Chapter 6 Lines and Angles # Exercise 6.1 **Question:1** In Fig. 6.13, lines AB and CD intersect at O. If \angle AOC + \angle BOE = 70° and \angle BOD = 40°, find \angle BOE and reflex \angle COE. #### **Answer:** It is given: $\angle AOC + \angle BOE = 70^{\circ}$ And, $$\angle BOD = 40^{\circ}$$ Now, according to the question, $$\angle AOC + \angle BOE + \angle COE = 180^{\circ}$$ (Sum of linear pair is always 180°) $$\Rightarrow 70^{\circ} + \angle COE = 1^{800}$$ $$\Rightarrow \angle COE = 110o$$(1) And, $\angle COE + \angle BOD + \angle BOE = 180^{\circ}$ (Sum of linear pair is always 180°) putting the value of $\angle COE$, we get, $$110^{\circ} + 40^{\circ} + \angle BOE = 180^{\circ}$$ $$150^{\circ} + \angle BOE = 180^{\circ}$$ $$\therefore \angle BOE = 30^{\circ}$$ Now, reflex $\angle COE = 360^{\circ} - \angle COE$ $$\Rightarrow$$ reflex \angle COE = 360° - 110° $$\therefore$$ reflex ∠COE = 250° Note: Reflex here means the reflex angles which are greater than 180° but less than 360°. **Question:2** In Fig. 6.14, lines XY and MN intersect at O. If \angle POY = 90° and a: b = 2 : 3, find c. Fig. 6.14 **Ans.:** Given: $\angle POY = 90^{\circ}$ a: $$b = 2 : 3$$ Now, according to the question, $\angle POY + a + b = 180^{\circ}$ (Angles made on a straight line are supplementary or sum of angles equals to 180°) $$90^{\circ} + a + b = 180^{\circ}$$ $$a + b = 90^{\circ}$$eq(1) Now a:b = 2:3eq(2) Let a be 2 x and b be 3 x So putting this value in eq(1), $$2x + 3x = 90^{\circ}$$ $$5x = 90^{\circ}$$ $$x = 18^{\circ}$$ Hence, $$a = 2 \times 18^{\circ} = 36^{\circ}$$ And, $$b = 3 \times 18^{\circ} = 54^{\circ}$$ And, $$b + c = 180^{\circ}$$ (Linear pair) $$54^{\circ} + c = 180^{\circ}$$ $$c = 126^{\circ}$$ **Question:** 3 In Fig. 6.15, \angle PQR = \angle PRQ, then prove that \angle PQS = \angle PRT. Fig. 6.15 ## Ans.: Fig. 6.15 Given: $\angle PQR = \angle PRQ$ To prove: $\angle PQS = \angle PRT$ Proof: Now, $\angle PQR + \angle PQS = 180^{\circ}$ (Angles on a straight line are supplementary) $\Rightarrow \angle PQR = 180^{\circ} - \angle PQS \dots (i)$ Similarly, $\angle PRQ + \angle PRT = 180^{\circ}$ (Angles on a straight line are supplementary) $\Rightarrow \angle PRQ = 180^{\circ} - \angle PRT \dots(ii)$ Now, $\angle PQR = \angle PRQ$ (Given) Therefore, (i) and (ii) will be equal 180° - $\angle PQS = 180^{\circ}$ - $\angle PRT$ $\angle PQS = \angle PRT$ Hence, Proved. **Question:** 4 In Fig. 6.16, if x + y = w + z, then prove that AOB is a line. Fig. 6.16 **Ans.:** Given: x + y = w + z To prove: AOB is a line or $x + y = 180^{\circ}$ (Linear pair) Proof: Now, according to the question, $x + y + w + z = 360^{\circ}$ (Angles at a point) $$(x + y) + (w + z) = 360^{\circ}$$ (Given, x + y = w + z) $$2(x + y) = 360^{\circ}$$ $$(x+y) = 180^{\circ}$$ Therefore, x + y makes a linear pair. And, AOB is a straight line Hence, Proved. **Question:** 5 In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that \angle ROS = $\frac{1}{2}$ (\angle QOS - \angle POS). Fig. 6.17 ## Ans.: Fig. 6.17 Given: OR is perpendicular to line PQ To prove: $\angle ROS = (\angle QOS - \angle POS)$ Proof: Now, according to the question, $$\angle POR = \angle ROQ = 90^{\circ}$$ (: OR is perpendicular to line PQ) $$\angle QOS = \angle ROQ + \angle ROS = 90^{\circ} + \angle ROS$$eq(i) We can write, $$\angle POS = \angle POR - \angle ROS = 90^{\circ} - \angle ROS$$eq(ii) Subtracting (ii) from (i), we get $$\angle QOS - \angle POS = 90^{\circ} + \angle ROS - (90^{\circ} - \angle ROS)$$ $$\angle QOS - \angle POS = 90^{\circ} + \angle ROS - 90^{\circ} + \angle ROS$$ $$\angle QOS - \angle POS = 2 \angle ROS$$ $$\angle ROS = \frac{1}{2}(\angle QOS) - (\angle POS)$$ Hence, proved **Question:** 6 It is given that \angle XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects \angle ZYP, find \angle XYQ and reflex \angle QYP. #### Ans.: Given: $\angle XYZ = 640$ YQ bisects $\angle ZYP$, therefore $\angle QYP = \angle QYZ$ $\angle XYZ + \angle ZYP = 180^{\circ}$ (Sum of angles made on a straight line = 180°) $$64^{\circ} + \angle ZYP = 180^{\circ}$$ $$\angle ZYP = 116^{\circ}$$ And, $$\angle ZYP = \angle ZYQ + \angle QYP$$ $$\angle ZYQ = \angle QYP (YQ \text{ bisects } \angle ZYP)$$ $$\angle ZYP = 2\angle ZYQ$$ $$2\angle ZYQ = 116^{\circ}$$ $$\angle ZYQ = 58^{\circ} = \angle QYP$$ Now, $$\angle XYQ = \angle XYZ + \angle ZYQ$$ $$\angle XYQ = 64^{\circ} + 58^{\circ}$$ $$\angle XYQ = 122^{\circ}$$ And, Reflex of $$\angle QYP = 180^{\circ} + \angle XYQ$$ $$\angle QYP = 180^{\circ} + 122^{\circ}$$ $$\angle QYP = 302^{\circ}$$ # Exercise 6.2 **Question:** 1 In Fig. 6.28, find the values of x and y and then show that $AB \parallel CD$. # Answer: From the figure: $$x + 50^{\circ} = 180^{\circ}$$ (Linear pair) $$x = 180^{\circ} - 50^{\circ}$$ $$x = 130^{\circ}$$ And, $y = 130^{\circ}$ (Vertically opposite angles) Now, $x = y = 130^{\circ}$ (Alternate interior angles) Hence, The theorem says that when the lines are parallel, that the alternate interior angles are equal. And thus the lines must be parallel. AB || CD **Question:** 2 In Fig. 6.29, if AB \parallel CD, CD \parallel EF and y: z = 3: 7, Find x. Fig. 6.29 Ans. It is given in the question that: Thus, $$\angle x + \angle y = 180^{\circ}$$ (Interior angles on same side of transversal) (1) Also, AB \parallel CD and CD \parallel EF Thus, AB || EF $$\Rightarrow \angle x = \angle z$$ (Alternate interior angles) (2)From (1) and (2) we can say that, $$\angle z + \angle y = 180^{\circ}$$ (3) [Angles will be supplementary] It is given that, $\angle y : \angle z = 3 : 7$ (4)Let $\angle y = 3$ a and $\angle z = 7$ a Putting these values in (2) $$3a + 7a = 180^{\circ}$$ $$10a = 180^{\circ}a$$ $$= 18^{\circ} \angle z = 7a$$ $$z = 7 \times 18^{\circ}$$ $$\angle z = 126^{\circ}$$ As $$\angle z = \angle x \angle x = 126^{\circ}$$ **Question:** 3 In Fig. 6.30, if AB \parallel CD, EF \perp CD and \angle GED = 126°, find \angle AGE, \angle GEF and \angle FGE. Fig. 6.30 #### Ans.: It is given in the question that: EF perpendicular CD Now, according to the question, $$\angle$$ FED = 90° (EF perpendicular CD) Now, \angle AGE = \angle GED (Since, AB parallel CD and GE is transversal, hence alternate interior angles) Therefore, $$\angle AGE = 126^{\circ}$$ And, $$\angle$$ GEF = \angle GED - \angle FED $$\angle GEF = 126^{\circ} - 90^{\circ}$$ $$\angle GEF = 36^{\circ}$$ Now, $$\angle$$ FGE + \angle AGE = 180° (Linear pair) $$\angle$$ FGE = $180^{\circ} - 126^{\circ}$ $$\angle FGE = 54^{\circ}$$ **Question:** 4 In Fig. 6.31, if PQ \parallel ST, \angle PQR = 110° and \angle RST = 130°, find \angle QRS. [Hint: Draw a line parallel to ST through point R.] Fig. 6.31 ## Ans.: It is given in the question that: PQ parallel ST, $$\angle PQR = 110^{\circ}$$ and, $$\angle RST = 130^{\circ}$$ Construction: Draw a line XY parallel to PQ and ST $\angle PQR + \angle QRX = 180^{\circ}$ (Angles on the same side of transversal) $$110^{\circ} + \angle QRX = 180^{\circ}$$ $$\angle QRX = 70^{\circ}$$ And, \angle RST + \angle SRY = 180° (Angles on the same side of transversal) $$130^{\circ} + \angle SRY = 180^{\circ}$$ $$\angle$$ SRY = 50° Now, $\angle QRX + \angle SRY + \angle QRS = 180^{\circ}$ (Angle made on a straight line) $$70^{\circ} + 50^{\circ} + \angle QRS = 180^{\circ}$$ $$\angle QRS = 60^{\circ}$$ **Question:** 5 In Fig. 6.32, if AB \parallel CD, \angle APQ = 50° and \angle PRD = 127°, find x and y. Fig. 6.32 #### Ans.; It is given in the question that: AB parallel CD, $\angle APQ = 50^{\circ}$ and, $\angle PRD = 127^{\circ}$ According to question, $x = 50^{\circ}$ (Alternate interior angle) $\angle PRD + \angle PRQ = 180^{\circ}$ (Angles on the straight line are supplementary) $127^{\circ} + \angle PRQ = 18^{0\circ}$ $\angle PRQ = 53^{\circ}$ Now, In Δ PQR, $x + y + \angle PRQ = 180^{\circ}$ (Sum of interior angles of a triangle) $$y + 50^{\circ} + \angle PRQ = 180^{\circ}$$ $$y + 50^{\circ} + 53^{\circ} = 180^{\circ}$$ $y + 103^{\circ} = 180^{\circ}$ $y = 77^{\circ}$ **Question:** 6 In Fig. 6.33, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB || CD. Fig. 6.33 #### Ans.: Given: Two mirrors are parallel to each other, PQ||RS To Prove: AB || CD Proof: Take two perpendiculars BE and CF, As the mirrors are parallel to each other their perpendiculars will also be parallel thus BE || CF According to laws of reflection, we know that: Angle of incidence = Angle of reflection $$\angle 1 = \angle 2$$ and, $$\angle 3 = \angle 4$$ (i) And, $\angle 2 = \angle 3$ (Alternate interior angles, since BE, is parallel to CF and a transversal line BC cuts them at B and C respectively) (ii) We need to prove that $\angle ABC = \angle DCB \angle ABC = \angle 1 + \angle 2$ and $\angle DCB = \angle 3 + \angle 4$ From (i) and (ii), we get $$\angle 1 + \angle 2 = \angle 3 + \angle 4$$ $$\Rightarrow \angle ABC = \angle DCB$$ ⇒ AB parallel CD (Alternate interior angles) Hence, Proved. # Exercise 6.3 **Question:** 1 In Fig. 6.39, sides QP and RQ of \triangle PQR are produced to points S and T respectively. If \angle SPR = 135° and \angle PQT = 110°, find \angle PRQ. #### Ans.: Method 1: It is given in the question that: $$\angle$$ SPR = 135 $^{\circ}$ And, $$\angle PQT = 110^{\circ}$$ Now, according to the question, $$\angle$$ SPR + \angle QPR = 180° (SQ is a straight line) $$135^{\circ} + \angle QPR = 180^{\circ}$$ $$\angle QPR = 45^{\circ}$$ And, $$\angle PQT + \angle PQR = 180^{\circ}$$ (TR is a straight line) $$110^{\circ} + \angle PQR = 180^{\circ}$$ $$\angle PQR = 70^{\circ}$$ Now, $\angle PQR + \angle QPR + \angle PRQ = 180^{\circ}$ (Sum of the interior angles of the triangle) $$70^{\circ} + 45^{\circ} + \angle PRQ = 180^{\circ}$$ $$115^{\circ} + \angle PRQ = 180^{\circ}$$ $$\angle PRQ = 65^{\circ}$$ #### Method 2: It is given in the question that: $$\angle$$ SPR = 135 $^{\circ}$ And, $$\angle PQT = 110^{\circ}$$ $\angle PQT + \angle PQR = 180^{\circ}$ (TR is a straight line) $$110^{\circ} + \angle PQR = 180^{\circ}$$ $$\angle PQR = 70^{\circ}$$ Now, we know that the exterior angle of the triangle equals the sum of interior opposite angles. Therefore, $\angle SPR = \angle PQR + \angle PRQ$ $$135^{\circ} = 70^{\circ} + \angle PRQ$$ $$\angle PRQ = 65^{\circ}$$ **Question:** 2 In Fig. 6.40, \angle X = 62°, \angle XYZ = 54°. If YO and ZO are the bisectors of \angle XYZ and \angle XZY respectively of \triangle XYZ, find \angle OZY and \angle YOZ. Fig. 6.40 #### Ans.: Given: $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$ YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively. To Find: \angle OZY and \angle YOZ. Now, according to the question, $$\angle X + \angle XYZ + \angle XZY = 180^{\circ}$$ (Sum of the interior angles of a triangle = 180°) $$62^{\circ} + 54^{\circ} + \angle XZY = 180^{\circ}$$ $$116^{\circ} + \angle XZY = 180^{\circ}$$ $$\angle XZY = 64^{\circ}$$ Now, As ZO is the bisector of $\angle XZY$ $$\angle OZY = \frac{1}{2} \angle XZY$$ $$\angle OZY = 32^{\circ}$$ And, As YO is bisector of ∠XYZ $$\angle OYZ = \frac{1}{2} \angle XYZ$$ $$\angle OYZ = 27^{\circ}$$ Now, $$\angle OZY + \angle OYZ + \angle O = 180^{\circ}$$ (Sum of the interior angles of the triangle = 180°) $$= 32^{\circ} + 27^{\circ} + \angle O = 180^{\circ}$$ $$= 59^{\circ} + \angle O = 180^{\circ}$$ $$= \angle O = 121^{\circ}$$ **Question:** 3 In Fig. 6.41, if AB \parallel DE, \angle BAC = 35° and \angle CDE = 53°, find \angle DCE. Fig. 6.41 **Ans.:** Given: AB parallel DE, \angle BAC = 35°, \angle CDE = 53° To Find: ∠DCE According to question, $\angle BAC = \angle CED$ (Alternate interior angles) Therefore, $$\angle$$ CED = 35° Now, In \triangle DEC, $$\angle DCE + \angle CED + \angle CDE = 180^{\circ}$$ (Sum of the interior angles of the triangle) $$\angle DCE + 35^{\circ} + 53^{\circ} = 180^{\circ}$$ $$\angle DCE + 88^{\circ} = 180^{\circ}$$ $$\angle DCE = 92^{\circ}$$ **Question:** 4 In Fig. 6.42, if lines PQ and RS intersect at point T, such that \angle PRT = 40°, \angle RPT = 95° and \angle TSQ = 75°, find \angle SQT. #### Ans.: Given: $$\angle PRT = 40^{\circ}$$ $$\angle RPT = 95^{\circ}$$ and, $$\angle TSQ = 75^{\circ}$$ Now according to the question, $\angle PRT + \angle RPT + \angle PTR = 180^{\circ}$ (Sum of interior angles of the triangle) $$40^{\circ} + 95^{\circ} + \angle PTR = 180^{\circ}$$ $$40^{\circ} + 95^{\circ} + \angle PTR = 180^{\circ}$$ $$135^{\circ} + \angle PTR = 180^{\circ}$$ $$\angle PTR = 45^{\circ}$$ $$\angle PTR = \angle STQ = 45^{\circ}$$ (Vertically opposite angles) Now, $$\angle TSQ + \angle PTR + \angle SQT = 180^{\circ}$$ (Sum of the interior angles of the triangle) $$75^{\circ} + 45^{\circ} + \angle SQT = 180^{\circ}$$ $$120^{\circ} + \angle SQT = 180^{\circ}$$ $$\angle SQT = 60^{\circ}$$ **Question:** 5 In Fig. 6.43, if PQ \perp PS, PQ \parallel SR, \angle SQR = 28° and \angle QRT = 65°, then find the values of x and y. Fig. 6.43 # Ans.: To Find: Values of x and y Given: PQ is perpendicular to PS, PQ parallel SR $$\angle$$ SQR = 28° And, $$\angle QRT = 65^{\circ}$$ Now according to the question, $x + \angle SQR = \angle QRT$ (Alternate angles are equal as QR is transversal) $$x + 28^{\circ} = 65^{\circ}$$ $$x = 37^{\circ}$$ Now, in \triangle PQS, Sum of interior angles of a triangle = 180° $$\angle PQS + \angle PSQ + \angle QPS = 180^{\circ}$$ Therefore, $$y + 37^{\circ} + 90^{\circ} = 180^{\circ}$$ $$y=53$$ °So $x=37$ ° and $y=53$ ° **Question:** 6 In Fig. 6.44, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR =1/2 \angle QPR. Fig. 6.44 **Ans.:** To Prove: $\angle QTR = \frac{1}{2} \angle QPR$ Given: Bisectors of ∠PQR and ∠PRS meet at point T Proof: In ΔQTR , \angle TRS = \angle TQR + \angle QTR (Exterior angle of a triangle equals to the sum of the two opposite interior angles) $$\angle QTR = \angle TRS - \angle TQR$$ -----(i) Similarly, in $\triangle QPR$, $$\angle$$ SRP = \angle QPR + \angle PQR $$2\angle TRS = \angle QPR + 2\angle TQR$$ (∵ ∠TRS and ∠TQR are the bisectors of ∠SRP and ∠PQR respectively.) $$\angle QPR = 2 \angle TRS - 2 \angle TQR$$ $$\angle TRS - \angle TQR = \frac{1}{2} \angle QPR$$(ii) From (i) and (ii), we get $$\angle QTR = \frac{1}{2} \angle QPR$$ Hence, proved.