

			Mean
		Basic Level	
If the mean of 3, 4	1, x, 7, 10 is 6, then the value	of x is	
(a) 4	(b) 5	(c) 6	(d) 7
		nber is multiplied by λ , then the	
(a) \overline{x}	(b) $\lambda + \overline{x}$	(c) $\lambda \overline{x}$	(d) None of these
The mean of discr	rete observations y_1, y_2, \dots, y_n	is given by	[DCE 1999]
$\sum_{i=1}^{n}$	$\sum_{i=1}^{n}$	$\sum_{n=1}^{n}$	$\sum_{n=1}^{n}$
$\sum_{i=1}^{j} y_i$	(b) $\frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} i}$	(c) $\frac{\sum_{i=1}^{n} y_i f_i}{n}$	(d) $\frac{\sum_{i=1}^{n} y_i f_i}{\sum_{i=1}^{n} f_i}$
(a) $\frac{n}{n}$	(b) $\frac{1}{n}$	(c) $\frac{1}{n}$	(d) $\frac{1}{n}$
	$\sum_{i=1}^{i} i$		$\sum_{i=1}^{i} f_i$
If the mean of nu	mbers 27, 31, 80, 107, 156 is 3	82, then the mean of 130–126-6	58, 50, 1 is [Pb. CET 1989; Kurukshetr
(a) 75	(b) 157	(c) 82	(d) 80
			1
d_i is the deviation	n of a class mark y_i from 'a'	the assumed mean and f_i is the	he frequency, if $M_g = x + \frac{1}{\sum f_i} (\sum f_i d_i)$,
then <i>x</i> is			
(a) Lower limit	(b) Assumed mean	(c) Number of obser	vations (d) Class size
The mean of a set			0 and then is increased by 10, then
(a) $\frac{\overline{x}}{\overline{x}}$	(b) $\frac{\overline{x}+10}{\alpha}$		(d) $\alpha \overline{x} + 10$
$(a) - \alpha$	$(0) - \frac{\alpha}{\alpha}$	(c) $\frac{\overline{x}+10\alpha}{\alpha}$	(d) $dx + 10$
If the mean o	of the numbers $27 + x$,	31 + x, $89 + x$, $107 + x$, $156 + x$	x is 82, then the mean of
130 + <i>x</i> , 126 + <i>x</i> , 68 +	-x, 50 + x, 1 + x is		
			[Kerala PET 2001]
(a) 75	(b) 157	(c) 82	(d) 80
Consider the freq	uency distribution of the give	en numbers	
Value :	1 2 3 4		
Frequency :	5 4 6 <i>f</i>		
If the mean is kno	own to be 3, then the value of	fis	[NDA 2001]
(a) 3	(b) 7	(c) 10	(d) 14
If the arithmeti	c mean of the numbers	$x_1, x_2, x_3, \dots, x_n$ is \overline{x} , then the	he arithmetic mean of numbers
$ax_1 + b, ax_2 + b, ax_3 + b$	$b, \dots, ax_n + b$, where a, b are	two constants would be	[NDA Sept. 1998]
(a) \overline{x}	(b) $n a \overline{x} + n b$	(c) $a\overline{x}$	(d) $a\overline{x} + b$
The mean of <i>n</i> ite	ms is \overline{x} . If the first term is in	ncreased by 1, second by 2 and s	so on, then new mean is [DCE 1998]
(a) $\overline{x} + n$	(b) $\overline{r} + \frac{n}{n}$	(c) $\bar{x} + \frac{n+1}{2}$	(d) None of these
$(u) x \pm n$	(b) $\bar{x} + \frac{n}{2}$	$(c) x + \frac{1}{2}$	(u) none of these

				5 - 7
1.	The G.M. of the numbe	rs $3, 3^2, 3^3, \dots, 3^n$ is		[Pb. CET 1997]
	(a) $3^{2/n}$	(b) $3^{(n-1)/2}$	(c) $3^{n/2}$	(d) $3^{(n+1)/2}$
	The reciprocal of the m	nean of the reciprocals of <i>n</i> obs	servations is their	[AMU 1985]
	(a) A.M.	(b) G.M.	(c) H.M.	(d) None of these
•	The harmonic mean of	3, 7, 8, 10, 14 is		
	(a) $\frac{3+7+8+10+14}{5}$	(b) $\frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{10} + \frac{1}{14}$	(c) $\frac{\frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{10} + \frac{1}{14}}{4}$	(d) $\frac{5}{\frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{10} + \frac{1}{14}}$
•	If the algebraic sum of	deviations of 20 observations	from 30 is 20, then the mean	n of observations is[NDA (Sept.) 2
	(a) 30	(b) 30.1	(c) 29	(d) 31
•	The weighted mean on numbers is	of first <i>n</i> natural numbers w	hose weights are equal to	the squares of corresponding [Pb. CET 1989]
	(a) $\frac{n+1}{2}$	(b) $\frac{3n(n+1)}{2(2n+1)}$	(c) $\frac{(n+1)(2n+1)}{6}$	(d) $\frac{n(n+1)}{2}$
	The mean of the values	s 0, 1, 2,, <i>n</i> having correspo	nding weight ${}^{n}c_{0}, {}^{n}c_{1}, {}^{n}c_{2},$, ${}^{n}c_{n}$ respectively is[AMU 1990; C
	(a) $\frac{2^n}{n+1}$	(b) $\frac{2^{n+1}}{n(n+1)}$	(c) $\frac{n+1}{2}$	(d) $\frac{n}{2}$
	If the values $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, $	$\frac{1}{5}, \dots, \frac{1}{n}$ occur at frequencies 1	, 2, 3, 4, 5, <i>n</i> in a distribu	tion, then the mean is[NDA 2000
	(a) 1	(b) <i>n</i>	(c) $\frac{1}{n}$	(d) $\frac{2}{n+1}$
	The number of observation then the average of the		verage of first 10 is 4.5 and	that of the remaining 30 is 3.5, [AMU 1992; DCE 1996]
	(a) $\frac{1}{5}$	(b) $\frac{15}{4}$	(c) 4	(d) 8
	A student obtain 75% average cannot be less	-	ects. If the marks of anothe	er subject are added, then his
	(a) 60%	(b) 65%	(c) 80%	[NDA 2000] (d) 90%
	The mean age of a con		en is 30 years. If the means	of the age of men and women [NDA Sept. 1998]
	(a) 30	(b) 40	(c) 50	(d) 60
	female employees are	respectively Rs. 510 and Rs. 46	50. The percentage of male e	ean monthly salary of male and mployees in the factory is[NDA (
	(a) 60 The A.M. of a 50 set o the remaining set of nu		(c) 80 ers of the set, namely 55 and	(d) 90 d 45 are discarded, the A.M. of [Kurukshetra CEE 1993]
	(a) 38.5	(b) 37.5	(c) 36.5	(d) 36
		ons is 45. It was later found th		31 were incorrectly recorded as [NDA 2001]
	(a) 44.0	(b) 44.46	(c) 45.00	(d) 45.54
	A car completes the fi	rst half of its journey with a	velocity v_1 and the rest hal	If with a velocity v_2 . Then the
	average velocity of the	car for the whole journey is		[AMU 1989; DCE 1995]
	(a) $\frac{v_1 + v_2}{2}$	(b) $\sqrt{v_1 v_2}$	(c) $\frac{2v_1v_2}{v_1+v_2}$	(d) None of these

25. An automobile driver travels from plane to a hill station 120 *km* distant at an average speed of 30 *km* per hour. He then makes the return trip at an average speed of 25 *km* per hour. He covers another 120 *km* distance on plane at an average speed of 50 *km* per hour. His average speed over the entire distance of 300 *km* will be

(a) $\frac{30+25+50}{3}$ km/hr (b) $(30,25,50)^{\frac{1}{3}}$ (c) $\frac{3}{\frac{1}{30}+\frac{1}{25}+\frac{1}{50}}$ km/hr (d) None of these

26. The average weight of students in a class of 35 students is 40 kg. If the weight of the teacher be included, the average rises by $\frac{1}{2}$ kg; the weight of the teacher is **[Kerala (Engg.) 2002]**

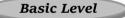
27. If \overline{X}_1 and \overline{X}_2 are the means of two distributions such that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the mean of the combined distribution, then

(a)
$$\overline{X} < \overline{X}_1$$
 (b) $\overline{X} > \overline{X}_2$ (c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ (d) $\overline{X}_1 < \overline{X} < \overline{X}_2$

28. If a variable takes values 0, 1, 2,, n with frequencies $q^n, \frac{n}{1}q^{n-1}p, \frac{n(n-1)}{1.2}q^{n-2}p^2, \dots, p^n$, where p + q = 1, then

the mean is

(a)
$$np$$
 (b) nq (c) $n(p+q)$ (d) None of these


29. The A.M. of n observations is M. If the sum of n - 4 observations is a, then the mean of remaining 4 observations is

(a)
$$\frac{nM-a}{4}$$
 (b) $\frac{nM+a}{2}$ (c) $\frac{nM-A}{2}$ (d) $nM+a$

Median

[Kurukshetra CEE 1995]

(d) G.M.

30. Which one of the following measures of marks is the most suitable one of central location for computing intelligence of students

	(a) Mode	(b) Arithmetic mean	(c) Geometric mean	(d) Median
31.	The central value of the	set of observations is called		

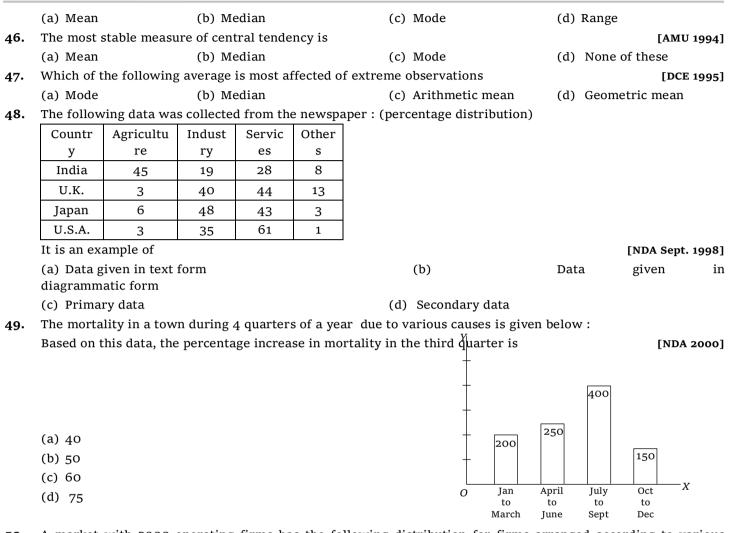
(a) Mean(b) Median(c) Mode32. For a frequency distribution 7th decile is computed by the formula

(a)
$$D_7 = l + \frac{\left(\frac{N}{7} - C\right)}{f} \times i$$
 (b) $D_7 = l + \frac{\left(\frac{N}{10} - C\right)}{f} \times i$ (c) $D_7 = l + \frac{\left(\frac{7N}{10} - C\right)}{f} \times i$ (d) $D_7 = l + \frac{\left(\frac{10N}{7} - C\right)}{f} \times i$

33. Which of the following, in case of a discrete data, is not equal to the median

(a) 50th percentile
(b) 5th decile
(c) 2nd quartile
(d) Lower quartile

34. The median of 10, 14, 11, 9, 8, 12, 6 is

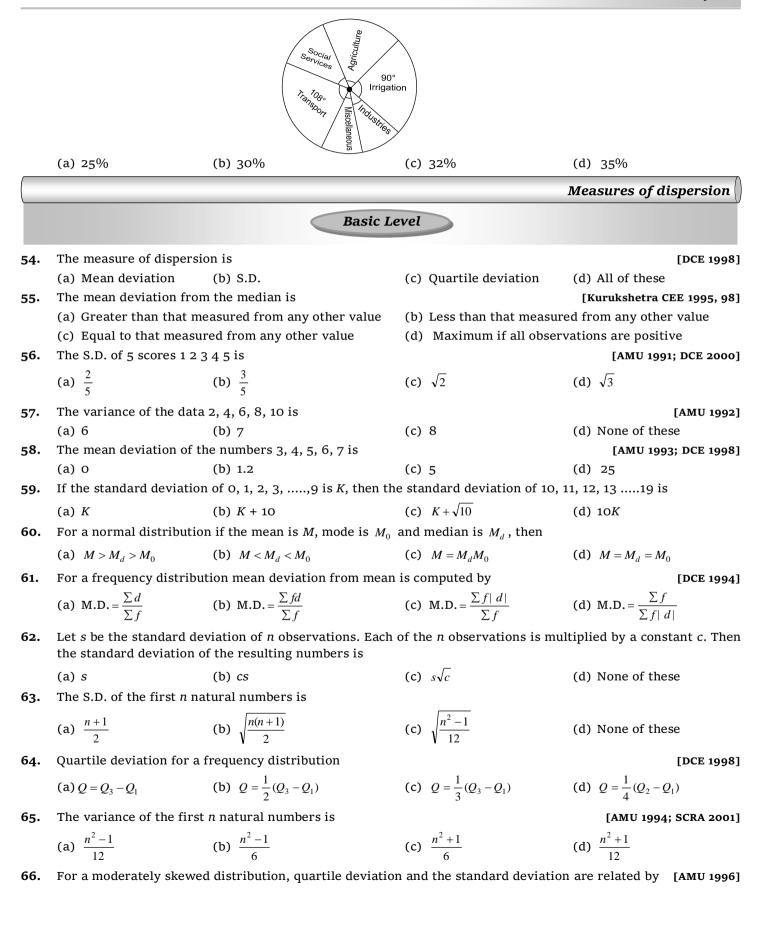

(a) 10
(b) 12
(c) 14
(d) 11

35. The relation between the median *M*, the second quartile Q_2 , the fifth decile D_5 and the 50th percentile P_{50} , of a set of observations is

[AMU 1990]
(a)
$$M = Q_2 = D_5 = P_{50}$$
 (b) $M < Q_2 < D_5 < P_{50}$ (c) $M > Q_2 > D_5 > P_{50}$ (d) None of these

36. For a symmetrical distribution $Q_1 = 25$ and $Q_3 = 45$, the median is

			Ме	asures of Central Tendency 59
	(a) 20	(b) 25	(c) 35	(d) None of these
		Advan	ce Level	
37.	If a variable takes t	the discrete values $\alpha - 4, \alpha - \frac{7}{2}, \alpha - \frac{1}{2}$	$\frac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \frac{1}{2}, \alpha - \frac{1}{2}, \alpha$	$\alpha + 5 (\alpha > 0)$, then the median is
		2		[DCE 1997; Pb. CET 1988
	(a) $\alpha - \frac{5}{4}$	(b) $\alpha - \frac{1}{2}$	(c) $\alpha - 2$	(d) $\alpha + \frac{5}{4}$
38.	The upper quartile	for the following distribution	1	
	Size of 1 items	2 3 4 5 6 7	-	
	Frequency 2	4 5 8 7 3 2]	
	is given by the size (a) $\left(\frac{31+1}{4}\right)$ th item	(b) $\left[2\left(\frac{31+1}{4}\right)\right]$ th item	(c) $\left[3\left(\frac{31+1}{4}\right)\right]$ th ite	em (d) $\left[4\left(\frac{31+1}{4}\right)\right]$ th item
				Mode
		Basic	c Level	
39.		ries the mode is computed by the	formula	
	(a) $l + \frac{f_{m-1}}{f_m - f_{m-1} - f_{m+1}}$	$- \times C$ or $l + \left(\frac{f_1}{f_m - f_1 - f_2}\right) \times i$		$r \times C$ or $l + \frac{f_m - f_1}{f_m - f_1 - f_2} \times i$
	5m 5m-1 5m-		(d) $l + \frac{2f_m - f_{m-1}}{f_m - f_{m-1} - f_{m+1}}$	
40.	A set of numbers co is [AMU 1989]	onsists of three 4's, five 5's, six 6'	s, eight 8's and seven 10	o's. The mode of this set of number
	(a) 6	(b) 7	(c) 8	(d) 10
41.		lowing items is 0, 1, 6, 7, 2, 3, 7,		[AMU 1995
	(a) 0	(b) 5	(c) 6	(d) 2
			Relation betw	ween mean, median and mode
		Basic	c Level	
42.	If mean = (3 media	n – mode) k, then the value of k is	5	
	(a) 1	(b) 2	(c) $\frac{1}{2}$	(d) $\frac{3}{2}$
43.	In a moderately asy	mmetrical distribution the mode	and mean are 7 and 4 re	espectively. The median is[NDA Sep
44.	(a) 4 If in a moderately median is	(b) 5 asymmetrical distribution mode	(c) 6 e and mean of the data	(d) 7 a are 6λ and 9λ respectively, the [Pb. CET 1988]
	(a) 8λ	(b) 7λ	(c) 6λ	(d) 5λ
45.		ving is not a measure of central te		[Pb. CET 1989


50. A market with 3900 operating firms has the following distribution for firms arranged according to various income groups of workers

Income	No. of firms
group	
150-300	300
300-500	500
500-800	900
800-1200	1000
1200-1800	1200

If a histogram for the above distribution is constructed the highest bar in the histogram would correspond to the class [NDA Sept. 1998]

	(a) 500-800	(b) 1200-1800	(c) 800-1200	(d) 150-300				
51.	The total expenditure in	curred by an industry under dif	ferent heads is best present	ed as a	[NDA 2000]			
	(a) Bar diagram	(b) Pie diagram	(c) Histogram	(d) Frequency p	olygon			
52.	The expenditure of a far	nily for a certain month were as	s follows :					
	Food – Rs.560, Rent – R	s.420, Clothes – Rs.180, Educati	on – Rs.160, Other items – I	Rs.120				
	A pie graph representing this data would show the expenditure for clothes by a sector whose angle equals							
	(a) 180°	(b) 90°	(c) 45°	(d) 64°				

53. Section-wise expenditure of a State Govt. is shown in the given figure. The expenditure incurred on transport is[NDA (

(a) S.D.
$$-\frac{3}{2}$$
 Q.D. (b) S.D. $-\frac{3}{2}$ Q.D. (c) S.D. $-\frac{3}{4}$ Q.D. (d) S.D. $-\frac{4}{3}$ Q.D.
(a) $\sigma = \sqrt{\frac{2M}{2f}} - \frac{2M^3}{2f}$ (b) $\sigma = \sqrt{\frac{2M^2}{2f} - \left(\frac{2M^2}{2f}\right)^2}$ (c) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (d) $\sigma = \sqrt{\frac{2M^2}{2f} - \left(\frac{2M}{2f}\right)^2}$
(e) $\sigma = \sqrt{\frac{2M^2}{2f}} - \frac{2M^2}{2f}$ (b) $\sigma = \sqrt{\frac{2M^2}{2f} - \left(\frac{2M^2}{2f}\right)^2}$ (c) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (d) $\sigma = \sqrt{\frac{2M^2}{2f} - \left(\frac{2M}{2f}\right)^2}$
(e) $\sigma = \frac{2M^2}{2f}$ (f) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (c) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (d) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(e) $\sigma = \frac{2M^2}{2f}$ (f) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (f) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (g) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(f) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (g) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (g) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(c) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (d) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(e) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (f) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(f) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (g) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$ (h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2f} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2} - \frac{2M^2}{2f}}$
(h) $\sigma = \sqrt{\frac{2M^2}{2}}$
(h) $\pi = \sqrt{\frac{2M$

The standard deviation of 25 numbers is 40. If each of the numbers is increased by 5, then the new standard deviation will be [DCE 1995] (c) $40 + \frac{21}{25}$ (b) 45 (d) None of these (a) 40 The S.D of 15 items is 6 and if each item is decreased by 1, then standard deviation will be [Pb. CET 1998] 83. (c) $\frac{91}{15}$ (d) 6 (a) 5 (b) 7 The quartile deviation for the data 84. x:2 6 3 4 5 f:8 3 4 4 1 is [AMU 1988; Kurukshetra CEE 1999] (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (a) 0 (d) 1 The sum of squares of deviations for 10 observations taken from mean 50 is 250. The co-efficient of variation is[DCE 1 85. (b) 10% (c) 40% (d) None of these (a) 50% One set containing five numbers has mean 8 and variance 18 and the second set containing 3 numbers has mean 86. 8 and variance 24. Then the variance of the combined set of numbers is (b) 20.25 (d) None of these (a) 42 (c) 18 The means of five observations is 4 and their variance is 5.2. If three of these observations are 1, 2 and 6, then 87. the other two are [AMU 1994] (a) 2 and 9 (b) 3 and 8 (c) 4 and 7 (d) 5 and 6 The mean of 5 observations is 4.4 and their variance is 8.24. If three observations are 1, 2 and 6, the other two 88. observations are [AMU 1998] (b) 4 and 9 (c) 5 and 7 (d) 5 and 9 (a) 4 and 8 Consider any set of observations $x_1, x_2, x_3, ..., x_{101}$; it being given that $x_1 < x_2 < x_3 < ... < x_{100} < x_{101}$; then the mean 89. deviation of this set of observations about a point k is minimum when k equals [DCE 1997] (c) $\frac{x_1 + x_2 + \dots + x_{101}}{101}$ (a) x₁ (b) x₅₁ (d) x_{50} The mean and S.D of the marks of 200 candidates were found to be 40 and 15 respectively. Later, it was 90. discovered that a score of 40 was wrongly read as 50. The correct mean and S.D respectively are (a) 14.98, 39.95 (b) 39.95, 14.98 (c) 39.95, 224.5 (d) None of these Let *r* be the range and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$ be the S.D. of a set of observations x_1, x_2, \dots, x_n , then 91. (a) $S \le r \sqrt{\frac{n}{n-1}}$ (b) $S = r \sqrt{\frac{n}{n-1}}$ (c) $S \ge r\sqrt{\frac{n}{n-1}}$ (d) None of these In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is 92. (a) M.D. = S.D.(b) M.D. \geq S.D. (c) M.D. < S.D.(d) M.D. \leq S.D. For (2*n* +1) observations $x_1, -x_1, x_2, -x_2, \dots, x_n, -x_n$ and 0 where x's are all distinct. Let S.D. and M.D. denote the 93.

82.

standard deviation and median respectively. Then which of the following is always true [Orissa JEE 2002] (a) S.D. < M.D.

- (b) S.D. > M.D.
- (c) S.D. = M.D.

95.

- (d) Nothing can be said in general about the relationship of S.D. and M.D.
- **94.** Suppose values taken by a variable *X* are such that $a \le x_i \le b$ where x_i denotes the value of *X* in the *i*th case for *i* = 1, 2, ..., *n*. Then

[Kurukshetra CEE 1995, 2000]

(a) $a \leq \operatorname{Var}(X) \leq b$	(b) $a^2 \leq \operatorname{Var}(X) \leq b^2$	(c) $\frac{a^2}{4} \leq \operatorname{Var}(X)$	(d) $(b-a)^2 \ge Var(X)$
The variance of α , β and	nd 5 ₇ is	[AMU 1998]	
(a) 45	(b) $\frac{9}{5}$	(c) $\frac{5}{9}$	(d) 225

* * *

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	с	a	a	b	с	a	d	d	с	d	с	d	d	b	d	d	b	a	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
с	b	d	с	с	d	d	a	a	d	b	с	d	a	a	с	a	с	с	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	с	b	a	d	a	с	с	с	b	b	с	b	d	b	с	с	b	a	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
с	b	с	b	а	b	d	с	a	а	b	b	b	b	a	d	d	d	с	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95					
a	а	d	d	b	b	с	b	b	b	а	b	b	d	d					

Correlation

Basic Level

1. For the bivariate frequency table for *x* and *y*

x y	0 - 10	10 - 20	20 - 30	30 - 40	Sum
0 - 10	3	2	4	2	11
10 - 20	-	1	3	1	5
20 - 30	3	2	-	-	5
30 - 40	-	6	7	-	13
Sum	6	11	14	3	34

Then the marginal frequency distribution for y is given by

(a	0	I	6
)	10		
	10	I	11
	20		
	20	I	14
	30		
	30 40	١	3
	40		

(b)	0	I	11
	10		
	10	Ι	5
	20		
	20	Ι	5
	30		
	30	-	13
	40		

(c)	0 -	10	10
	10	I	12
	20		
	20	Ι	11
	30		

	(d) None of these			
2.		represent height in <i>cm</i> and wei	ght in <i>gm</i> respectively. The	e correlation between x and y
	has the unit			-
				[MP PET 2003]
	(a) gm	(b) cm	(c) <i>gm.cm</i>	(d) None of these
3.	The value of $\sum_{x \in x} \overline{x}(x-x)(x-x)$	(y-y)] is		
	(a) $n.r_{xy}.\sigma_x\sigma_y$	(b) $r_{xy}.\sigma_x^2\sigma_y^2$	(c) $r_{xy}\sqrt{\sigma_x\sigma_y}$	(d) None of these
4.	Karl Pearson's coeffici	ent of correlation is dependent		[MP PET 1993]
	(a) Only on the change scale and not on the	of origin and not on the change e change of origin	e of scale	(b) Only on the change of
	(b) On both the change of origin	of origin and the change of sca	le (d) Neither on the chan	ge of scale nor on the change
5۰	If X and Y are independ	ent variable, then correlation c	oefficient is	
	(a) 1	(b) - 1	(c) $\frac{1}{2}$	(d) o
6.	The value of the correla	ation coefficient between two va	ariable lies between	[Kurukshetra CEE 1998]
	(a) 0 and 1	(b) – 1 and 1	(c) 0 and ∞	(d) $-\infty$ and O
7.	The coefficient of corre	lation between two variables <i>x</i>	and y is given by	
	(a) $r = \frac{\sigma_x^2 + \sigma_y^2 + \sigma_{x-y}^2}{2\sigma_x\sigma_y}$	(b) $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$	(c) $r = \frac{\sigma_x^2 + \sigma_y^2 + \sigma_{x-y}^2}{\sigma_x \sigma_y}$	(d) $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{\sigma_x \sigma_y}$
8.	If <i>r</i> is the correlation co	oefficient between two variable	s, then	[MP PET 1995; Pb. CET 1995]
8.	If r is the correlation co (a) $r \ge 1$	befficient between two variable (b) $r \le 1$	s, then (c) $ r \le 1$	[MP PET 1995; Pb. CET 1995] (d) r ≥1
8. 9.	(a) $r \ge 1$		(c) r ≤1	(d) $ r \ge 1$
	(a) $r \ge 1$	(b) <i>r</i> ≤1	(c) r ≤1	(d) $ r \ge 1$
	 (a) r≥1 When the correlation b (a) -1 	(b) $r \le 1$ etween two variables is perfect	(c) $ r \le 1$, then the value of coefficient (c) O	(d) $ r \ge 1$ ent of correlation r is
9.	 (a) r≥1 When the correlation b (a) -1 	 (b) r≤1 etween two variables is perfect (b) +1 	(c) $ r \le 1$, then the value of coefficient (c) O	(d) $ r \ge 1$ ent of correlation r is
9.	 (a) r≥1 When the correlation b (a) -1 If correlation between a (a) -r 	(b) $r \le 1$ etween two variables is perfect (b) +1 x and y is r, then between y and	 (c) r ≤1 , then the value of coefficiency (c) 0 1 x correlation will be (c) r 	 (d) r ≥1 ent of correlation r is (d) ±1
9. 10.	(a) $r \ge 1$ When the correlation b (a) -1 If correlation between r (a) $-r$ If r is the coefficient of	(b) $r \le 1$ etween two variables is perfect (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then	<pre>(c) r ≤1 , then the value of coefficie (c) 0 l x correlation will be (c) r r =</pre>	 (d) r ≥1 ent of correlation r is (d) ±1 (d) 1- r
9. 10.	 (a) r≥1 When the correlation b (a) -1 If correlation between a (a) -r 	(b) $r \le 1$ etween two variables is perfect (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then	 (c) r ≤1 , then the value of coefficiency (c) 0 1 x correlation will be (c) r 	 (d) r ≥1 ent of correlation r is (d) ±1
9. 10.	(a) $r \ge 1$ When the correlation b (a) -1 If correlation between a (a) $-r$ If <i>r</i> is the coefficient of (a) $\frac{a}{b}$	(b) $r \le 1$ etween two variables is perfect (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then	<pre>(c) r ≤1 , then the value of coefficie (c) 0 l x correlation will be (c) r r = (c) 1</pre>	 (d) r ≥1 ent of correlation r is (d) ±1 (d) 1- r
9. 10. 11.	(a) $r \ge 1$ When the correlation b (a) -1 If correlation between x (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correla (a) Variables x and y h	(b) $r \le 1$ etween two variables is perfect (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x an ave no relation	<pre>(c) r ≤1 , then the value of coefficie (c) 0 l x correlation will be (c) r r = (c) 1</pre>	 (d) <i>r</i> ≥1 ent of correlation <i>r</i> is (d) ±1 (d) 1- <i>r</i> (d) None of these
9. 10. 11. 12.	(a) $r \ge 1$ When the correlation b (a) -1 If correlation between x (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correla (a) Variables x and y h (c) y increases as x inc	(b) $r \le 1$ etween two variables is perfect (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x an ave no relation	<pre>(c) r ≤1 , then the value of coefficie (c) 0 I x correlation will be (c) r r = (c) 1 d y is zero, then</pre>	 (d) <i>r</i> ≥1 ent of correlation <i>r</i> is (d) ±1 (d) 1- <i>r</i> (d) None of these
 9. 10. 11. 12. relation 	(a) $r \ge 1$ When the correlation b (a) -1 If correlation between . (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correla (a) Variables x and y h (c) y increases as x increases the correlation between x and y	(b) $r \le 1$ etween two variables is perfect (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x an ave no relation reases	 (c) r ≤1 , then the value of coefficient (c) 0 1 x correlation will be (c) r r = (c) 1 d y is zero, then (b) y decreases as x increases (c) 	 (d) r ≥1 ent of correlation r is (d) ±1 (d) 1- r (d) None of these
9. 10. 11. 12.	(a) $r \ge 1$ When the correlation b (a) -1 If correlation between x (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correla (a) Variables x and y h (c) y increases as x incomposition between x and y When the origin is char	(b) $r \le 1$ etween two variables is perfect (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x an ave no relation reases	<pre>(c) r ≤1 , then the value of coefficie (c) 0 I x correlation will be (c) r r = (c) 1 d y is zero, then (b) y decreases as x increases</pre>	 (d) r ≥1 ent of correlation r is (d) ±1 (d) 1- r (d) None of these eases (d) There may be a
 9. 10. 11. 12. relation 	(a) $r \ge 1$ When the correlation b (a) -1 If correlation between . (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correla (a) Variables x and y h (c) y increases as x increases the correlation between x and y	(b) $r \le 1$ etween two variables is perfect (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x an ave no relation reases	 (c) r ≤1 , then the value of coefficient (c) 0 1 x correlation will be (c) r r = (c) 1 d y is zero, then (b) y decreases as x increases (c) 	 (d) r ≥1 ent of correlation r is (d) ±1 (d) 1- r (d) None of these
 9. 10. 11. 12. relati 13. 	(a) $r \ge 1$ When the correlation b (a) -1 If correlation between x (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correla (a) Variables x and y h (c) y increases as x inclusion between x and y When the origin is char (a) Becomes zero	(b) $r \le 1$ etween two variables is perfect (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x an ave no relation reases nged, then the coefficient of con (b) Varies	<pre>(c) r ≤1 , then the value of coefficie (c) 0 I x correlation will be (c) r r = (c) 1 d y is zero, then (b) y decreases as x increases crelation (c) Remains fixed</pre>	 (d) r ≥1 ent of correlation r is (d) ±1 (d) 1- r (d) None of these eases (d) There may be a (d) None of these
 9. 10. 11. 12. relati 13. 	(a) $r \ge 1$ When the correlation b (a) -1 If correlation between x (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correla (a) Variables x and y h (c) y increases as x increases tion between x and y When the origin is char (a) Becomes zero If $r = -0.97$, then (a) Correlation is negative	(b) $r \le 1$ etween two variables is perfect (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x an ave no relation reases nged, then the coefficient of con (b) Varies	<pre>(c) r ≤1 , then the value of coefficie (c) 0 I x correlation will be (c) r r = (c) 1 d y is zero, then (b) y decreases as x increases</pre>	 (d) r ≥1 ent of correlation r is (d) ±1 (d) 1- r (d) None of these eases (d) There may be a (d) None of these

15. In a scatter diagram, if plotted points form a straight line running from the lower left to the upper right corner, then there exists a

(a) High degree of positive correlation (b) Perfect positive correlation

30

40

_

1

76 Correlation and Regression

				-		correl and ι		variate distribution	(d) have a perfect correla	None of these ation, they may be connected by [Kur
If the two variables x and y of a bivariate distribution h (a) $xy = 1$ (b) $\frac{a}{x} + \frac{b}{y} = 1$									(c) $\frac{x}{a} + \frac{y}{b} = 1$	(d) None of these
If x	ເ ລາ	nd y	are	rela	ated				correlation between <i>x</i>	and <i>y</i> is
		-	ct po					ct negative	(c) No correlation	(d) None of these
If	Σ	x = 1	15, 5	y :	= 36 ,	$\sum_{j=1}^{j}$	y = 110	n=5 then $Cov(x,y)$	equals	[AI CBSE 1991]
(a)			-	_			()) $\frac{-1}{5}$		(c) $\frac{2}{5}$	(d) $-\frac{2}{5}$
For	r a	biva	ariat	ole d	listr	ibutio	n (x,y)	if $\sum xy = 350$, $\sum x$	$x = 50, \sum y = 60, \overline{x} = 5, \overline{y} = 5$	= 6, then $Cov(x, y)$ equals
										[Pb. CET 1997, AMU
]	_					(1				
(a) For		ovar	ianc	e th	ie nu		o) 6 of var	ate values in the tw	(c) 22 o given distribution sh	(d) 28 Nould be [AMU 1989]
		neq		с u		moer	Ji val	ace values in the tw	•	one and any number in the other
		qual							(d) None of these	
		-		ind	eper	ndent	variab	es, then		[AMU 1994]
		_			-			(x, y) = -1	(c) $Cov(x, y) = 0$	(d) $Cov(x,y) = \pm \frac{1}{2}$
(u)	C	01 (л	, y) –	1		(1) 001	<i>x</i> , <i>y</i>) = 1	$(\mathbf{c}) \mathbf{cov}(x,y) = 0$	$(u) = \frac{1}{2}$
If										
x :		3	4	8	(5 2	1			
: У		5	3	9	6	59	2			
:		5	5	Ŀ	,	. 9	-			
the	en t	the o	coeff	icie	ent o	f corr	elatior	will be approximate	ely	[AI CBSE 1990]
(a)) 0.4		(c) - 0. 49	(d) - 0. 40
The	e c	oeff	icier	nt of	f cor	relati	on for	he following data		
x	2	2	25	30) 3	5 4	45			
	_	0		-		0				
у		16	10	8	2	-	10			
wil	ll b	e				<u> </u>				[AI CBSE 1988]
		. 32				(1	o) - o.	2	(c) 0.35	(d) None of these
			nt of	cor	rela	tion f	rom th	following data		
x		1	2		3	4	5			
:						·				
у		2	5		7	8	10			
:	յւ									
wil	U D	e								[DSSE 1983, AI CBSE
-	0.	. 97				(1	o) - o.	7	(c) 0.90	(d) None of these
Coe	effi	icieı	nt of	cor	rela	tion b	etwee	x and y for the following	owing data	
r	•	15	16	5	17	17	18 2	10		
~	-	-5	1	-	-/	-/	0			

12 15 16 12 15 11 y 17 : will be approximately [DSSE 1979, 81; AI CBSE 1990] (c) - 0.50 (a) 0.50 (b) 0.53 (d) - 0.53 Karl Pearson's coefficient of correlation between x and y for the following data 26. [AISSE 1983, 85, 90] 8 6 x: 3 4 9 2 1 3 7 7 6 9 2 y 5 : (b) - 0. 480 (d) - 0. 408 (a) 0.480 (c) 0.408 The coefficient of correlation for the following data 27. x:1 2 6 8 10 З 4 5 7 9 8 6 u:3 10 5 1 2 9 4 7 will be [AISSE 1986, 1990] (a) 0.224 (b) 0.240 (c) 0.30 (d) None of these Karl Pearson's coefficient of correlation between the marks in English and Mathematics by ten students 28. Marks in 18 2 13 21 11 12 17 14 19 15 English 0 Marks in 17 12 23 25 14 8 19 21 22 19 Maths will be [AISSE 1979, 82] (d) None of these (a) 0.75 (b) - 0.75 (c) 0.57 Coefficient of correlation between x and y for the following data 29. x _ -3 -2 -1 0 1 2 3 4 4 16 9 4 1 0 1 9 16 у 4 will be [Mathematics Olympiad 1981; DSSE 1980] (a) 1 (b) -1 (c) 0 (d) None of these If the variances of two variables x and y are respectively 9 and 16 and their covariance is 8, then their 30. coefficient of correlation is [MP PET 1998] (b) $\frac{8}{3\sqrt{2}}$ (c) $\frac{9}{8\sqrt{2}}$ (d) $\frac{2}{9}$ (a) $\frac{2}{3}$ If the co-efficient of correlation between x and y is 0. 28, covariance between x and y is 7.6 and the variance of 31. x is 9, then the S.D. of y series is (a) 9.8 (b) 10.1 (c) 9.05 (d) 10.05 [AMU 1993] 32. If Cov(x, y) = 0, then $\rho(x, y)$ equals (d) $\pm \frac{1}{2}$ (a) 0 (b) 1 (c) - 1

Correlation and Regression 77

33. Karl Pearson's coefficient of correlation between the heights (in inches) of teachers and students corresponding to the given data

78	Correlation and Reg	ress	sion											
	Height of teachers <i>x</i> :	6 6	67	6 8	6 9	70)							
	Height of students y:		6 6		72	70)							
	is			-									[MP]	PET 1993]
	(a) $\frac{1}{\sqrt{2}}$		(b) √	$\sqrt{2}$					(c)	$-\frac{1}{\sqrt{2}}$			(d) o	
1.	The coefficient of cor the standard deviation			betwe	een <i>x</i>	and	y is	0.6, t	hen c	ovaria	nce i	s 16. Sta	ndard deviation of x is	s 4, then
	(a) 5		(b) 10	0					(c)	20/3			(d) None of these	
5۰	If $Cov(u, v) = 3$, $\sigma_u^2 = 4.5$	$,\sigma_v^2$	= 5.5,	then	$\rho(u,$	v) is							[A	MU 1988]
	(a) 0.121		(b) o	-						0.07			(d) 0.347	
6.	Given $n = 10$, $\sum x = 4$,	$\sum y$	v = 3,	$\sum x^2$	= 8,	$\sum y^2$	$^{2} = 9$	and X	$\sum xy =$	3, the	n the	coefficie	ent of correlation is [P	b. CET 1999
	(a) $\frac{1}{4}$		(b) $\frac{7}{1}$	$\frac{7}{2}$					(c)	$\frac{15}{4}$			(d) $\frac{14}{3}$	
7.	Let r_{xy} be the coefficient	ent o	of cor	rrelat	ion t	oetw	een t	two va	ariabl	es x ai	nd y.	If the va	ariable x is multiplied	by 3 and
	the variable <i>y</i> is incre	ased	l by 2	z, the	n the	cori	relati	ion co	efficie	ent of t	the ne	ew set of	variables is	
	(a) r_{xy}		(b) 3	r_{xy}					(c)	$3r_{xy} + 2$	2		(d) None of these	
8.	Coefficient of correlat	tion	betw	een t	he tv	vo va	ariate	es X ai	nd Y i	5				
	X 1 2		3	4		5								
	Y 5 4		3	2		1								
	(a) 0		(b) -:	1					(c)	1			(d) None of these	
9.	The coefficient of co	rrela	ation	betw	een t	two	varia	ables 2	X and	Y is (0.5,	their co	variance is 15 and σ_{x}	=6, then
	σ_y =		[AMU	1998]									
	(a) 5		(b) 10	0					(c)	20			(d) 6	
0.	Karl Pearson's coeffic Chemistry in a class t					atio	n bet	ween	the r	anks c	btain	ed by te	n students in Mathem	atics and
	Rank in Mathematics :	1	2	3		4	5	6	7	8	9	10		
	Rank in Chemistry :	3	10	5		1	2	9	4	8	7	6		
	is												[AI:	SSE 1990]
	(a) 0.224		(b) o	.204					(c)	0.240			(d) None of these	
1.	1									d in Pl	nysics	and Ch	emistry by 10 students	in a test
	is 150, then the co-eff (a) 0.909		nt of 1 (b) O		corre	elati	on is	gıven		0.849			(d) None of these	
							Adva	ance	Level					
2.	If a, b, h, k are consta	nts,	while	e U ai	nd V	are	$U = \frac{\lambda}{2}$	$\frac{X-a}{L}$, V	$V = \frac{Y}{T}$	- <u>b</u> , th	en		[]	DCE 1999]
	(a) $Cov(X, Y) = Cov($							п	Ň				$C_{0V}(\mathbf{Y}, \mathbf{V}) = hk C_{0V}$	
	$(a) \operatorname{COV}(X, Y) = \operatorname{COV}($	υ, ν	J							(b)			Cov(X, Y) = hk Cov	v (0, v)

	(c) $Cov(X, Y) = ab$	Cov (U, V)	(d)	Cov(U, V) = hk Cov(Z)	X, Y)
43.	Let X, Y be two vari U = 2X, $V = 3Y$, then		efficient $\rho(X, Y)$ and variables U, V be	·	elation J 1999]
	(a) $\rho(X, Y)$	(b) $6\rho(X, Y)$	(c) $\sqrt{6}\rho(X,Y)$	(d) $\frac{3}{2}\rho(X,Y)$	
44.	If X and Y are two u	incorrelated variables and	d if $u = X + Y$, $v = X - Y$, then $r(u, v)$ is	s equal to [DCE	E 1998]
	(a) $\frac{\sigma_x^2 + \sigma_y^2}{\sigma_x^2 - \sigma_y^2}$	(b) $\frac{\sigma_x^2 - \sigma_y^2}{\sigma_x^2 + \sigma_y^2}$	(c) $\frac{\sigma_x^2 + \sigma_y^2}{\sigma_x \sigma_y}$	(d) None of these	
45.	If $\overline{x} = \overline{y} = 0$, $\sum x_i y_i = 12$	2, $\sigma_x = 2$, $\sigma_y = 3$ and $n = 10$, then the coefficient of correlation is	G [MP PET	[1999]
	(a) 0.4	(b) 0.3	(c) 0.2	(d) 0.1	
46.	Let X and Y be two Y. Then Cov (U, V) i		variance and <i>U</i> and <i>V</i> be two variable	es such that $U = X + Y$, V	/ = X -
	(a) <i>Cov</i> (<i>X</i> , <i>Y</i>)	(b) o	(C) 1	(d) - 1	
				Regress	sion
		<	Basic Level		

- 47. If there exists a linear statistical relationship between two variables x and y, then the regression coefficient of y on x is[MP PET 1998]
 - (a) $\frac{cor(x,y)}{\sigma_x \cdot \sigma_y}$

(b)
$$\frac{cor(x,y)}{\sigma_y^2}$$

(c)
$$\frac{cor(x,y)}{\sigma_x^2}$$

(d) $\frac{cor(x,y)}{\sigma_x}$, where σ_x, σ_y are standard deviations of x and y respectively.

48. If ax + by + c = 0 is a line of regression of *y* on *x* and $a_1x + b_1y + c_1 = 0$ that of *x* on *y*, then

(a) $a_1b \le ab_1$ (b) $aa_1 = bb_1$ (c) $ab_1 \le a_1b$ (d) None of these **49.** Least square lines of regression give best possible estimates, when $\rho(X, Y)$ is [DCE 1996]

(a) <1 (b) > -1 (c) -1 or 1 (d) None of these

- **50.** Which of the following statement is correct
 - (a) Correlation coefficient is the arithmetic mean of the regression coefficient
 - (b) Correlation coefficient is the geometric mean of the regression coefficient
 - (c) Correlation coefficient is the harmonic mean of the regression coefficient
 - (d) None of these
- **51.** The relationship between the correlation coefficient r and the regression coefficients b_{xy} and b_{yx} is[MP PET 2003; Pb. C

(a)
$$r = \frac{1}{2}(b_{xy} + b_{yx})$$
 (b) $r = \sqrt{b_{xy}b_{yx}}$ (c) $r = (b_{xy}b_{yx})^2$ (d) $r = b_{xy} + b_{yx}$

52. If the coefficient of correlation is positive, then the regression coefficients

[Pb. CET 1998; PU CET 2002]

[Kurukshetra CEE 1995]

80	Correlation and Regr	ession		
	(a) Both are positive			
	(b) Both are negative			
	(c) One is positive and	another is negative		
	(d) None of these			
3.	If b_{yx} and b_{xy} are both	positive (where b_{yx} and b_{xy} are	regression coefficients), th	nen [MP PET 2001]
	(a) $\frac{1}{b_{yx}} + \frac{1}{b_{xy}} < \frac{2}{r}$		(b) $\frac{1}{b_{yx}} + \frac{1}{b_{xy}} > \frac{2}{r}$	
	(c) $\frac{1}{b_{yx}} + \frac{1}{b_{xy}} < \frac{r}{2}$		(d) None of these	
4.	If x_1 and x_2 are regress	ssion coefficients and r is the co	efficient of correlation, ther	n
	(a) $x_1 - x_2 > r$	(b) $x_1 + x_2 < r$	(c) $x_1 + x_2 \ge 2r$	(d) None of these
5.	If one regression coeffi	cient be unity, then the other w	ill be	
	(a) Greater than unity	(b) Greater than or equal to u	unity (c)	Less than or equal to unity (d
6.	If one regression coeffi	cient be less than unity, then th	e other will be	
	(a) Less than unity	(b) Equal to unity	(c) Greater than unity	(d) All of the above
7.	If regression coefficien	t of y on x is 2, then the regress	ion coefficient of x on y is	[AMU 1990]
	(a) 2	(b) $\frac{1}{2}$	(c) $\leq \frac{1}{2}$	(d) None of these
3.	The lines of regression	of <i>x</i> on <i>y</i> estimates		[AMU 1993]
	(a) x for a given value	of y (b)	y for a given value of x	(c) x from y and y from $x(d)$
9.	The statistical method value of the related var	which helps us to estimate or pr riable is called	redict the unknown value of	f one variable from the known [Pb. CET 1995]
	(a) Correlation	(b) Scatter diagram	(c) Regression	(d) Dispersion
).	The coefficient of correct Then the regression coefficient	elation between two variables <i>x</i> efficient of <i>x</i> on <i>y</i> is	and y is 0.8 while regressi	on coefficient of <i>y</i> on <i>x</i> is 0.2. [MP PET 1993]
	(a) -3.2	(b) 3.2	(c) 4	(d) 0.16
ι.	If the lines of regressio	on coincide, then the value of con	rrelation coefficient is	
	(a) 0	(b) 1	(c) 0.5	(d) 0.33
2.	Two lines of regression	h are $3x + 4y - 7 = 0$ and $4x + y - 5$	= 0 . Then correlation coeffi	icient between x and y is[AI CBSI
	(a) $\frac{\sqrt{3}}{4}$	(b) $-\frac{\sqrt{3}}{4}$	(c) $\frac{3}{16}$	(d) $-\frac{3}{16}$
3.	If the two lines of regre	ession are $4x + 3y + 7 = 0$ and $3x + 3y + 7 = 0$	+4y+8=0, then the means	of <i>x</i> and <i>y</i> are [AI CBSE 1990]
	(a) $-\frac{4}{7}, -\frac{11}{7}$	(b) $-\frac{4}{7},\frac{11}{7}$	(c) $\frac{4}{7}, -\frac{11}{7}$	(d) 4, 7
1.	The two regression line	es for a bivariate data are $x + y + y$	-50 = 0 and $2x + 3y + K = 0$.	If $\overline{x} = 0$, then \overline{y} is
	(a) 50	(b) <i>K</i> -100	[] (c) - 50	BCA Delhi Entrance Exam. 1999] (d) 50 + <i>K</i>
5.		es are $2x - 9y + 6 = 0$ and $x - 2y + 6 = 0$		
	(a) $-\frac{2}{3}$	(b) $\frac{2}{3}$	(c) $\frac{4}{9}$	(d) None of these

6.	If the two regression c them is	coefficient between x and y are	e 0.8 and 0.2, then the coe	fficient of correlation between [MP PET 2000]
	(a) 0.4	(b) 0.6	(c) 0.3	(d) 0.5
7.	The two lines of regres and <i>y</i> is	ssion are given by $3x + 2y = 26$	and $6x + y = 31$. The coefficient	icient of correlation between <i>x</i> [DCE 2000]
	(a) $-\frac{1}{3}$	(b) $\frac{1}{3}$	(c) $-\frac{1}{2}$	(d) $\frac{1}{2}$
3.	If the lines of regressio	on be $x - y = 0$ and $4x - y - 3 = 0$	and $\sigma_x^2 = 1$, then the coefficient	icient of correlation is
	(a) - 0.5	(b) 0.5	(c) 1.0	(d) - 1.0
) .	A student obtained two y on x is) regression lines as $L_1 \equiv x - 5y$	$x + 7 = 0$ and $L_2 = 3x + y - 8 =$	= 0 . Then the regression line of
	(a) <i>L</i> ₁	(b) L ₂	(c) Neither of the two	(d) $x - 5y = 0$
D .	If b_{yx} and b_{xy} are registatement is true	gression coefficients of y on	x and x on y respectively	r, then which of the following [Pb. CET 1996]
	(a) $b = 1.5, b_{m} = 1.4$	(b) $b_{yy} = 1.5, b_{yy} = 0.9$	(c) $b = 1.5, b_{m} = 0.8$	(d) $b_{xy} = 1.5, b_{yx} = 0.6$
ι.	<i>xy yx</i>	es of regression is given by		(u) $v_{xy} = 1.5, v_{yx} = 0.0$ (urukshetra CEE 2000; DCE 1998]
	(a) $\tan^{-1}\left(\frac{b_{yx} - \frac{1}{b_{xy}}}{1 + \frac{b_{xy}}{b_{yx}}}\right)$	(b) $\tan^{-1}\left(\frac{b_{yx} - b_{xy} - 1}{b_{yx} + b_{xy}}\right)$	(c) $\tan^{-1}\left(\frac{b_{xy} - \frac{1}{b_{yx}}}{1 + \frac{b_{xy}}{b_{yx}}}\right)$	(d) $\tan^{-1}\left(\frac{b_{yx} - b_{xy}}{1 + b_{yx} \cdot b_{xy}}\right)$
2.	If acute angle between	the two regression lines is θ , the two regression lines is θ .	nen	
	(a) $\sin\theta \ge 1-r^2$	(b) $\tan \theta \ge 1 - r^2$	(c) $\sin\theta \le 1-r^2$	(d) $\tan \theta \le 1 - r^2$
3.	If the angle between th	e two lines of regression is 90°	', then it represents	[DCE 1999]
	(a) Perfect correlation	(b) Perfect negative correlat	tion (c)	No linear correlation (d)
ŀ•	If $2x + y = 7$ and $x + 2y =$ and <i>y</i> is	=7 are the two regression line	s respectively, then the cor	rrelation co-efficient between x
				[DCE 1983; AMU 1993]
	(a) + 1	(b) -1	(c) $+\frac{1}{2}$	(d) $-\frac{1}{2}$
5.	For a perfect correlation then $\rho(x,y) =$	on between the variables x and	y, the line of regression is	s $ax + by + c = 0$ where $a, b, c > 0$;
				[AMU 1999]
	(a) 0	(b) -1	(C) 1	(d) None of these
5.	If two random variable correlation coefficient		bution are connected by th	e relationship $3x + 2y = 4$, then [AMU 1999]
	(a) 1	(b) -1	(c) 2/3	(d) -2/3
7.	Two variables x and y the two is +1, if	are related by the linear equa	tion $ax + by + c = 0$. The coe	fficient of correlation between
				[DCE 2002]
	(a) <i>a</i> is positive	(b) <i>b</i> is positive	(c) a and b both are pos	sitive (d)a and b are of opposi

82 Correlation and Regression

	U			
/8.	If the two lines of regre	ession are $5x + 3y = 55$ and $7x + 3y = 55$	y = 45, then the correlation of	coefficient between x and y is[AM
	(a) +1	(b) -1	(c) $-\sqrt{\frac{5}{21}}$	(d) $-\sqrt{\frac{21}{5}}$
' 9.	The error of prediction	of <i>x</i> from the required line of r	egression is given by,	
	(where $ ho$ is the co-efficient	ient of correlation)		[AMU 1992]
	(a) $\sigma_x(1-\rho^2)$	(b) $n \sigma_x^2 (1 - \rho^2)$	(c) $\sigma_x^2(1-\rho^2)$	(d) $n \sigma_y^2 (1 - \rho^2)$
0.	Probable error of <i>r</i> is			
	(a) $0.6745\left(\frac{1-r^2}{\sqrt{n}}\right)$	(b) 0.6754 $\left(\frac{1+r^2}{\sqrt{n}}\right)$	(c) $0.6547\left(\frac{1-r^2}{n}\right)$	(d) $0.6754\left(\frac{1-r^2}{n}\right)$
		Advance	Level	
81.	For the following data			
		x y		
	Mean	65 67		
	Standard deviation	5.0 2.5		
	Correlation coefficient	0.8		
	Then the equation of lir	ne of regression of <i>y</i> on <i>x</i> is		
	(a) $y-67 = \frac{2}{5}(x-65)$	(b) $y-67 = \frac{1}{5}(x-65)$	(c) $x-65 = \frac{2}{5}(y-67)$	(d) $x - 65 = \frac{1}{5}(y - 67)$
2.	If the lines of regression	n of y on x and that of x on y ar	e y = kx + 4 and x = 4y + 5 re	espectively, then
	(a) $k \le 0$	(b) $k \ge 0$	(c) $0 \le k \le \frac{1}{4}$	(d) $0 \le k \le 1$
3.	From the following obs	ervations $\{(x, y)\} = \{(1, 7), (4, 5), (7, 2)\}$	2),(10,6),(13,5)}. The line of re	egression of y on x is [AI CBSE 199 1
	(a) $7x + 30y - 187 = 0$	(b) $7x - 30y - 187 = 0$	(c) $7x - 30y + 187 = 0$	(d) None of these
4.	If the variance of $x = 9$	and regression equations are	4x - 5y + 33 = 0 and $20x - 9y - 33 = 0$	-10 = 0, then the coefficient of
		and y and the variance of y resp	ectively are	
	(a) 0.6; 16	(b) 0.16; 16	(c) 0.3; 4	(d) 0.6; 4
5۰	_	ession are $x + 4y = 3$ and $3x + y =$		
~	(a) 4	(b) -9	(c) - 4	(d) None of these
6.	bivariate population	g two sets of regression lines	-	
	I. $x + 4y = 15$ and $y + 3x$	$= 12, \overline{x} = 3, \overline{y} = 3$ II. $3x$	$+4y = 9$ and $4x + y = 1, \overline{x} = -$	$\frac{5}{10}, \overline{y} = \frac{30}{13}$ [AMU 2000]
	(a) Both I and II	(b) II only	(c) I only	(d) None of these
7.	Out of the two lines of a	regression given by $x + 2y = 4$ as	nd $2x + 3y - 5 = 0$, the regres	sion line of x on y is [Kurukshetra
	(a) $x + 2y = 4$		(b) $2x + 3y - 5 = 0$	
	(a) $x + 2y = 4$		(0) =	

88. Regression of savings (*S*) of a family on income *Y* may be expressed as $S = a + \frac{Y}{m}$, where *a* and *m* are constants. In a random sample of 100 families the variance of savings is one-quarter of the variance of incomes and the correlation coefficient is found to be 0.4. The value of *m* is

(a) 2 (b) 5 (c) 8 (d) None of these

* * *

Correlation and Regression

Assignment (Basic and Advance Level)

()

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	d	a	d	d	b	b	с	d	с	с	a	с	b	b	с	a	с	a	с
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
с	a	b	a	b	с	a	a	с	a	с	a	a	с	b	b	a	b	a	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	b	a	b	с	b	с	с	с	b	b	a	b	с	с	d	с	a	с	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	b	a	с	b	a	с	b	с	d	с	с	с	d	b	b	d	с	b	a
81	82	83	84	85	86	87	88												
a	с	d	a	a	с	b	b												