

Series RRSS2/2

SET-3

प्रश्न-पत्र कोड Q.P. Code

56/2/3

रोल नं.				
Roll No.				

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट

*

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित (I) (I)पृष्ठ 27 हैं।
- (II) कृपया जाँच कर लें कि इस प्रश्न-पत्र में (II) 33 प्रश्न हैं।
- \$ (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए (III) Q.P. Code given on the right hand प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के * मुख-पृष्ठ पर लिखें।
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से (IV) Please write down the serial * पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें । *
 - इस प्रश्न-पत्र को पढने के लिए 15 मिनट का (V) समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

NOTE

Please check that this question paper contains 27 printed pages.

Please check that this question paper contains **33** questions.

side of the question paper should be written on the title page of the answer-book by the candidate.

number of the question in the answer-book before attempting it.

15 minute time has been allotted to $ext{this}$ question paper. question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 the students will a.m., read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यानपूर्वक पिंट्र और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ** एवं **ङ** ।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 1 अंक का है ।
- (iv) **खण्ड ख** प्रश्न संख्या **17** से **21** तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न **2** अंकों का है ।
- (v) **खण्ड ग** प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 3 अंकों का है ।
- (vi) **खण्ड घ** प्रश्न संख्या **29** तथा **30** केस-आधारित प्रश्न हैं । प्रत्येक प्रश्न **4** अंकों का है ।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 5 अंकों का है ।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

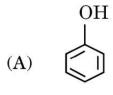
16×1=16

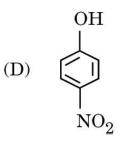
- 1. संक्रमण तत्त्वों की 3d श्रेणी में बढ़ती हुई ऑक्सीकारक क्षमता का सही क्रम है :
 - (A) $MnO_4^- < Cr_2O_7^{2-} < VO_2^+$
 - (B) $\operatorname{Cr}_2 \operatorname{O}_7^{2-} < \operatorname{VO}_2^+ < \operatorname{MnO}_4^-$
 - (C) $VO_2^+ < Cr_2O_7^{2-} < MnO_4^-$
 - (D) $VO_2^+ < MnO_4^- < Cr_2O_7^{2-}$
- 2. संकुल $[CoCl_2(en)_2]^+$ द्वारा दर्शाई समावयवता का प्रकार है :
 - (A) बंधनी समावयवता
 - (B) ज्यामितीय समावयवता
 - (C) उपसहसंयोजन समावयवता
 - (D) आयनन समावयवता

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections **Section A**, **B**, **C**, **D** and **E**.
- (iii) **Section A** questions number **1** to **16** are multiple choice type questions. Each question carries **1** mark.
- (iv) **Section B** questions number **17** to **21** are very short answer type questions. Each question carries **2** marks.
- (v) **Section C** questions number 22 to 28 are short answer type questions. Each question carries 3 marks.
- (vi) **Section D** questions number 29 and 30 are case-based questions. Each question carries 4 marks.
- (vii) **Section E** questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculators is **not** allowed.


SECTION A


Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1=16$

- 1. The correct order for the increasing oxidizing power in 3d series of transition elements is:
 - (A) $MnO_4^- < Cr_2O_7^{2-} < VO_2^+$
 - (B) $\operatorname{Cr}_2 \operatorname{O}_7^{2-} < \operatorname{VO}_2^+ < \operatorname{MnO}_4^-$
 - (C) $VO_2^+ < Cr_2O_7^{2-} < MnO_4^-$
 - (D) $VO_2^+ < MnO_4^- < Cr_2O_7^{2-}$
- **2.** The type of isomerism shown by the complex $[CoCl_2(en)_2]^+$ is :
 - (A) Linkage isomerism
 - (B) Geometrical isomerism
 - (C) Coordination isomerism
 - (D) Ionization isomerism

- 3. निम्नलिखित संकरण अवस्थाओं में से कौन-सा निम्न प्रचक्रण संकुल से संबद्ध है ?
 - (A) sp^3d
 - (B) sp^3
 - (C) sp^3d^2
 - (D) $d^2 sp^3$
- 4. निम्नलिखित में से किसे गरम करके ब्यूटेननाइट्राइल विरचित किया जा सकता है ?
 - (A) KCN के साथ प्रोपिल क्लोराइड
 - (B) KCN के साथ ब्यूटिल क्लोराइड
 - (C) KCN के साथ प्रोपिल ऐल्कोहॉल
 - (D) KCN के साथ ब्यूटिल ऐल्कोहॉल
- 5. निम्नलिखित में से कौन-सा सर्वाधिक अम्लीय है ?

- **6.** HI के साथ अभिक्रिया करके $(CH_3)_2 CH O CH_3$ देता है :
 - (A) $(CH_3)_2CH OH + CH_3 OH$
 - (B) $(CH_3)_2CH OH + CH_3 I$
 - (C) $(CH_3)_2CH I + CH_3 OH$
 - (D) $(CH_3)_2CH I + CH_3 I$

- Which one of the following hybrid states is associated with low spin 3. complex?
 - sp^3d (A)
 - (B)
 - ${\rm (C)} \hspace{0.5cm} {\rm sp}^3 {\rm d}^2$
 - $d^2 sp^3$ (D)
- 4. Butanenitrile may be prepared by heating:
 - (A) propyl chloride with KCN
 - butyl chloride with KCN (B)
 - propyl alcohol with KCN (C)
 - butyl alcohol with KCN (D)
- Which of the following is most acidic? **5.**

- $(CH_3)_2 CH O CH_3$ reacts with HI to give : 6.
 - $(CH_3)_2CH OH + CH_3 OH$ (A)
 - $(CH_3)_2CH OH + CH_3 I$ (B)
 - $(CH_3)_2CH I + CH_3 OH$ (C)
 - (D) $(CH_3)_2CH I + CH_3 I$

- 7. C_3H_8O आण्विक सूत्र के यौगिक (X) को किसी दूसरे यौगिक (Y) में प्रबल ऑक्सीकरण कर्मकों द्वारा ऑक्सीकृत किया जा सकता है, जिसका आण्विक सूत्र $C_3H_6O_2$ है। यौगिक (X) है:
 - $(A) \qquad CH_3 CH_2 O CH_3$
 - $\begin{array}{ccc} \text{(B)} & \text{CH}_3 \text{CH} \text{CH}_3 \\ & | & \\ & \text{OH} \end{array}$
 - $(C) \qquad CH_3 CH_2 CH_2 OH$
 - (D) उपर्युक्त में से कोई नहीं
- 8. 10 mL ऐसीटोन को 50 mL क्लोरोफॉर्म के साथ मिलाने पर विलयन का कुल आयतन होगा:
 - (A) < 60 mL
 - (B) > 60 mL
 - (C) = 60 mL
 - (D) = 100 mL
- 9. सेल स्थिरांक की इकाई है:
 - (A) ohm cm^{-1}
 - (B) ohm⁻¹
 - (C) cm⁻¹
 - (D) $ohm^{-1} cm^2 mol^{-1}$
- 10. किसी अभिक्रिया $R \longrightarrow 3$ तपाद के लिए, $\log{[R]}$ एवं समय के मध्य ग्राफ खींचने पर एक सरल रेखा प्राप्त होती है जिसकी ढाल $-1.25~{
 m s}^{-1}~$ है। अभिक्रिया की कोटि है:
 - (A) एक
 - (B) शून्य
 - (C) दो
 - (D) भिन्नात्मक

- 7. A compound (X) with the molecular formula C_3H_8O can be oxidized by strong oxidizing agents to another compound (Y) whose molecular formula is $C_3H_6O_2$. The compound (X) is:
 - $(A) \qquad CH_3 CH_2 O CH_3$
 - $\begin{array}{ccc} \text{(B)} & \text{CH}_3 \text{CH} \text{CH}_3 \\ & \text{OH} \end{array}$
 - $(C) \qquad CH_3 CH_2 CH_2 OH$
 - (D) None of the above
- 8. On mixing 10 mL of acetone with 50 mL of chloroform, the total volume of the solution will be:
 - (A) < 60 mL
 - (B) > 60 mL
 - (C) = 60 mL
 - (D) = 100 mL
- **9.** The unit of cell constant is:
 - (A) ohm cm^{-1}
 - (B) ohm⁻¹
 - (C) cm⁻¹
 - (D) $ohm^{-1} cm^2 mol^{-1}$
- 10. For a certain reaction $R \longrightarrow \text{products}$, a plot of log [R] vs. time gives a straight line with a slope of -1.25 s^{-1} . The order of the reaction is:
 - (A) One
 - (B) Zero
 - (C) Two
 - (D) Fractional

- 11. किसी शून्य कोटि अभिक्रिया $A \longrightarrow$ उत्पाद के लिए $t_{1/2}$ है :
 - $(A) \qquad \frac{\left[A\right]_0}{k}$

 $(B) \qquad \frac{2 \cdot 303 \ log \ 2}{k}$

 $(C) \qquad \frac{1}{k\big[A\big]_0}$

 $(D) \qquad \frac{\left[A\right]_0}{2\,k}$

जहाँ $[A]_0$ = अभिकारक की प्रारम्भिक सांद्रता, k = वेग स्थिरांक

- 12. किसी अवाष्पशील विलेय के जलीय विलयन के वाष्प दाब का आपेक्षिक अवनमन 0·0225 है। अवाष्पशील विलेय का मोल-अंश है:
 - (A) 0.80
 - (B) 0.725
 - (C) 0.15
 - (D) 0.0225

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।

- 11. For a zero order reaction $A \longrightarrow products, \ t_{1/2}$ is :
 - $(A) \qquad \frac{\left[A\right]_0}{k}$

 $(B) \qquad \frac{2 \cdot 303 \log 2}{k}$

 $(C) \qquad \frac{1}{k\big[A\big]_0}$

 $(D) \qquad \frac{\left[A\right]_0}{2\,k}$

where $[A]_0$ = initial concentration of the reactant, k = rate constant.

- 12. The relative lowering of vapour pressure of an aqueous solution containing non-volatile solute is 0.0225. The mole fraction of the non-volatile solute is:
 - (A) 0.80
 - (B) 0.725
 - (C) 0.15
 - (D) 0.0225

For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.

- 13. अभिकथन (A) : साइक्लोहेक्सिलऐमीन $(\bigcirc \mathrm{NH}_2)$ की तुलना में ऐनिलीन दुर्बल क्षार है । कारण (R) : ऐनिलीन अनुनादी स्थायी है ।
- 14. अभिकथन (A): विटामिन C हमारे शरीर में संचित नहीं किया जा सकता है।

 कारण (R): विटामिन C जल में विलेय है और यह आसानी से मूत्र के साथ उत्सर्जित हो जाता है।
- 15. अभिकथन (A): ऐल्किल हैलाइडों का ऐमीनो-अपघटन ऐल्किल हैलाइड के साथ अमोनिया के ऐथेनॉलिक विलयन की अभिक्रिया द्वारा होता है।

 कारण (R): ऐल्किल हैलाइडों का ऐमीनो-अपघटन मुख्यतः द्वितीयक ऐमीन उत्पादित

खण्ड ख

- - (ख) निम्नलिखित में मुख्य उत्पाद लिखिए :

करता है।

$$\begin{array}{c|c} Cl \\ & & \\ \hline \\ NO_2 \end{array} \xrightarrow{(i) \ NaOH, \ 443 \ K} ?$$

 $2\times 1=2$

18. (क) लैन्थेनॉयड आकुंचन क्या है ? लैन्थेनॉयड आकुंचन की तुलना में एक तत्त्व से दूसरे तत्त्व के बीच ऐक्टिनॉयड आकुंचन अधिक होता है । क्यों ? 1+1=2

अथवा

(ख) संक्रमण धातुएँ कणन एन्थैल्पी के उच्च मान क्यों दर्शाती हैं ? 3d-श्रेणी में किस तत्त्व की कणन एन्थैल्पी सबसे कम है ? 1+1=2

- 13. Assertion (A): Aniline is a weaker base than cyclohexylamine (\bigcirc NH₂). Reason (R): Aniline is resonance stabilized.
- **14.** Assertion (A): Vitamin C cannot be stored in our body.

Reason (R): Vitamin C is water soluble and readily excreted in urine.

- **15.** Assertion (A): Ammonolysis of alkyl halides involves reaction between alkyl halide and ethanolic solution of ammonia.
 - Reason(R): Ammonolysis of alkyl halides mainly produces secondary amines.
- **16.** Assertion (A): Aniline does not undergo Friedel-Crafts reaction.
 - Reason (R): Friedel-Crafts reaction is a nucleophilic substitution reaction.

SECTION B

17. (a) Which one of the following pairs of substances undergoes $S_N \mathbf{1}$ reaction faster and why?

$$\mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{Cl} \quad \mathrm{OR} \quad \mathrm{CH}_2 = \mathrm{CH} - \mathrm{CH}_2 - \mathrm{Cl}$$

(b) Write the major product in the following:

$$\begin{array}{c}
\text{Cl} \\
& \downarrow \\
\text{NO}_{2}
\end{array}$$

$$\begin{array}{c}
\text{(i) NaOH, 443 K} \\
\text{(ii) H}^{+}
\end{array}$$
?

 $2 \times 1 = 2$

18. (a) What is lanthanoid contraction? Actinoid contraction is greater from element to element than lanthanoid contraction. Why? 1+1=2

OR

(b) Why do transition metals have high enthalpy of atomization? Which element of 3d-series has lowest enthalpy of atomization? 1+1=2

19. निम्नलिखित पदों को परिभाषित कीजिए :

 $2 \times 1 = 2$

2

2

- (क) पेप्टाइड बंध
- (ख) आवश्यक ऐमीनो अम्ल
- **20.** किसी प्रथम कोटि की अभिक्रिया का वेग स्थिरांक $1.25 \times 10^{-3} \, \mathrm{s}^{-1}$ है। इस अभिकर्मक के $5 \, \mathrm{g}$ को $2.5 \, \mathrm{g}$ में घटने में कितना समय लगेगा ?

[$\log 2 = 0.301$, $\log 3 = 0.4771$, $\log 4 = 0.6021$]

21. ग्लूकोस (मोलर द्रव्यमान = $180~{\rm g~mol}^{-1}$) का 3% विलयन किसी अज्ञात कार्बनिक पदार्थ के 2.5% विलयन के साथ समपरासारी है । अज्ञात कार्बनिक पदार्थ का अणु भार परिकलित कीजिए ।

खण्ड ग

22. निम्नलिखित के विरचन के लिए अभिक्रियाओं के समीकरण दीजिए : (कोई n) $3 \times 1 = 3$

- (क) क्लोरोबेन्ज़ीन से फ़ीनॉल
- (ख) फ़ीनॉल से सैलिसैल्डिहाइड
- (ग) ऐनिसोल से 2-मेथॉक्सीऐसीटोफ़ीनोन
- (घ) फ़ीनॉल से पिक्रिक अम्ल
- 23. निम्नलिखित के लिए कारण दीजिए:

 $3 \times 1 = 3$

- (क) क्लोरीन यद्यपि इलेक्ट्रॉन अपनयक समूह है फिर भी यह ऐरोमैटिक इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाओं में ऑर्थो/पैरा निर्देशक है।
- (ख) रेसिमिक मिश्रण ध्रुवण अघूर्णक होता है।
- (ग) n-प्रोपिल क्लोराइड की अपेक्षा ऐलिल क्लोराइड अधिक शीघ्रता से जल-अपघटित हो जाता है।

19. Define the following terms: $2 \times 1 = 2$

2

2

- (a) Peptide linkage
- Essential amino acids (b)
- A first order reaction has a rate constant 1.25×10^{-3} s⁻¹. How long will 20. 5 g of this reactant take to reduce to 2.5 g?

 $[\log 2 = 0.301, \log 3 = 0.4771, \log 4 = 0.6021]$

A 3% solution of glucose (molar mass = 180 g mol^{-1}) is isotonic with 2.5%21. solution of an unknown organic substance. Calculate the molecular weight of the unknown organic substance.

SECTION C

- 22. Give the equations of reactions for the preparation of : (any *three*) $3 \times 1 = 3$

- (a) Phenol from chlorobenzene
- (b) Salicylaldehyde from phenol
- (c) 2-Methoxyacetophenone from anisole
- (d) Picric acid from phenol
- Give reasons for the following: **23.**

 $3\times1=3$

- (a) Chlorine is ortho/para directing in electrophilic substitution reactions, though chlorine is an electron withdrawing group.
- (b) Racemic mixture is optically inactive.
- Allyl chloride is hydrolysed more readily than n-propyl chloride. (c)

24. 283 K पर किसी विलायक का वाष्प दाब 100 mm Hg है । उस तनु विलयन का वाष्प दाब परिकलित कीजिए जिसमें 283 K पर किसी प्रबल विद्युत-अपघट्य AB का 1 मोल विलायक के 50 मोल में घुला है (यह मान लीजिए कि विलेय AB पूर्णतः वियोजित हो जाता है) ।

3

3

- 25. ताप में 17°C से 27°C तक वृद्धि करने पर किसी गैसीय अभिक्रिया का वेग तीन गुना हो जाता है। इस अभिक्रिया के लिए सिक्रियण ऊर्जा का परिकलन कीजिए।
 [दिया गया है: 2.303 R = 19.15 JK ⁻¹ mol ⁻¹, log 3 = 0.48]
- **26.** निम्नलिखित सेल का वि.वा. बल (emf) परिकलित कीजिए : $Zn (s) \mid Zn^{2+} (0.1 \text{ M}) \mid \mid Sn^{2+} (0.001 \text{ M}) \mid Sn (s)$ दिया गया है : $E_{Zn^{2+}/Zn}^{0} = -0.76 \text{ V}, \quad E_{Sn^{2+}/Sn}^{0} = -0.14 \text{ V}$ [log 10 = 1]
- **27.** निम्नलिखित अभिक्रियाओं में A, B और C की संरचनाएँ लिखिए : $2 \times 1\frac{1}{2} = 3$
 - (क) $CH_3 CH_2 Br \xrightarrow{KCN} A \xrightarrow{OH} OH^- \rightarrow B \xrightarrow{NaOH + Br_2} C$

24. The vapour pressure of a solvent at 283 K is 100 mm Hg. Calculate the vapour pressure of a dilute solution containing 1 mole of a strong electrolyte AB in 50 moles of the solvent at 283 K (assuming complete dissociation of solute AB).

3

25. The rate of a gaseous reaction triples when temperature is increased from 17°C to 27°C. Calculate the energy of activation for this reaction.

3

[Given: $2.303 \text{ R} = 19.15 \text{ JK}^{-1} \text{ mol}^{-1}$, $\log 3 = 0.48$]

26. Calculate emf of the following cell:

3

 $Zn~(s)~|~Zn^{2+}~(0\cdot 1~M)~||~Sn^{2+}~(0\cdot 001~M)~|~Sn~(s)$

Given : $E_{Zn^{2+}/Zn}^{o} = -0.76 \text{ V}, \quad E_{Sn^{2+}/Sn}^{o} = -0.14 \text{ V}$

 $[\log 10 = 1]$

27. Write the structures of A, B and C in the following reactions : $2 \times 1\frac{1}{2} = 3$

(a)
$$CH_3 - CH_2 - Br \xrightarrow{KCN} A \xrightarrow{OH^-} B \xrightarrow{NaOH + Br_2} C$$

(b) Fe + HCl
$$\rightarrow$$
 A NaNO₂ + HCl \rightarrow B C₂H₅OH \rightarrow C

28. निम्नलिखित से संबद्ध अभिक्रिया लिखिए:

 $3 \times 1 = 3$

- (क) वोल्फ-किश्नर अपचयन
- (ख) विकार्बोक्सिलन अभिक्रिया
- (ग) कैनिज़ारो अभिक्रिया

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

कार्बोहाइडेट पौधों और प्राणियों दोनों में जीवन के लिए आवश्यक होते हैं। पौधों में स्टार्च 29. की तरह और प्राणियों में ग्लाइकोजन के रूप में कार्बोहाइड्रेट संग्रहण अणुओं की भाँति प्रयुक्त होते हैं । रासायनिक रूप से ये पॉलिहाइड्रॉक्सी ऐल्डिहाइड अथवा कीटोन होते हैं । कार्बोहाइड्रेटों को जल-अपघटन में उनके व्यवहार के आधार पर मोनोसैकैराइड, ओलिगोसैकैराइड और पॉलिसैकैराइड में वर्गीकृत किया गया है । सभी मोनोसैकैराइड अपचायी शर्करा होती हैं, अर्थात् ये टॉलेन अभिकर्मक तथा फेलिंग विलयन से ऑक्सीकृत हो जाती हैं। ग्लूकोस जैसा मोनोसैकैराइड ऐल्डोहैक्सोज होता है और इसका आण्विक सूत्र $\mathrm{C_6H_{12}O_6}$ पाया गया । विभिन्न अभिकर्मकों जैसे HI, H2N – OH, ब्रोमीन जल, (CH3CO)2O इत्यादि के साथ अभिक्रिया करके इसकी संरचना में एक ऐल्डिहाइड समूह, एक प्राथमिक ऐल्कोहॉलिक समूह (– CH₂OH) और चार द्वितीयक ऐल्कोहॉलिक समूह (>CHOH) पाए गए । ऐल्डिहाइड समूह उपस्थित होते हुए भी ग्लूकोस ऐल्डिहाइड समूह की कुछ अभिक्रियाएँ जैसे शिफ परीक्षण, NaHSO3 योगज नहीं देता है। यह ग्लूकोस के दो चक्रीय हैमीऐसीटैल रूपों के अस्तित्व को समझाता है जिनमें भिन्नता केवल ${
m C}-1$ पर उपस्थित हाइड्रॉक्सिल समूह के विन्यास में होती है।

28. Write the reaction involved in the following :

 $3 \times 1 = 3$

- (a) Wolff-Kishner reduction
- (b) Decarboxylation reaction
- (c) Cannizzaro reaction

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

29. Carbohydrates are essential for life in both plants and animals. Carbohydrates are used as storage molecules as starch in plants and glycogen in animals. Chemically they are polyhydroxy aldehydes or ketones. On the basis of their behaviour on hydrolysis, carbohydrates are classified as monosaccharides, oligosaccharides and polysaccharides. All monosaccharides are reducing sugars, i.e., they are oxidized by Tollens' reagent and Fehling's solution. A monosaccharide like glucose is aldohexose and its molecular formula was found to be C₆H₁₂O₆. After reacting with different reagents like HI, H₂N - OH, Bromine water, (CH₃CO)₂O, etc. its structure was found to contain one aldehyde group, one primary alcoholic group, (-CH₂OH) and four secondary alcoholic groups (>CHOH). Despite having the aldehyde group, glucose does not give some of the reactions of aldehyde group like Schiff's test, NaHSO₃ addition. This explains the existence of glucose in two cyclic hemiacetal forms which differ only in the configuration of the hydroxyl group at C - 1.

56/2/3-12 17 ············ P.T.O.

निम्नलिखित प्रश्नों के उत्तर दीजिए :

(क) अपचायी शर्करा क्या होती हैं ?

1

(ख) निम्नलिखित को मोनोसैकैराइड और डाइसैकैराइड में वर्गीकृत कीजिए : फ्रक्टोस, सूक्रोस, लैक्टोस, गैलैक्टोस

1

(ग) उस पॉलिसैकैराइड का नाम बताइए जिसे 'प्राणी स्टार्च' कहा जाता है । इसे 'प्राणी स्टार्च' क्यों कहते हैं ?

2

अथवा

- (η) (i) ग्लूकोस के उन समावयवों के नाम बताइए जिनके चक्रीय रूप में C-1 पर OH समूह के विन्यास में ही भिन्नता होती है |
 - (ii) ग्लूकोस की ${
 m Br}_2$ जल के साथ अभिक्रिया किस प्रकार्यात्मक समूह की 3पस्थिति की पुष्टि करता है ? 2 imes 1=2
- 30. संक्रमण धातुओं के उदासीन परमाणु अथवा आयन में d-कक्षक अपूर्ण होते हैं । इनके परमाणुओं में आंशिक भरित d-कक्षकों की उपस्थिति संक्रमण तत्त्वों को असंक्रमण तत्त्वों से अलग कर देती है । आंशिक रूप से भरित d-कक्षकों के कारण ये तत्त्व कुछ अभिलक्षणिक गुण दर्शाते हैं, जैसे अनेक ऑक्सीकरण अवस्थाएँ, रंगीन आयनों का बनना तथा अनेक प्रकार के लिगन्डों के साथ संकुल निर्माण आदि । संक्रमण धातुएँ तथा इनके यौगिक उत्प्रेरकी गुण व अनुचुम्बकीय व्यवहार भी दर्शाते हैं । संक्रमण धातुएँ अति कठोर तथा अल्प वाष्पशील होती हैं । इनके $E^0_{M^2+/M}$ के मानों की जाँच परिवर्ती प्रवृत्ति दर्शाती है :

Answer the following questions:

(a) What are reducing sugars?

1

(b) Classify the following into monosaccharide and disaccharide : Fructose, Sucrose, Lactose, Galactose

1

(c) Name the polysaccharide which is known as 'animal starch'. Why is it called 'animal starch'?

2

OR

- (c) Name the isomers of glucose which in the cyclic form differ only in the configuration of the OH group at C 1.
 - (ii) Presence of which functional group was detected when glucose reacted with Br_2 water? $2 \times 1=2$
- 30. Transition metals have incomplete d-subshell either in neutral atom or in their ions. The presence of partly filled d-orbitals in their atoms makes transition elements different from that of the non-transition elements. With partly filled d-orbitals, these elements exhibit certain characteristic properties such as display of a variety of oxidation states, formation of coloured ions and entering into complex formation with a variety of ligands. The transition metals and their compounds also exhibit catalytic properties and paramagnetic behaviour. The transition metals are very hard and have low volatility. An examination of the $E_{M^{2+}/M}^{0}$ values shows the varying trends:

$\mathrm{E_{M^{2+}/M}^{o}}$			
V	- 1.18		
Cr	- 0.91		
Mn	- 1.18		
Fe	- 0.44		
Co	- 0.28		
Ni	- 0.25		
Cu	+ 0.34		
Zn	- 0.76		

निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (क) किस आधार पर हम कह सकते हैं कि Cu एक संक्रमण तत्त्व है लेकिन Zn नहीं ? (परमाणु क्रमांक : $Cu=29,\ Zn=30$)
- (ख) संक्रमण तत्त्व ऑक्सीकरण अवस्थाओं में विविधता क्यों दर्शाते हैं ?
- (η) (i) वैनेडियम से ज़िंक तक $E^o_{M^{2+}/M}$ के मान अनियमित प्रवृत्ति क्यों दर्शाते $\mathring{\xi}$?
 - (ii) संक्रमण धातुओं में ऑक्सीकरण अवस्थाओं की परिवर्तनीयता असंक्रमण तत्त्वों की परिवर्तनीयता से किस प्रकार भिन्न होती है ? $2 \times 1 = 2$

अथवा

- (η) (i) Cr^{2+} प्रबल अपचायक है जबिक Mn^{3+} प्रबल ऑक्सीकारक, जबिक दोनों ही d^4 स्पीशीज़ हैं, क्यों ? (परमाणु क्रमांक : Cr = 24, Mn = 25)
 - (ii) निम्न आयनिक समीकरण पूर्ण कीजिए :

$$2MnO_4^- + H_2O + I^- \longrightarrow$$

 $2 \times 1 = 2$

^

$\mathrm{E}^{\mathrm{o}}_{\mathrm{M}^{2+}\!/\mathrm{M}}$			
V	- 1.18		
Cr	-0.91		
Mn	- 1·18		
Fe	- 0.44		
Co	- 0.28		
Ni	- 0.25		
Cu	+ 0.34		
Zn	- 0.76		

Answer the following questions:

- (a) On what basis can we say that Cu is a transition element but Zn is not ? (Atomic number : Cu = 29, Zn = 30)
- (b) Why do transition elements show variety of oxidation states? 1
- (c) (i) Why do $E_{M^{2+}/M}^{o}$ values show irregular trend from Vanadium to Zinc ?
 - (ii) How is the variability in oxidation states of transition metals different from that of the non-transition elements ? $2\times 1=2$

OR

- (c) (i) Of the d^4 species, Cr^{2+} is strongly reducing while Mn^{3+} is strongly oxidizing. Why? (Atomic number : Cr = 24, Mn = 25)
 - (ii) Complete the following ionic equation :

$$2MnO_4^- + H_2O + I^- \longrightarrow 2 \times 1 = 2$$

·//·//

खण्ड ङ

- 31. (क) (i) निम्नलिखित के कारण दीजिए:
 - (1) कीटोनों की तुलना में ऐल्डिहाइडों का ऑक्सीकरण आसान होता है।
 - (2) ऐल्डिहाइडों के ऐल्फा (α) हाइड्रोजन परमाणुओं की प्रकृति अम्लीय होती है।
 - (ii) निम्नलिखित अभिक्रियाओं के उत्पाद लिखिए:

(1)
$$\stackrel{\text{COCH}_3}{\longleftrightarrow}$$
 $\stackrel{\text{NaOH}/I_2}{\longleftrightarrow}$? + ?

(iii) एथेनॉइक अम्ल और ऐथेनैल में विभेद करने के लिए सरल रासायिनक परीक्षण 2+2+1=5

अथवा

- (ख) (i) बेन्ज़ैल्डिहाइड के 2,4-डाइनाइट्रोफ़ेनिलहाइड्रेज़ोन की संरचना बनाइए।
 - (ii) निम्नलिखित को उनकी HCN के प्रति अभिक्रियाशीलता के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

 CH_3COCH_3 , $(CH_3)_3C - COCH_3$, CH_3CHO

(iii) आप फ़ेनिल मैग्नीशियम ब्रोमाइड का बेन्ज़ोइक अम्ल में किस प्रकार रूपान्तरण करेंगे ?

SECTION E

- **31.** (a) (i) Account for the following:
 - (1) Oxidation of aldehydes is easier as compared to ketones.
 - (2) The alpha (α) hydrogen atoms of aldehydes are acidic in nature.
 - (ii) Write the products in the following reactions:

(1)
$$\stackrel{\text{COCH}_3}{\longleftrightarrow}$$
 $\stackrel{\text{NaOH}/I_2}{\longleftrightarrow}$? + ?

(iii) Give a simple chemical test to distinguish between ethanoic acid and ethanal. 2+2+1=5

\mathbf{OR}

- (b) (i) Draw structure of the 2,4-dinitrophenylhydrazone of benzaldehyde.
 - (ii) Arrange the following in increasing order of their reactivity towards HCN : $CH_3COCH_3\ \ (CH_3)_3C-COCH_3\ \ , \ CH_3CHO$
 - (iii) How can you convert phenyl magnesium bromide to benzoic acid?

- (iv) बेन्ज़ैल्डिहाइड और ऐथेनैल में विभेद करने के लिए सरल रासायनिक परीक्षण लिखिए।
- (v) निम्नलिखित अभिक्रिया में मुख्य उत्पाद लिखिए:

- **32.** (क) (i) $0.05~\mathrm{M}~\mathrm{CH_3COOH}$ विलयन का प्रतिरोध $100~\mathrm{ओम}$ पाया गया । यदि सेल स्थिरांक $0.0354~\mathrm{cm}^{-1}$ है, तो ऐसीटिक अम्ल विलयन की मोलर चालकता परिकलित कीजिए ।
 - (ii) फैराडे के विद्युत-अपघटन का प्रथम नियम लिखिए । 1 मोल ${\rm MnO_4^-}$ को ${\rm Mn}^{2+}$ में अपचयन के लिए फैराडे में कितने आवेश की आवश्यकता होगी ?

2+3=5

अथवा

- (ख) (i) $0.0025~{
 m mol~L}^{-1}$ ऐसीटिक अम्ल की चालकता $5.25 \times 10^{-5}~{
 m S~cm}^{-1}$ है। यदि ऐसीटिक अम्ल के लिए $\Lambda_{
 m m}^{
 m 0}$ का मान $390~{
 m S~cm}^2~{
 m mol}^{-1}$ है, तो इसकी वियोजन मात्रा का परिकलन कीजिए।
 - (ii) लेड संचायक बैटरी के ऐनोड, कैथोड और समग्र अभिक्रिया लिखिए । 3+2=5

- (iv) Give a simple chemical test to distinguish between benzaldehyde and ethanal.
- (v) Write the main product in the following reaction:

$$CH_3 - C - CH_2 - COOC_2H_5 \xrightarrow{(i) \text{ NaBH}_4} ?$$

 $5 \times 1 = 5$

- 32. (a) (i) The resistance of 0.05 M CH_3COOH solution is found to be 100 ohm. If the cell constant is 0.0354 cm⁻¹, calculate the molar conductivity of the acetic acid solution.
 - (ii) State Faraday's first law of electrolysis. How much charge in Faraday is required for the reduction of 1 mol of MnO_4^- to $Mn^{2+}?$ 2+3=5

OR

- (b) (i) The conductivity of $0.0025 \text{ mol L}^{-1}$ acetic acid is $5.25 \times 10^{-5} \text{ S cm}^{-1}$. Calculate its degree of dissociation if Λ_{m}^{0} for acetic acid is $390 \text{ S cm}^{2} \text{ mol}^{-1}$.
 - (ii) Write anode, cathode and overall reaction of lead storage battery. 3+2=5

33. निम्नलिखित में से किन्हीं **पाँच** के उत्तर दीजिए :

5×1=5

- (क) अष्टफलकीय संकुल की क्रिस्टल क्षेत्र विपाटन ऊर्जा (Δ_0) किस प्रकार चतुष्फलकीय संकुल की विपाटन ऊर्जा (Δ_t) से संबंधित है ?
- (ख) निम्नलिखित संकुल का IUPAC नाम लिखिए : $[PtCl_2(en)_2] \; (NO_3)_2$
- (η) संयोजकता आबंध सिद्धांत (VBT) के आधार पर संकुल $[Ni(CO)_4]$ की ज्यामिति और चुंबकीय व्यवहार लिखिए ।
- (घ) संकुल $[Co(NH_3)_6]$ $[Cr(CN)_6]$ के द्वारा किस प्रकार की समावयवता दर्शाई जाती ${\bar t}$?
- $(\mbox{$\odot$})$ क्रिस्टल क्षेत्र सिद्धांत के आधार पर किसी उपसहसंयोजन यौगिक में ${
 m d}^4$ आयन का इलेक्ट्रॉनिक विन्यास लिखिए यदि $\Delta_{
 m o} < {
 m P}$ हो । क्या यह उपसहसंयोजन यौगिक उच्च प्रचक्रण अथवा निम्न प्रचक्रण संकुल है ?
- (च) $[Co(NH_3)_6]^{3+}$ और $[Co(NH_3)_4Cl_2]^+$ में से कौन हेट्रोलेप्टिक संकुल है और क्यों ?
- (छ) $[PtCl_2(en)_2]^{2+}$ के प्रकाशिक समावयवों की संरचनाएँ बनाइए ।

33. Answer any *five* of the following :

 $5 \times 1 = 5$

- (a) How is the crystal field splitting energy for octahedral complex (Δ_0) related to that of tetrahedral complex(Δ_t)?
- (b) Write the IUPAC name of the following complex : [PtCl₂(en)₂] (NO₃)₂
- (c) Write the geometry and magnetic behaviour of the complex $[Ni(CO)_4]$ on the basis of Valency Bond Theory (VBT).
- (d) What type of isomerism is shown by the complex $[\text{Co(NH}_3)_6] \ [\text{Cr(CN)}_6] \ ?$
- (e) For the coordination compound on the basis of crystal field theory, write the electronic configuration for d^4 ion if Δ_0 < P. Is the coordination compound a high spin or low spin complex?
- (f) Out of $[Co(NH_3)_6]^{3+}$ and $[Co(NH_3)_4Cl_2]^+$, which complex is heteroleptic and why?
- (g) Draw the structures of optical isomers of $[PtCl_2(en)_2]^{2+}$.

Marking Scheme

Strictly Confidential

(For Internal and Restricted use only)

Senior School Certificate Examination, 2024

SUBJECT NAME CHEMISTRY (Theory)
(Q.P.CODE56_2_1,2,3)

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

1 | Page 56_2_3

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks _____(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME 2023

CHEMISTRY (Theory) - 043 QP CODE 56/2/3

Q.No	Value points	Mark
	SECTION A	
1	(C)	1
2	(B)	1
3	(D)	1
4	(A)	1
5	(D)	1
6	(B)	1
7	(C)	1
9	(A) (C)	1
10	(A)	1
11	(D)	1
12	(D)	1
13	(B)	1
14	(A)	1
15	(c)	1
16	(c)	1
	SECTION B	
17	(a) $CH_2 = CH - CH_2 - C1$ because $CH_2 = CH - CH^{\oplus}$ is resonance stabilized.	1
	(b)	
	OH	
	NO_2	1
18	The steady decrease in atomic or ionic radii with increase in atomic number due to poor	1
	shielding effect of 4f subshell. Because shielding effect of 5f subshell is poorer as compared to that of 4f subshell.	1
	OR	
18	(b)Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction and hence stronger bonding between atoms.	1
	Zinc / Zn	1
19	a) A linkage which joins two amino acidsthrough —CONH-bond. / The amide linkage(-CO-NH) which is formed when amino group of one alpha amino acid combines with carboxylic group	1
	of another amino acid.	
_	(b) Amino acids which cannot be synthesised in the body and must be obtained through diet.	1
20	$k = \frac{2 \cdot 303}{t} \log \frac{[R]_{o}}{[R]}$	1/2
	$1.25 \times 10^{-3} = \frac{2.303}{t} \log \left(\frac{5}{2.5}\right)$	

$ \begin{array}{c c} 21 & \pi_1 = \pi_2 \\ & \frac{W_1}{M_1} = \frac{W_2}{M_2} \\ & \frac{3}{180} = \frac{2 \cdot 5}{M_2} \end{array} $	Y2 Y2
$t = \frac{2 \cdot 303 \times 0 \cdot 301}{1 \cdot 25 \times 10^{-3}}$ $t = 554 \cdot 5 \text{ or } 5.54 \times 10^{2} \text{ s}$ $\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$ $\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$ $\frac{1}{10} = \frac{1}{10} =$	½ 1
$t = \frac{2 \cdot 303 \times 0 \cdot 301}{1 \cdot 25 \times 10^{-3}}$ $t = 554 \cdot 5 \text{ or } 5.54 \times 10^{2} \text{ s}$ $\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$ $\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$ $\frac{1}{10} = \frac{1}{10} =$	½ 1
1.25×10 ⁻³ $t = 554.5 \text{ s} \text{or } 5.54 \times 10^2 \text{ s}$ 21 $\frac{\pi_1 = \pi_2}{\frac{W_1}{M_1} = \frac{W_2}{M_2}}$ $\frac{3}{180} = \frac{2 \cdot 5}{M_2}$ $M_2 = \frac{2 \cdot 5 \times 180}{3} = 150 \text{ g mol}^{-1}$ SECTION C	½ 1
21	½ 1
21 $ \pi_1 = \pi_2 $ $ \frac{W_1}{M_1} = \frac{W_2}{M_2} $ $ \frac{3}{180} = \frac{2 \cdot 5}{M_2} $ $ M_2 = \frac{2 \cdot 5 \times 180}{3} = 150 \ g \ mol^{-1} $ SECTION C	1
$\frac{W_1}{M_1} = \frac{W_2}{M_2}$ $\frac{3}{180} = \frac{2 \cdot 5}{M_2}$ $M_2 = \frac{2 \cdot 5 \times 180}{3} = 150 \ g \ mol^{-1}$ SECTION C	1
$\frac{\frac{M_1}{M_1} = \frac{M_2}{M_2}}{\frac{3}{180} = \frac{2 \cdot 5}{M_2}}$ $M_2 = \frac{2 \cdot 5 \times 180}{3} = 150 \ g \ mol^{-1}$ SECTION C	1
$M_2 = \frac{2 \cdot 5 \times 180}{3} = 150 \ g \ mol^{-1}$ SECTION C	
$M_2 = \frac{2 \cdot 5 \times 180}{3} = 150 \ g \ mol^{-1}$ SECTION C	
$M_2 = \frac{2 \cdot 5 \times 180}{3} = 150 \ g \ mol^{-1}$ SECTION C	
$M_2 = \frac{2 \cdot 5 \times 180}{3} = 150 \ g \ mol^{-1}$ SECTION C	½
SECTION C	
SECTION C	
22 (a)	
;ci: OH	
YII.	1 × 3
(i) NaOH, 623K, 300 atm	
(ii) H [⊕]	
(b)	
ОН ОН	
1 CHCl + ag NaOH CHO	
1. CHCl ₃ + aq NaOH	
2. H ⁺	
(c)	
OCH ₃ OCH ₃	
COCH	
+ CH ₃ COCI Anhyd. AlCl ₃ COCH ₃	
(d)	
OH OH	
Conc. HNO ₃	
NO.	
NO_2	
(Any three)	
(a)Because of the stabilisation of intermediate carbocation through resonance. / Through	1
resonance, chlorine tends to stabilize the carbocation and the effect is more pronounced at	
ortho- and para- positions.	
(b)Because mixture contains two enantiomers in equal proportions resulting in Zero Optical	
Rotation. / Due to the external compensation of equal percentage of (+) and (-) forms	1
	т
resulting in Zero Optical Rotation.	
(c)Because of the resonance stabilization of allyl carbocation.	1
$\frac{p^{\circ} - p_{s}}{p^{\circ}} = i \times \chi$	1/2
$AB \longrightarrow A^+ + B^-$	
	1/
i=2	1/2

	$\frac{100-P_S}{100} = 2 \times \frac{n_{AB}}{n_{Solvent}}$ (For dilute solution)	
	$\frac{100 - P_s}{100} = 2 - \frac{1}{50}$	
	$100 - P_s = 4$	1
	P _S = 96 mm Hg	
	(Deduct ½ mark for incorrect or no units.)	4
25	$\log \frac{k_2}{k_1} = \frac{E_a}{2 \cdot 303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right] \text{or} \frac{E_a}{2 \cdot 303R} \left[\frac{\text{T2-T1}}{T_1 T2} \right]$	1
	$\log \frac{3k_1}{k_1} = \frac{E_a}{19 \cdot 15} \left[\frac{1}{290} - \frac{1}{300} \right]$	1
	$0.48 = \frac{E_a}{19.15} \left[\frac{10}{290 \times 300} \right]$	1
	$F_0 = \frac{0.48 \times 19.15 \times 290 \times 300}{1.00 \times 10^{-3}}$	
	$E_{a} = \frac{0.48 \times 19.15 \times 290 \times 300}{10}$ $E_{a} = 79970 \text{ Jmol}^{-1} \text{ or } 79.970 \text{ KJmol}^{-1}$	
	(Deduct ½ mark for incorrect or no units.)	1
26	$E_{Cell} = (E^{o}_{c} - E^{o}_{a}) - \frac{0.059}{2} log \left[\frac{Zn^{2+}}{Sn^{2+}} \right]$	1
	$= \left[\left(-0.14 \right) - \left(-0.76 \right) \right] - \frac{0.059}{2} \log \left[\frac{0.1}{0.001} \right]$	
	$= +0.62 - \frac{0.059}{2} \times 2$	1
	=(0.62-0.059)V	
	= 0·561V	1
27	(Deduct ½ mark for incorrect or no units.) (a) A = CH ₃ CH ₂ CN	½ ×3
27	$B = CH_3CH_2CONH_2$	/2 ^3
	$C = CH_3CH_2NH_2$	
	(b) A =	
	NH_2	
		½ ×3
		/2 ^3
	B =	
	$N_2^+Cl^-$	
	C =	

28	(a) $C=O \xrightarrow{NH_2NH_2} C=NNH_2 \xrightarrow{KOH/ethylene glycol} CH_2 + N_2$	1
	(b) $Ar/RCOONa + NaOH \xrightarrow{CaO, \Delta} Ar - H/R - H + Na_2CO_3$	1
	(c) 2HCHO $\xrightarrow{\text{Conc} \cdot \text{NaOH}} \text{HCOO}^{-}\text{Na}^{+} + \text{CH}_{3}\text{OH}$	$\begin{vmatrix} 1 \end{vmatrix}$
	(Or any other correct reaction)	
20	SECTION D	1
29	(a)Sugars which reduce Tollens' reagent or Fehling's solution. (b)Monosaccharides :- Fructose, Galactose	1 1/2
	Disaccharides :- Sucrose, lactose	1/2
	(c)Glycogen, because its structure is similar to amylopectin. OR	1+1
	(c)(i)Anomers/ α-D-Glucose and β-D-Glucose (ii)Aldehyde /-CHO group	1
30	(a)Cu has incomplete d-orbital in +2 oxidation state whereas Zn has fully filled d- orbital in ground state as well as in +2 oxidation state. (b)Because both (n-1)d and ns subshell electrons take part in the bond formation due to their comparable energies/ due to the presence of unpaired electrons in d-orbitals. (c)(i)Because of irregular values of $(\Delta_i H_1 + \Delta_i H_2)$ and sublimation enthalpies.	1 1 1
	(ii)In transition metals, oxidation states differ by +1 whereas in non-transition metals differ by +2.	1
	OR OR	
	(c) (i)Because Cr^{2+} will be converted to Cr^{3+} which has more stable half filled t_{2g} configuration while Mn^{3+} changes to Mn^{2+} which has more stable half-filled d^5 configuration.	1
	$(ii) 2 \text{ Mn O}_4^- + \text{H}_2\text{O} + \text{I}^- \longrightarrow 2 \text{ Mn O}_2 + 2 \text{ OH}^- + \text{IO}_3^-$	1
	SECTION E	1
31	(a)(i)(1)Because oxidation of aldehyde involves cleavage of C – H bond which is weaker than	1
	C – C bond of ketone. (2) Electron withdrawing nature of carbonyl group/ Due to resonance stabilization of the	1
	conjugate base. (ii)(1) COONa	
	(2) + CHI ₃	1/2 , 1/2
		1
	(iii)On heating with NaOH + I ₂ , ethanal gives yellow ppt.Of CHI ₃ whereas ethanoic acid does not. (Or any other suitable chemical test)	1
	OR	
31	(b)(i)	

	NO_2	1
	CH = NNH	
	NO ₂	
	(ii)(CH ₃) ₃ C - COCH ₃ < CH ₃ COCH ₃ < CH ₃ CHO	1
	(iii) $PPM_gBr \xrightarrow{CO_2,dry \ etPer} PPCOOM_gBr \xrightarrow{H_2O/H+} PPCOOH$	1
	(iv)On heating with NaOH and I_2 , ethanal gives yellow ppt of CHI ₃ , whereas benzaldehyde	_
	does not. (Or any other correct chemical test.)	1
	(v) CH_ = CH = CH_ = COOC_H_	1
	CH ₃ - CH - CH ₂ - COOC ₂ H ₅ OH	1
32	(a)(i)	
	$ \kappa = \frac{1}{R} \left(\frac{L}{A} \right) $ or	1/2
	k=G*/R	
	$k = \frac{1}{100} (0.0354)$	
	$= 3.54 \times 10^{-4} \Omega^{-1} \text{ cm}^{-1}$	1
	$\Lambda_m = \frac{K}{M} \times 1000$	1/
		1/2
	$= \frac{3.54 \times 10^{-4}}{0.05} \times 1000$	
	$=7.08 \Omega^{-1} \mathrm{cm}^2 \mathrm{mol}^{-1}$ or $7.08 \mathrm{S} \mathrm{cm}^2 \mathrm{mol}^{-1}$	1
	(Deduct ½ mark for no or incorrect unit)	
	(ii)The amount of chemical reaction which occurs at any electrode during electrolysis by a	
	current is proportional to the quantity of electricity passed through the electrolyte. / m=ZIt	1
	where m= mass of the substance deposited , Z= electrochemical equivalent, I= current, t= time.	
	5F	1
	OR	
32	(b)(i)	1/2
	$\Lambda_m = \frac{K}{M} \times 1000$	/2
	5.25×10^{-5} 1000	
	$\Lambda_m = \frac{5.25 \times 10^{-5}}{0.0025} \times 1000$ = 21 S cm ² mol ⁻¹	1
		1/2
	$\alpha = \frac{A_m}{A_m^*}$	
	21 S cm ² mol ⁻¹	1/2
	390 S cm ² mol ⁻¹	
	=0.053	1/2
	(ii)Anode: Pb + $SO_42-\longrightarrow PbSO_4+2e-$	1/2
	Cathode :PbO ₂ + SO_4^{2-} + $4H^+$ +2e- \longrightarrow PbSO ₄ +2H ₂ O	
	Overall: Pb+ PbO ₂ +2H ₂ SO ₄ \longrightarrow 2PbSO ₄ +2H ₂ O	1/2
		1

33 (a) 1 × 5 Dichloridobis(ethane -1, 2- diamine)platinum (IV) nitrate (b) sp³, diamagnetic Coordination isomerism (c) (d) $t_{2g}^{3}\ e_{g}^{1}$, high spin (e) $\left[\text{Co} \left(\text{NH}_3 \right)_4 \text{Cl}_2 \right]^+ \text{, as the metal is bound to more than one donor group(ligand)}.$ (f) (g) dextro mirror laevo (Any five)