PT is a tangent to the given circle, we have,

 $PA \cdot PB = PT^2$

- \Rightarrow 4 · 9 = PT²
- ⇒ PT² = 36
- ⇒ PT = 6cm

Answer 15.

Let PT = x cm

Since, PAB is a secant and PT is a tangent to the given circle, we have,

- $PA \cdot PB = PT^2$
- \Rightarrow 4.9 = PT²
- ⇒ PT² = 36
- ⇒ PT = 6cm

Answer 16.

Let PT = x cm

Since, PAB is a secant and PT is a tangent to the given circle, we have,

- $PA \cdot PB = PT^2$
- $\Rightarrow 4 \cdot 9 = PT^2$
- ⇒ PT² = 36
- \Rightarrow PT = 6cm

Answer 17.

Let $OD = OC = \times cm$ (radius of same circle)

Since, PCD is a secant and PT is a tangent to the given circle, we have,

PC · PD = PT²

$$3 \cdot (3 + 2x) = 6^2$$

 $\Rightarrow 9 + 6x = 36$
 $\Rightarrow 6x = 27$
 $\Rightarrow x = \frac{27}{6} = \frac{9}{2}$

Radius of the circle is $\frac{9}{2}$ cm, diameter is 9cm

Answer 18.

$$R_{1} = 4cm, R_{2} = 12cm$$

$$PQ = 15cm$$

$$AB^{2} = PQ^{2} + (R_{2} - R_{1})^{2}$$

$$\Rightarrow AB^{2} = 15^{2} + (12 - 4)^{2}$$

$$\Rightarrow AB^{2} = 225 + 64$$

$$\Rightarrow AB^{2} = 289$$

$$\Rightarrow AB = 17cm$$

The diameter between the centre is 17cm

Answer 19.

To find: PQ R₁ = 3cm, R₂ = 8cm AB = 13cm PQ² = AB² - (R₂ - R₁)² \Rightarrow PQ² = 13² - (8 - 3)² \Rightarrow PQ² = 169 - 25 \Rightarrow PQ² = 144 \Rightarrow PQ = 12cm

Length of direct common tangent is 12cm

Answer 21.

In right $\triangle BAC$, $BC^2 = AC^2 + AB^2$ $AC^2 = 13^2 - 5^2$ $AC^2 = 169 - 25$ $AC^{2} = 144$ AC = 12Let OP = OQ = r (say) (radius of same circle) $\angle OQP = \angle OPQ = 90^{\circ}$ (radius is \perp to tangent at the point of contact) ... OPAQ is a square. AQ = AP = OP = OQ = rBQ = BR = 5 - r ---(1) {length of tangents drawn from an external point PC = CR = 12 - r - (2) to a circle are equal} BC = CR + BR13 = 12 - r + 5 - r [from (1) and (2)] 2r = 4r = 2 Thus, radius of the circle is 2cm. Answer 22.

 $\angle OAP = \angle OBP = 90^{\circ}$ (radius is \perp to tangent at the point of contact)

In right AOAP,

 $OP^2 = OA^2 + AP^2$ $OP^2 = 5^2 + 12^2 = 25 + 144 = 169$ OP = 13cm

In right ∆OBP,

```
OP^{2} = OB^{2} + BP^{2}

BP^{2} = 13^{2} - 3^{2}

BP^{2} = 169 - 9 = 160

BP = 4\sqrt{10}cm
```