Verify the Algebraic Identity $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$

OBJECTIVE

To verify the algebraic identity $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$.

Materials Required

- 1. Geometry box
- 2. Acrylic sheet
- 3. Scissors
- 4. Adhesive/Adhesive tape
- 5. Cutter

Prerequisite Knowledge

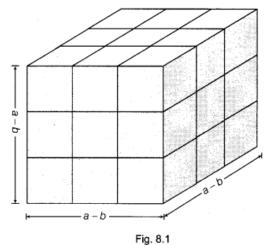
- 1. Concept of cuboid and its volume.
- 2. Concept of cube and its volume.

Theory

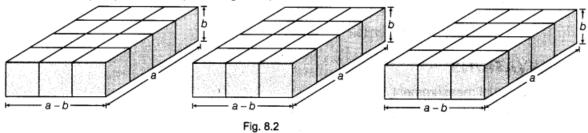
- 1. For concept of cuboid and its volume refer to Activity 7.
- 2. For concept of cube and its volume refer to Activity 7.

Procedure

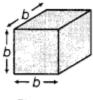
1. By using acrylic sheet and adhesive tape/adhesive, make a cube of side (a - b) units, where a > b. (see Fig. 8.1)



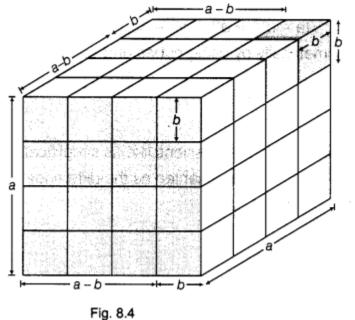
2. By using acrylic sheet and adhesive tape, make three cuboids each of dimensions, (a-b) x a x b. (see Fig. 8.2)



By using acrylic sheet and adhesive tape make a cube of side b units, (see Fig. 8.3)



4. Arrange all the cubes and cuboids as shown in Fig 8.4.



Demonstration

In Fig. 8.1, volume of the cube of side (a - b) units = $(a - b)^3$ In Fig. 8.2, volume of a cuboid of sides $(a - b) \times a \times b = (a - b)ab$ In Fig. 8.2, volume of three cuboids = $3 \times (a - b) ab$ In Fig. 8.3, volume of the cube of side $b = b^3$

In Fig. 8.4, volume of the solid = Sum of volume of all cubes and cuboids

= $(a - b)^3 + (a - b)$. ab + (a - b). ab + (a - b) $ab + b^3$ = $(a - b)^3+3 (a - b)$. $ab + b^3$...(i) Also, the obtained solid in Fig. 8.4 is a cube of side a. Therefore, its volume = a^3 From Eqs. (i) and (ii), we get $(a - b)^3 + 3ab (a - b) + b^3 = a^3$ => $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$ Here, volume is in cubic units.

Observation

By actual measurement, $a = \dots, b = \dots, a-b = \dots,$ So, $a^3 = \dots, ab = \dots,$ $b^3 = \dots, ab(a - b) = \dots,$ $3ab(a - b) = \dots, (a - b)^3 = \dots$ Therefore, we observe that $(a-b)^3 = a^3 - b^3 - 3ab (a-b) \text{ or } (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

Result

From above observation, algebraic identity for any a, to, where (a > b) is $(a - b)^3 = a^3 - b^3 - 3ab(a - b)$ Has been verified geometrically by using cubes and cuboids.

Application

This identity is useful in

- 1. many operations of algebraic expressions like as simplification and factorization.
- 2. calculating cube of a number represented as the difference of two convenient numbers.

Viva Voce

Question 1: What is the formula of the volume of a cube? Answer: Volume of a cube = side x side x side = (side)³

Question 2:

What is the formula of the volume of a cuboid? **Answer:** Volume of a cuboid = length x breadth x height

Question 3: How would you expand $a^3 - b^3$, in the terms of $(a - b)^3$? Answer: We know that $(a - b)^3 = a^3 - b^3 - 3ab(a - b)$ $= a^{3} - b^{3} - 3a^{2}b + 3ab^{2} => a^{3} - b^{3} = (a - b)^{3} + 3a^{2}b - 3ab^{2}$

Question 4:

What is the expanded form of $(a - b)^3$? Answer: Expanded form of $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$

Question 5:

Does the resulted value of the product of $(a - b)^2$ and (a - b) is same as $(a - b)^3$? Give reason. **Answer:**

Yes, because $(a - b)^2 (a - b) = (a - b)^3 = a^3 - b^3 - 3ab (a - b) [: A^m x A^n = (A)^{m+n}]$

Suggested Activity

Verify that $(x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$ by taking x = 100 and y = 2.