Inverse Trigonometric Functions

• If $\sin y = x$, then $y = \sin^{-1}x$ (We read it as sine inverse x)

Here, $\sin^{-1}x$ is an inverse trigonometric function. Similarly, the other inverse trigonometric functions are as follows:

- If $\cos y = x$, then $y = \cos^{-1} x$
- If $\tan y = x$, then $y = \tan^{-1} x$
- If $\cot y = x$, then $y = \cot^{-1}x$
- If sec y = x, then $y = \sec^{-1}x$
- If cosec y = x, then $y = \operatorname{cosec}^{-1} x$
- The domains and ranges (principle value branches) of inverse trigonometric functions can be shown in a table as follows:

Function	Domain	Range (Principle value branches)
$y = \sin^{-1}x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$y = \cos^{-1}x$	[-1, 1]	$[0,\pi]$
$y = \tan^{-1}x$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$y = \cot^{-1}x$	R	$(0,\pi)$
$y = \sec^{-1}x$	$\mathbf{R} - (-1, 1)$	$[0,\pi] - \left\{\frac{\pi}{2}\right\}$
$y = \csc^{-1}x$	R - (-1, 1)	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$

• Note that $y = \tan^{-1}x$ does not mean that $y = (\tan x)^{-1}$. This argument also holds true for the other inverse trigonometric functions.

• The principal value of an inverse trigonometric function can be defined as the value of inverse trigonometric functions, which lies in the range of principal branch.

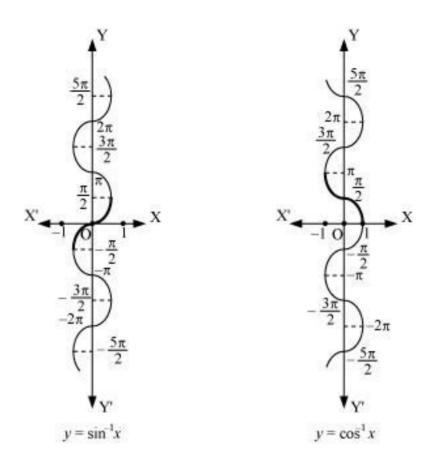
Example 1: What is the principal value of $\tan^{-1}(-\sqrt{3}) + \sin^{-1}(1)$?

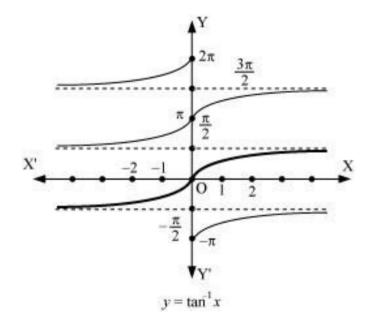
Solution:

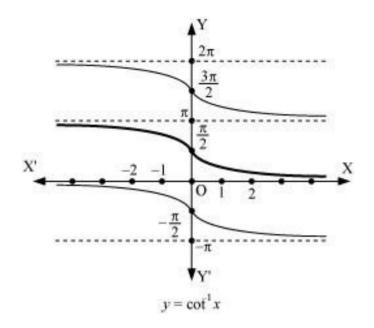
Let
$$\tan^{-1}\left(-\sqrt{3}\right) = y$$
 and $\sin^{-1}(1) = z$
 $\Rightarrow \tan y = -\sqrt{3} = -\tan\left(\frac{\pi}{3}\right) = \tan\left(-\frac{\pi}{3}\right)_{\text{and } \sin z} = 1 = \sin\frac{\pi}{2}$
We know that the ranges of principal value branch of \tan^{-1} and \sin^{-1} are $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ respectively. Also, $\tan\left(-\frac{\pi}{3}\right) = -\sqrt{3}\sin\left(\frac{\pi}{2}\right) = 1$

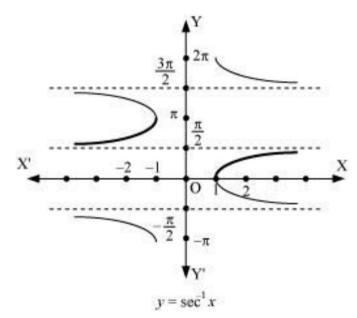
Therefore, principal values of $\tan^{-1}\left(-\sqrt{3}\right) = \frac{-\pi}{3}$ and $\sin^{-1}\left(1\right) = \frac{\pi}{2}$

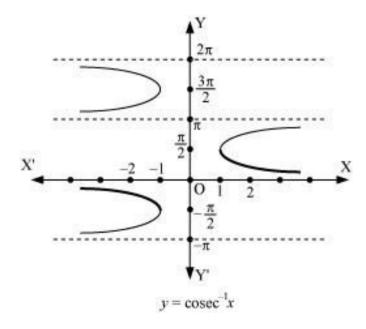
- $\therefore \tan^{-1}\left(-\sqrt{3}\right) + \sin^{-1}1 = \frac{-\pi}{3} + \frac{\pi}{2} = \frac{\pi}{6}$
- Graphs of the six inverse trigonometric functions can be drawn as follows:











• The relation $\sin y = x \Rightarrow y = \sin^{-1}x$ gives $\sin(\sin^{-1}x) = x$, where $x \in [-1, 1]$; and $\sin^{-1}(\sin x) = x$, where $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

This property can be similarly stated for the other inverse trigonometric functions as follows:

)

• For suitable values of domains;

•
$$\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1} x, x \in \mathbf{R} - (-1, 1)$$

• $\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1} x, x \in \mathbf{R} - (-1, 1)$
• $\tan^{-1}\left(\frac{1}{x}\right) = \begin{cases} \cot^{-1} x, x > 0\\ \cot^{-1} x, x > 0\\ \cot^{-1} \pi, x - 0x < \end{cases}$
• $\csc^{-1}\left(\frac{1}{x}\right) = \sin^{-1} x, x \in [-1, 1]$
• $\sec^{-1}\left(\frac{1}{x}\right) = \cos x, x \in [-1, 1]$
• $\cot^{-1}\left(\frac{1}{x}\right) = \begin{cases} \tan^{-1} x, x > 0\\ \pi + \tan^{-1} x, x < 0 \end{cases}$

Note: While solving problems, we generally use the formulas $\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}x$ and $\cot^{-1}\left(\frac{1}{x}\right) = \tan^{-1}x$ when the conditions for x (i.e., x > 0 or x < 0) are not given

• For suitable values of domains;

•
$$\sin^{-1}(-x) = -\sin^{-1}x, x \in [-1, 1]$$

• $\cos^{-1}(-x) = \pi - \cos^{-1}x, x \in [-1, 1]$
• $\tan^{-1}(-x) = -\tan^{-1}x, x \in \mathbb{R}$

- For suitable values of domains;
 - sin⁻¹x + cos⁻¹x = π/2, x ∈ [-1, 1]
 tan⁻¹x + cot⁻¹x = π/2, x ∈ R
 sec⁻¹x + cosec⁻¹x = π/2, |x| ≥ 1
- For suitable values of domains;

•
$$\tan^{-1}x + \tan^{-1}y = \begin{cases} \tan^{-1}\frac{x+y}{1-xy}, xy < 1\\ \pi + \tan^{-1}\frac{x+y}{1-xy}, xy > 1 \end{cases}$$

• $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x-y}{1+xy}$

Note: While solving problems, we generally use the formula $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$ when the condition for xy is not given.

• For $x \in [-1, 1]$, $2\tan^{-1}x = \sin^{-1}\frac{2x}{1+x^2}$

• For
$$x \in (-1, 1)$$
, $2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}$

• For
$$x = \cos^{-1} \frac{1-x^2}{1+x^2}$$

Example: 2

For $x, y \in [-1, 1]$, show that: $\sin^{-1}x + \sin^{-1}y = \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right)$

Solution:

We know that $\sin^{-1}x$ and $\sin^{-1}y$ can be defined only for $x, y \in [-1, 1]$ Let $\sin^{-1}x = a$ and $\sin^{-1}y = b$ $\Rightarrow x = \sin a$ and $y = \sin b$

Also,
$$\cos a_{-} = \sqrt{1 - x^2}$$
 and $\cos b = \sqrt{1 - y^2}$

We know that, $\sin (a + b) = \sin a \cos b + \cos a \sin b$

$$\Rightarrow a + b = \sin^{-1} \left[x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right]$$
$$\Rightarrow \sin^{-1} x + \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right]$$

Example: 3

If $\tan^{-1}\left(\frac{5}{6}\right) + \tan^{-1}\left(\frac{1}{11}\right) = x$, then find sec x.

Solution:

We have
$$x = \tan^{-1}\left(\frac{5}{6}\right) + \tan^{-1}\left(\frac{1}{11}\right) = \tan^{-1}\left[\frac{\frac{5}{6} + \frac{1}{11}}{1 - \frac{5}{6} \times \frac{1}{11}}\right]$$

$$\left[\text{Using the identity } \tan^{-1}x + \tan^{-1}y \tan^{-1}\left(\frac{x + y}{1 - xy}\right), \text{ where } x = \frac{5}{6} \text{ and } y = \frac{1}{11}\right]$$

$$\therefore x = \tan^{-1}\left[\frac{\frac{55 + 6}{66}}{\frac{66 - 5}{66}}\right]$$

$$= \tan^{-1}1$$

$$= \frac{\pi}{4}$$
sec $x = \sec \frac{\pi}{4} = \sqrt{2}$

Example: 4

Show that:
$$3\tan^{-1}x = \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$$
 where $x \in \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

Solution:

We know that,

$$3\tan^{-1}x = \tan^{-1}x + 2\tan^{-1}x$$

$$= \tan^{-1} x + \tan^{-1} \frac{2x}{1-x^2}$$
$$= \tan^{-1} \left[\frac{x + \frac{2x}{1-x^2}}{1-x \times \frac{2x}{1-x^2}} \right]$$
$$= \tan^{-1} \left[\frac{\frac{3x - x^3}{1-x^2}}{\frac{1-3x^2}{1-x^2}} \right]$$
$$= \tan^{-1} \left(\frac{3x - x^3}{1-3x^2} \right)$$