

DPP No. 18

Total Marks : 28

Max. Time : 29 min.

Topics : Fundamentals of Mathematics, Quadratic Equation							
Type of Compro Single Multip Subjeo	of Questions ehension (no negativ choice Objective (n le choice objective (ctive Questions (no p	e marking) Q.1 to 3 o negative marking) Q.4,5 (no negative marking) Q.6 negative marking) Q.7,8	5 (3 marks, 3 marks, 5 marks, 4 marks,	3 min.) 3 min.) 4 min.) 5 min.)	M.M., [9, [6, [5, [8,	Min. 9] 6] 4] 10]
СОМР	REHENSION (For G	Q.1 to 3)					
	Consider the equat	tion $ x - 1 - 2 = \lambda$					
1.	If the given equatio (A) (2, ∞) \cup {0}	n has two solutions, then (B) (2, ∞)	λ belongs to (C) (0, 2)		(D) none of thes	е	
2.	If the given equatio (A) (0, 2)	n has three solutions, ther (B) {2}	n λ belongs to (C) (0, ∞)		(D) (−∞, 0)		
3.	Number of integral (A) 0	values of λ so that the giv (B) 1	en equation has (C) 2	four soli	utions, is (D) 3		
4.	If α , β , γ are the roots of the equation $x^3 - px^2 + qx - r = 0$, then the value of $\sum \frac{\alpha\beta}{\gamma}$ is equal to						
	(A) pq + 3r	(B) pq + r	(C) pq – 3r		(D) $\frac{q^2-2pr}{r}$		
5.	S ₁ : For $ax^2 + bx + c = 0$ ($a \neq 0$) if $a + b + c = 0$, then the roots are 1 and c/a S ₂ : If $f(x) = ax^2 + bx + c$ ($a \neq 0$) has finite minimum value and both roots are of opposite sign, then f(0 S ₃ : If α is repeated root of $ax^2 + bx + c = 0$, $a \neq 0$, then $ax^2 + bx + c = (x - \alpha)^2$ S ₄ : For $ax^2 + bx + c = 0$ ($a \neq 0$), irrational roots occur in conjugate pairs only						
	State in order, wheth (A) TFTF	her S_1 , S_2 , S_3 , S_4 are true or (B) TTFF	false (C) FTFT		(D) TTTT		
6.	If α , β are the roots of the equation $x^2 + \alpha x + \beta = 0$ such that $\alpha \neq \beta$ and $ x - \beta - \alpha < \alpha$, then (A) inequality is satisfied by exactly two integral values of x (B) inequality is satisfied by all values of $x \in (-4, -2)$ (C) Roots of the equation are opposite in sign (D) $x^2 + \alpha x + \beta < 0 \forall x \in [-1, 0]$						
7.	Find the set of valu	es of 'a' for which the root	s of the quadrat	ic equation	on		
	$(a - 5) x^2 + (\sqrt{4a - a^2}) x + (a^2 - 2a - 3) = 0$ are of opposite sign.						

8. If inequality $\frac{ax^2 + 3x + 4}{x^2 + 2x + 2} < 5$ is satisfied for all real values of x then find out greatest integral value of 'a'.

Answers Key

- **1.** (A) **2.** (B) **3.** (B) **4.** (D)
- $\textbf{5.} \hspace{0.2cm} (B) \qquad \textbf{6.} \hspace{0.2cm} (A)(B)(C)(D) \qquad \textbf{7.} \hspace{0.2cm} a \in (3,\,4]$
- **8.** 2