
“Imaginary numbers are a fine and wonderful refuge of the divine spirit
almost an amphibian between being and non-being. ”

- Gottfried Leibniz

  Many mathematicians contributed to the full development of complex 
numbers. The rules for addition, subtraction, multiplication, and division of 
complex numbers were developed by the Italian mathematician Rafael Bombelli. 
He is generally regarded as the first person to develop an algebra of complex 
numbers. In honour of his accomplishments, a moon crater was named Bombelli.

Real Life Context 
 Complex numbers are useful in representing a phenomenon that has two parts varying at the 
same time, for instance an alternating current. Engineers, doctors, scientists, vehicle designers and 
others who use electromagnetic signals need to use complex numbers for strong signal to reach its 
destination. Complex numbers have essential concrete applications in signal processing, control 
theory, electromagnetism,  fluid dynamics, quantum  mechanics, cartography, and vibration analysis.

Learning Objectives

Upon completion of this chapter, students will be able to:

 ● perform algebraic operations on complex numbers

 ● plot the complex numbers in Argand plane

 ● find the conjugate and modulus of a complex number

 ● find the polar form and Euler form of a complex number 

 ● apply de Moivre theorem to find the n th roots of complex numbers.

2.1 Introduction to Complex Numbers
 Before introducing complex numbers, let us try to answer the question “Whether there exists 
a real number whose square is negative?” Let’s look at simple examples to get the answer for it. 
Consider the equations 1 and 2.
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Complex Numbers53

           This is because, when we square a real number it is impossible to get a negative real number. 
If equation 2 has solutions, then we must create an imaginary number as a square root of −1. This 
imaginary unit −1  is denoted by i .The imaginary number i  tells us that i2 1� � .  We can use this fact 

to find other powers of i .

2.1.1 Powers of imaginary unit i

 We note that, for any integer n , in  has only four possible values:   they correspond to values of 

n when divided by 4 leave the remainders 0, 1, 2, and 3.That is when the integer n n� � �4 4or , 

using division algorithm, n can be written as n q k k k q� � � �4 0 4, , and are integers  and we 

write 
i i i i i i i in q k q k q k q k k� � � � � � � � � � � � � � � � � � � � ��4 4 4 1( ) ( )

Example  2.1 
 Simplify the following 

 (i) i7  (ii) i 1729  (iii) i −1924 + i 2018  (iv)   in
n�
�

1

102

 (v) i i i i2 3 40


Solution
 (i) i i i i� � � � � �� � � ��7 4 3 3 ;                   (ii) i i i i1729 1728 1= =

 (iii) i i i i i i� � � � � � � � � � � � � � � �� � � �1924 2018 1924 0 2016 2 0 2 1 1 0( ) ( )

xx'

y

y'

1-1-2

1

2

-1

3

2O

 ( ) 2 1f x x= −

xx'

y

y'

1

1-1-2 2

2

-1

3

O

 ( ) 2 1f x x= +

i
0

1= ,  i i1 = i 2 1� � i i i i3 2� � � i i i
4 2 2 1= =

i
i

i
i

i� � � �
� �

� ��1
2

1
i� � � �� 2 1 i i� � �� 3 i i� � � �� 4 41

Fig. 2.1
 Equation 1 has two real solutions,  
x � �1  and x =1. We know that solving an 
equation in x  is equivalent to finding the  

x -intercepts of a graph of f x x� � � �2 1   
crosses the x -axis at ( , )−1 0  and ( , )1 0 .

Fig. 2.2
 By the same logic, equation 2 has no real 
solutions since the graph of  f x x� � � �2 1  does 
not cross the x -axis; we can see this by looking 
at the graph of f x x� � � �2 1 .
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54XII - Mathematics

 (iv) i i i i i i i i i i i i in

n�
� � � � �� � � � � �� � � � � � �� �

1

102
1 2 3 4 5 6 7 8 97 98 99 100

 �� �i i101 102

   =  i i i i i i i i i i i i i i1 2 3 4 1 2 3 4 1 2 3 4 1 2� � �� � � � � �� � � � � � �� � � �

   =  i i i i i i i� �� � � �� � �� �� � �� � � �� � �� �� � � �� � � �� � �� �� � �� �1 1 1 1 1 1 1�…       
   =  0 0 0 1� � � � i
   =  � �1 i  (What is this number?)

 (v) i i i i i i i i2 3 40 1 2 3 40
40 41

2 820 0 1

� � � � � � � � �
x

.

Result: Sum of four consecutive powers of i is zero. That is i n + i n+1 + i n+2 + i n+3 = 0  ∀n∈
Note
 (i) ab a b=  valid only if at least one of a b,  is non-negative.

  For example, 6 36 4 9 4 9� � � � � � �( )( ) ( ) ( ) = ( )( )2 3i i � � �6 62i , a contradiction.

  Since we have taken ( )( ) ( ) ( )� � � � �4 9 4 9 , we arrived at a contradiction. 

  Therefore ab a b=  valid only if at least one of a b,  is non-negative.

 (ii) For y∈ , y2 0≥

          Therefore,    ( )( ) ( )( )� � �1 12 2y y

                          ( ) ( ) ( ) ( )� � �1 12 2y y

                                          iy yi= .  

EXERCISE 2.1
 Simplify the following:

  1.  i i1947 1950+  2. i i1948 1869− −  3. in
n�
�

1

12

  4.  i
i

59
59

1
+  5. i i i i2 3 2000

  6. in
n

�

�
� 50

1

10

 

2.2 Complex Numbers 
 We have seen that the equation x2 1 0� �  does not have a solution in real number system.
 In general there are polynomial equations with real coefficient which have no real solution. 
 We enlarge the real number system so as to accommodate solutions of such polynomial equations. 
This has triggered the mathematicians to define complex number system.
 In this section, we define
 (i) Complex numbers in rectangular form
 (ii) Argand plane
 (iii) Algebraic operations on complex numbers 
 The complex number system is an extension of real number system with imaginary unit i .

 The imaginary unit i  with the property i2 1� � , is combined with two real numbers x yand

by the process of addition and multiplication, we obtain a complex number x iy+ .  The symbol ' '+   

is treated as vector addition. It was introduced by Carl Friedrich Gauss (1777-1855).
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2.2.1 Rectangular form

Definition 2.1 (Rectangular form of a complex number)

 A complex number is of the form x iy x yi++ ++( )or , where x and y are real numbers.  
x is called the real part and y  is called the imaginary part of the complex number.

 If x = 0 , the complex number is said to be purely imaginary. If y = 0 , the complex number is 
said to be real. Zero is the only number which is at once real and purely imaginary. It is customary to 
denote the standard rectangular form of a complex number x iy+ as z and we write x z=Re( )  and 
y z= Im( ) . For instance, Re Im5 7 5 5 7 7�� � � �� � � �i iand .  

 The numbers of the form � � �� �i , 0  are called imaginary (non real complex) numbers.
 The equality of complex numbers is defined as follows.

Definition 2.2

 Two complex numbers z x iy1 1 1�� ��  and z x iy2 2 2�� ��  are said to be equal if and only if 
Re( ) Re( )z z1 2== and Im( ) Im( )z z1 2== . That is x x y y1 2 1 2== ==and .

 For instance, if � �� � � �i i7 3 , then � �� � �7 3and .

2.2.2 Argand plane 
 A complex number z x iy� �  is uniquely determined by an ordered pair of real numbers x y,� � . 
The numbers 3 8 6− i,  and −4i  are equivalent to 3 8, ,�� � 6 0, ,� �  and 0 4,�� �  respectively.  In this 
way we are able to associate a complex number z x iy� �  with a point x y,� �  in a coordinate plane.  
If we consider x  axis as real axis and y axis as imaginary axis to represent a complex number, then 
the xy -plane is called complex plane or Argand plane. It is named after the Swiss mathematician Jean 
Argand (1768 – 1822).
 A complex number is represented not only by a point, but also by a position vector pointing from 
the origin to the point. The number, the point, and the vector will all be denoted by the same letter z . 
As usual we identify all vectors which can be obtained from each other by parallel displacements. In this 
chapter,   denotes the set of all complex numbers. Geometrically, a complex number can be viewed as 
either a point in 



2 or a vector in the Argand plane.

 Fig. 2.3 Fig. 2.4 Fig. 2.5

Illustration 2.1
        Here are some complex numbers: 2+ i, � �1 2i,  3 2 0 2- , ,i i  − 3 2� � ,− −2 3i , cos sin� �

6 6
� i ,  

and 3 0+ i.  Some of them are plotted in Argand plane.
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 Fig. 2.6 Fig. 2.7

2.2.3 Algebraic operations on complex numbers
 In this section, we study the algebraic and geometric structure of the complex number system. 
We assume various corresponding properties of real numbers to be known.
 (i) Scalar multiplication of complex numbers:
  If z x iy� � and k∈ , then we define

  k z kx ky i� � � � � � .
  In particular 0 0z = , 1z z=  and ( )� � �1 z z .

 Fig. 2.8 Fig. 2.9 Fig. 2.10
 (ii) Addition of complex numbers: 
  If z x iy1 1 1� �  and z x iy2 2 2� � , where x x y y1 2 1 2, , , and ∈ , then we define

   z z1 2+  =  x iy x iy1 1 2 2�� � � �� �
    =  x x i y y1 2 1 2�� � � �� �
   z z1 2+  =  x x i y y1 2 1 2�� � � �� � .
 We have already seen that vectors are characterized by length 
and direction, and that a given vector remains unchanged under 
translation. When z x iy1 1 1� �  and z x iy2 2 2� �  then by the 
parallelogram  law  of  addition, the sum z z1 2+ = x x i y y1 2 1 2�� � � �� �  

corresponds to the point x x y y1 2 1 2� �� �, .  It also corresponds to a 

vector with those coordinates as its components. Hence the points
z z1 2, , and z z1 2+   in complex plane may be obtained vectorially as shown in the adjacent Fig. 2.11. 
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 (iii) Subtraction of complex numbers
  Similarly the difference z z1 2−  can also be drawn as a position vector whose initial point is 

the origin and terminal point is x x y y1 2 1 2� �� �, . We define

   z z z z1 2 1 2− = + −( )
     =  x iy x iy1 1 2 2+( ) + − −( )

     =  x x i y y1 2 1 2�� � � �� � .

    z z1 2−  =  x x i y y1 2 1 2�� � � �� � .

 It is important to note here that the vector representing the difference of the vector z z1 2− may 

also be drawn joining the end point of z2  to the tip of z1  instead of the origin. This kind of representation 
does not alter the meaning or interpretation of the difference operator. The difference vector joining 
the tips of z1  and z2  is shown in (green) dotted line.
 (iv) Multiplication of complex numbers
  The multiplication of complex numbers z1  and z2  is defined as

   z z1 2  =  ( )( )x iy x iy1 1 2 2+ +

    =  ( ) ( )x x y y i x y x y1 2 1 2 1 2 2 1� � �

   z z x x y y i x y x y1 2 1 2 1 2 1 2 2 1� � � �( ) ( ) .

 Although the product of two complex numbers z1  and z2  is itself a complex number represented 

by a vector, that vector lies in the same plane as the vectors z1 and z2 . Evidently, then, this product is 

neither the scalar product nor the vector product used in vector algebra.

Remark     
  Multiplication of complex number z by i
   If z  =  x iy+ , then

   iz  =  i x iy( )+

    =  � �y ix .

 The complex number iz is a rotation of z by 90  or p
2

radians in the 

counter clockwise direction about the origin. In general, multiplication of a complex number z  

by i successively gives a 90° counter clockwise rotation successively about the origin.

Illustration 2.2
 Let z i1 6 7� � and z i2 3 5� � . Then z z1 2+  and z z1 2−  are
 (i)  ( ) ( )3 5 6 7� � �i i  =  ( ) ( )3 6 5 7 9 2� � � � � �i i
   6 7 3 5�� � � �� �i i  =  6 3 7 5 3 12�� � � � �� � � �( ) i i .

 Let z i1 2 3� �  and z i2 4 7� � . Then z z1 2  is
 (ii)  ( )( )2 3 4 7+ +i i  =  2 4 3 7 2 7 3 4× − ×( ) + × + ×( )i
    =  ( ) ( )8 21 14 12 13 26� � � � � �i i .
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Example  2.2
 Find the value of the real numbers x and y, if the complex number ( ) ( )2 1 2 3� � � � �i x i y i

and x i y i� � � � �( )1 2 1 are equal

Solution
 Let  z1  =  ( ) ( )2 1 2 3 2 3 2� � � � � � � �� � � � �� �i x i y i x y i x y and

   z2  =  x i y i x y i y� � � � � � � �� � � �� �( )1 2 1 1 2 1 .

 Given that z1  =  z2 .

 Therefore 2 3 2 1 2 1x y i x y x y i y� �� � � � �� � � � �� � � �� � .

 Equating real and imaginary parts separately, gives

   2 3x y� �  =  x y� �1 � � �x y2 4 .

   x y� � 2  =  2 1y +  � � � �x y3 1 .

 Solving the above equations, gives

x = 2 and y =1.

EXERCISE 2.2

 1. Evaluate the following if z i� �5 2  and w i� � �1 3

   (i) z w+  (ii) z i w−  (iii) 2 3z w+
   (iv) z w  (v) z zw w2 22+ +  (vi) z w�� �2 .

 2. Given the complex number z i� �2 3 , represent the complex numbers in Argand diagram.
   (i) z iz, , and z iz+  (ii) z iz, − , and z iz− .

 3. Find the values of the real numbers x and y, if the complex numbers  
  ( ) ( )3 2 2 5� � � � �i x i y i and 2 1 2 3 2x i y i� � � � �( ) are equal.

2.3 Basic Algebraic Properties of Complex Numbers
 The properties of addition and multiplication of complex numbers are the same as for real 
numbers. We list here the basic algebraic properties and verify some of them.

2.3.1 Properties of complex numbers

The complex numbers satisfy the following 
properties under addition.

The complex numbers satisfy the following 
properties under multiplication.

 (i) Closure property 
  For any two complex numbers 
  z1  and z2 , the sum z z1 2+
  is also a complex number.

 (i)  Closure property
   For any two complex numbers 
   z1  and z2 , the product z z1 2

   is also a complex number.
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 (ii) The commutative property 
  For any two complex numbers 
  z1  and z2

z + z = z + z1 2 12 .   

 (ii) The commutative property 
  For any two complex numbers 
  z1  and z2

z z = z z1 2 2 1 .

 (iii) The associative property
  For any three complex numbers  
  z z1 2, , and z3

z + z + z = z + z + z1 2 3 1 2 3� � � � .

 (iii) The associative property 
  For any three complex numbers       
  z z1 2, , and z3

z z z = z z z1 2 3 1 2 3� � � � .

 (iv)    The additive identity  
 There exists a complex number  
          0 0 0� � i  such that, for every 
          complex number z ,

z z z� � � �0 0

       The complex number 0 0 0� � i  is known  
as additive identity.

 (iv)  The multiplicative identity 
  There exists a complex number
            1 = 1+0i  such that, for every complex 
           number z ,

z z z1 1= =
  The complex number 1 1 0� � i is known as 

multiplicative identity.

 (v) The additive inverse
 

 For every complex number z  there exists 
a complex number −z  such that, 

 
 z z z z� � � � � �( ) ( ) .0  
  −z is called the additive inverse of z .

 (v) The multiplicative inverse
  For any nonzero complex number z,                 

there exists a complex number w such 
that,

 z zw w= =1.
  w is called the multiplicative inverse of z . 

w  is denoted by z−1 .
 (vi) Distributive property (multiplication distributes over addition) 

 For any three complex numbers z z1 2, , and z3

z z z z z z z1 2 3 1 2 1 3( )� � �  and  ( )z z z z z z z1 2 3 1 3 2 3� � � .

 Let us now prove some of the properties.
Property
 The commutative property under addition
 For any two complex numbers z1  and z2 , we have z z z z1 2 2 1� � � .
Proof
 Let z x iy1 1 1� � , z x iy2 2 2� � , and x x y1 2 1, , , and y2 ∈ , 

   z z1 2+  =  x iy x iy1 1 2 2�� � � �� �
    =  x x i y y1 2 1 2�� � � �� �
    =  x x i y y2 1 2 1�� � � �� �  (since x x y1 2 1, , , and y2 ∈ )

    =  x iy x iy2 2 1 1�� � � �� �
    =  z z2 1+ .
Property
 Inverse Property under multiplication
 Prove that the multiplicative inverse of a nonzero complex number z x iy� �  is 

 

x
x y

i y
x y2 2 2 2+

+
−
+ .
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Proof
 The multiplicative inverse is less obvious than the additive one.
 Let z u iv� � �1 be the inverse of z x iy� �

   We have  z z−1  =  1

   That is    x iy u iv�� � �� �  =  1

   xu yv i xv uy�� � � �( )  =  1 0+ i

 Equating real and imaginary parts we get
   xu yv−  =  1and xv uy� � 0 .

 Solving the above system of simultaneous equations in u  and v

  we get   u x
x y

�
�2 2 and v y

x y
�

�
�2 2 .   ( z is non-zero⇒ x y2 2 0� � )

  If  z x iy� � , then z x
x y

i y
x y

� �
�

�
�
�

1
2 2 2 2  . ( z−1 is not defined when z = 0 ).

 Note that the above example shows the existence of z−1  of the complex number z . To compute 

the inverse of a given complex number, we conveniently use z
z

� �1 1 . If z1  and z2  are two complex 

numbers where z2 0¹ , then the product of z1  and 
1

2z
 is denoted by 

z
z

1

2

. Other properties can be 

verified in a similar manner.  In the next section, we define the conjugate of a complex number. It 

would help us to find the inverse of a complex number easily. 

Complex numbers obey the laws of indices

 (i) z z zm n m n� �  (ii) z
z

z
m

n
m n� � , z ¹ 0        (iii) z zm n mn� � �     (iv) z z z zm m m

1 2 1 2� � �

EXERCISE 2.3
 1. If z i z i1 21 3 4� � � �, , and z3 5= , show that

   (i) z z z z z z1 2 3 1 2 3�� � � � � �� �  (ii) z z z z z z1 2 3 1 2 3� � � � � .

 2. If z z i1 23 7� � �, , and z i3 5 4� � , show that

   (i) z z z z z z z1 2 3 1 2 1 3( )� � �  (ii) ( )z z z z z z z1 2 3 1 3 2 3� � � .

 3. If z i z i1 22 5 3 4� � � � �, , and z i3 1� � , find the additive and multiplicative inverse of
z z1 2, , and z3 .

2.4 Conjugate of a Complex Number
 In this section, we study about conjugate of a complex number, its geometric representation, and 
properties with suitable examples.

Definition 2.3

 The conjugate of the complex number x iy++ is defined as the complex number x iy−− .
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 The complex conjugate of z  is denoted by z .  To get the conjugate of the complex number z , 

simply change i  by −i in z.  For instance 2 5− i  is the conjugate of 2 5+ i.The product of a complex 

number with its conjugate is a real number. 
For instance,          (i)  x iy x iy x iy x y�� � �� � � � � � � �2 2 2 2

                              (ii) 1 3 1 3 1 3 1 9 102 2�� � �� � � � � � � � � � �i i i .
Geometrically, the conjugate of z is obtained by reflecting z on the real axis.

2.4.1 Geometrical representation of conjugate of a complex number

 Fig. 2.14 Fig. 2.15
Note
 Two complex numbers x iy+  and x iy−  are conjugates to each other. The conjugate is useful 
in division of complex numbers. The complex number can be replaced with a real number in the 
denominator by multiplying the numerator and denominator by the conjugate of the denominator. 
This process is similar to rationalising the denominator to remove surds.

2.4.2 Properties of Complex Conjugates
 (1) z z z z1 2 1 2� � �  (6) Im( )z z z

i
�

�
2

 (2) z z z z1 2 1 2� � �  (7) z zn n� � � � � , where n is an integer 

 (3) z z z z1 2 1 2=  (8) z is real if and only if z z=  

 (4) z
z

z
z

z1

2

1

2
2 0

�

�
�

�

�
� � �,  (9) z  is purely imaginary if and only if z z� �  

 (5) Re( )z z z
�

�
2

 (10) z z=

 Let us verify some of the properties. 
Property
 For any two complex numbers z1  and z2 , we have   z z z z1 2 1 2� � � .
Proof
 Let z x iy1 1 1� � , z x iy2 2 2� � , and x x y1 2 1, , , and y2 ∈

   z z1 2+  =  x iy x iy1 1 2 2�� � � �� �

1 2 3 4- 1- 2- 3- 4
- 1

- 2

- 3

- 4

1

2

3
4

 conjugate of a complex number

Re

Im
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    =  x x i y y x x i y y1 2 1 2 1 2 1 2�� � � �� � � �� � � �� �

    =  x iy x iy1 1 2 2�� � � �� �

    =  z z1 2+ .

 It can be generalized by means of mathematical induction to sums involving any finite number of 

terms:   z z z z z z z zn n1 2 3 1 2 3� � � � � � � �  .

Property
     z z z z1 2 1 2=  where x x y y1 2 1 2, , , and ∈

Proof
 Let   z1  =  x iy1 1+ and z x iy2 2 2� � .

 Then, z z1 2  =  x iy x iy x x y y i x y x y1 1 2 2 1 2 1 2 1 2 2 1�� � �� � � �� � � �� � .

 Therefore, z z1 2  =  x x y y i x y x y x x y y i x y x y1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1�� � � �� � � �� � � �� � , 

 and z z1 2  =  x iy x iy x x y y i x y x y1 1 2 2 1 2 1 2 1 2 2 1�� � �� � � �� � � �� � . 

 Therefore, z z1 2  =  z z1 2 .
Property 
 A complex number z  is purely imaginary if and only if z z� �
Proof
      Let   z  =  x iy+ . Then by definition z x iy� �

   Therefore, z  =  −z
  ⇔  x iy+  =  − −( )x iy

  ⇔  2x  =  0 0� �x

  ⇔ z is purely imaginary.
 Similarly, we can verify the other properties of conjugate of complex numbers.

Example  2.3

 Write 3 4
5 12
�
�

i
i

in the x iy+  form, hence find its real and imaginary parts.

Solution

 To find the real and imaginary parts of 3 4
5 12
�
�

i
i

, first it should be expressed in the rectangular form

x iy+ .To simplify the quotient of two complex numbers, multiply the numerator and denominator by 

the conjugate of the denominator to eliminate i in the denominator. 

   3 4
5 12
�
�

i
i

 =  
3 4 5 12
5 12 5 12
�� � �� �
�� � �� �

i i
i i

    =  
15 48 20 36

5 122 2

�� � � �� �
�

i

    =  � �
� � �

33 56
169

33
169

56
169

i i .
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   Therefore,  3 4
5 12
�
�

i
i

 =  � �
33

169
56

169
i . This is in the x iy+  form.

   Hence real part is  − 33
169

 and imaginary part is 56
169

.

Example  2.4

 Simplify 1
1

1
1

3 3�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�

i
i

i
i

. into rectangular form

Solution

   We consider 1
1
�
�

i
i

 =  
1 1
1 1

1 2 1
1 1

2
2

�� � �� �
�� � �� �

�
� �
�

� �
i i
i i

i i i ,

   and  1
1
�
�

i
i

 =  1
1

11�
�

�
�
�

�
�
� � � �
�i

i i
i .

   Therefore,  1
1

1
1

3 3�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�

i
i

i
i

 =  i i i i i3 3 2� � � � � � �( ) .

Example  2.5

 If  z
z i

i�
�

�
�3

5
1 4

2
,  find the complex number z  in the rectangular form

Solution
   We have   

z
z i
�
�

3
5  = 1 4

2
+ i

   ⇒ 2 3( )z +  =  1 4 5�� � �� �i z i

   ⇒   2 6z +  =  1 4 20 5�� � � �i z i

   ⇒   2 1 4� �� �i z  =  20 5 6− −i

   ⇒   z  = 14 5
1 4

14 5 1 4
1 4 1 4

34 51
17

2 3�
�

�
�� � �� �
�� � �� �

�
�

� �
i

i
i i

i i
i i .

Example  2.6

 If z i1 3 2� �  and z i2 6 4� � , find z
z

1

2

  in the rectangular form

Solution

Using the given value for z1 and  z2 the value of z
z

1

2

=  3 2
6 4

3 2
6 4

6 4
6 4

�
�

�
�
�

�
�
�

i
i

i
i

i
i

 =  ( ) ( )18 8 12 12
6 4

10 24
52

10
52

24
522 2

� � � �
�

�
�

� �
i i i

 =  5
26

6
13

− i .
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Example  2.7

 Find z−1,  if  z i i� �� � �� �2 3 1 .

Solution
   We have   z  =  2 3 1 2 3 3 2 5�� � �� � � � � � � �i i i i( ) ( )

   ⇒   z−1  =  1 1
5z i

�
�

 .

 Multiplying the numerator and denominator by the conjugate of the denominator, we get

   z−1  =  
5

5 5
5

5 1
5
26

1
262 2

�� �
�� � �� �

�
�
�

� �
i

i i
i i

   ⇒   z−1  =  5
26

1
26

− i .

Example  2.8 

 Show that (i) 2 3 2 3
10 10

�� � � �� �i i is real and (ii) 19 9
5 3

8
1 2

15 15�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�

i
i

i
i

is purely imaginary.

Solution
 (i)  Let  z  =  2 3 2 3

10 10
�� � � �� �i i . Then, we get

   z  =  2 3 2 3
10 10

�� � � �� �i i

    =  2 3 2 3
10 10

�� � � �� �i i  ( z z z z1 2 1 2� � � )

    =  2 3 2 3
10 10

�� � � �� �i i   z zn n� � � � �� �
    =  2 3 2 3

10 10
�� � � �� � �i i z

   z  =  z z⇒ is real.

 (ii)  Let   z  =  19 9
5 3

8
1 2

15 15�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�

i
i

i
i

.

   Here,  19 9
5 3
�
�

i
i

 =  
19 9 5 3
5 3 5 3
�� � �� �
�� � �� �

i i
i i

    =  
95 27 45 57

5 3
68 102

342 2

�� � � �� �
�

�
�i i

    =  2 3+ i . (1)

   and   8
1 2
+
+

i
i

 =  
8 1 2

1 2 1 2
�� � �� �
�� � �� �

i i
i i

    =  
8 2 1 16

1 2
10 15

52 2

�� � � �� �
�

�
�i i

    =  2 3- i .  (2)
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            Now z  =  19 9
5 3

8
1 2

15 15�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�

i
i

i
i

   ⇒    z  =  2 3 2 315 15�� � � �� �i i . (by (1) and (2))

            Then by definition,  z = 2 3 2 315 15�� � � �� �� �i i

    =  2 3 2 3
15 15

�� � � �� �i i  (using properties of conjugates)

    =  2 3 2 3 2 3 2 315 15 15 15�� � � �� � � � �� � � �� �� �i i i i

   ⇒   z  =  −z .

   Therefore,   z  =  19 9
5 3

8
1 2

15 15�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�

i
i

i
i

is purely imaginary.

EXERCISE 2.4

 1. Write the following in the rectangular form:

   (i) ( ) ( )5 9 2 4� � �i i  (ii) 10 5
6 2
�
�

i
i

 (iii) 3 1
2

i
i

�
�

 2. If z x iy� � , find the following in rectangular form.

   (i) Re 1
z

�
�
�

�
�
�  (ii) Re( )i z  (iii) Im( )3 4 4z z i� �

 3. If z i1 2� � and z i2 4 3� � � , find the inverse of z z1 2 and z
z

1

2

.

 4. The complex numbers u v, , and w  are related by 1 1 1
u v w
� � .

  If v i� �3 4  and w i� �4 3 , find u  in rectangular form.

 5. Prove the following properties:

   (i) z is real if and only if z z=      (ii)  Re( )z z z
�

�
2

 and Im( )z z z
i

�
�
2

 6. Find the least value of the positive integer n  for which 3 �� �i n
   (i) real    (ii) purely imaginary.

 7.  Show that (i)  2 3 2 3
10 10

�� � � �� �i i  is purely imaginary

                (ii) 19 7
9

20 5
7 6

12 12�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�

i
i

i
i

 is real.
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2.5 Modulus of a Complex Number
 Just as the absolute value of a real number measures the distance 
of that number from origin along the real number line, the modulus 
of a complex number measures the distance of that number from the 
origin in the complex plane. Observe that the length of the line from 
the origin along the radial line to z x iy� � is simply the hypotenuse 
of a right triangle, with one side of length x  and the other side of 
length y . 

Definition 2.4

 If z x iy�� �� , then the modulus of z , denoted by z , is defined by z  = x y2 2++

 For instance (i) i � � �0 1 12 2

   (ii) � � � �� � �12 0 12 122 2i

   (iii) 12 5 12 5 169 132 2� � � �� � � �i

Note 
 If z x iy� � , then z x iy� � , then z z x iy x iy� �� � �� � � � � � � � � �x iy x y2 2 2 2 = z 2 .

| |z z z2= .

2.5.1 Properties of Modulus of a complex number

 (1) z z=  (5) z
z

z
z

z1

2

1

2
2 0� �,

 (2) z z z z1 2 1 2� � � (Triangle inequality) (6) z zn n= , where n is an integer

 (3) z z z z1 2 1 2=  (7) Re z z� � �

 (4) z z z z1 2 1 2� � �  (8) Im z z� � �

 Let us prove some of the properties.

Property  Triangle inequality
 For any two complex numbers z z1 2and , we have z z z z1 2 1 2� � � .

Proof
 Using  z z1 2

2+  =   ( | | ) z z z2=

    =  ( )( )z z z z1 2 1 2+ +  

    =  z z z z z z z z1 1 1 2 1 2 2 2+ + +( )  

    =  z z z z zz z z1 1 1 2 22 1 2� � � ��   z z�� �

Re

Im P(x, y)

 
2

2

x
y

�

x

y

MO

Fig. 2.16

( ) z z z z1 2 1 2+ = +

( )( )z z z z1 2 1 2+ +
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    =  | | Re( ) | |z z z z1
2

1 2 2
22+ +  ( Re( ) ) 2 z z z� �

    £  z z z z1
2

1 2 2
22+ +  ( Re( ) | |) z z£

    =  z z z z1
2

1 2 2
22+ +  ( | | | || | | | | |) z z z z z z1 2 1 2= =and

    ⇒   z z1 2
2+  £  z z1 2

2
�� �

   � �z z1 2  £  z z1 2+ .

Geometrical interpretation
 Now consider the triangle shown in figure with vertices O z, 1  
or z2 , and z z1 2+ .We know from geometry that the length of the side 
of the triangle corresponding to the vector z z1 2+  cannot be greater 
than the sum of the lengths of the remaining two sides. This is the 
reason for calling the property as "Triangle Inequality".
 It can be generalized by means of mathematical induction to finite 
number of terms:

 z z z z z z z zn n1 2 3 1 2 3� � � � � � � � �   for n = 2 3, , .

Property The distance between the two points z1  and z2  in complex plane is | |z z1 2−
 If z x iy1 1 1� � and z x iy2 2 2� � , then

   z z1 2−  =  x x y y i1 2 1 2�� � � �� �

    =  x x y y1 2
2

1 2
2�� � � �� � .

Remark     
 The distance between the two points z1 and z2  in complex plane is z z1 2− .
 If we consider origin, z1  and z2  as vertices of a triangle, by the similar argument we have 

 z z z z1 2 1 2� � �

 
z z z z z z1 2 1 2 1 2� � � � �  and

 
z z z z z z1 2 1 2 1 2� � � � �  .

Property Modulus of the product is equal to product of the moduli.
 For any two complex numbers z z1 2and , we have z z z z1 2 1 2= .

Proof
   We have z z1 2

2  =  ( )( )z z z z1 2 1 2  ( | | ) z z z2=

    =  z z z z1 2 1 2� �� �� �� �  
 z z z z1 2 1 2�� �

z2

z1+
z 2

z1

z2

O

z1

Re

Im

z1

z2

z1+z2

z1

2z

2z
z1 2

z-

z1

Re

Im

O

Fig. 2.17

Fig. 2.18
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    =  z z z z z z1 1 2 2 1
2

2
2� �� � �  (by commutativity z z2 1  = z z1 2 )

   Therefore,  z z1 2  =  z z1 2 .
Note 

 
It can be generalized by means of mathematical induction to any finite number of terms:   

   z z z z z z z zn n1 2 3 1 2 3 =

 That is the modulus value of a product of complex numbers is equal to the product of the moduli 
of complex numbers.
 Similarly we can prove the other properties of modulus of a complex number.
Example  2.9

 If z i z i1 23 4 5 12� � � �, , and z i3 6 8� � , find z z z1 2 3, , , z z z z z z1 2 2 3 1 3� � �, , and .

Solution
Using the given values for z1,z2  and z3 we get  z1 =  3 4 3 4 52 2� � � �i

   z2  =  5 12 5 12 132 2� � � � �i ( )

   z3  =  6 8 6 8 102 2� � � �i

   z z1 2+  =  3 4 5 12 8 8 128 8 2�� � � �� � � � � �i i i

   z z2 3−  =  5 12 6 8 1 20 401�� � � �� � � � � �i i i

   z z1 3+  =  3 4 6 8 9 12 225 15�� � � �� � � � � �i i i

 Note that the triangle inequality is satisfied in all the cases. 

 z z z z1 3 1 3 15� � � � (why?)

Example  2.10

 Find the following   (i) 2
1 2
�

� �
i
i

 (ii) ( )( )( )1 2 3 4 3� � �i i i  (iii) i i
i

( )
( )
2
1

3

2

+
+

Solution

 (i)  2
1 2
�

� �
i
i

 =  
2
1 2

2 1

1 2
1

2 2

2 2

�
� �

�
�

�� � �
�

i
i

. 

z
z

z
z

z1

2

1

2
2 0� �

�

�
��

�

�
��,

 (ii)  ( )( )( )1 2 3 4 3� � �i i i  =  ( )1 2 3 4 3� � �i i i   z z z z z z1 2 3 1 2 3�� �
    =  1 2 3 3 4� � � �i i i   z z�� �
    =  1 1 2 3 3 42 2 2 2 2 2�� � �� � � �� �( )

    =  2 13 25 5 26� �� �� � � .

 (iii)  i i
i

( )
( )
2
1

3

2

+
+

 =  
i i

i
i

i

( )

( )

2

1
1 2
1

4 1

2

3

2

3

2

3

2

�

�
�

�

�
�

�� �
� �

   
z
z

z
z

z1

2

1

2
2 0� �

�

�
��

�

�
��,

    =  
5

2
5 5

2

3� �
� .
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Example  2.11
 Which one of the points i,� �2 i , and 3  is farthest from the origin?

Solution
 The distance between origin to z i i� � �, ,2   and 3  are 

 | |z  =  | |i =1   

 | |z  =  | | ( )� � � � � �2 2 1 52 2i   

 | |z  =  | |3 3=  

 Since 1 5 3< < , the farthest point from the origin is 3 .

Example  2.12
 If z1 , z2 , and z3  are complex numbers  such that z z z z z z1 2 3 1 2 3 1� � � � � � ,

 find the value of 1 1 1

1 2 3z z z
+ + .

Solution

   Since, z1  =  z z2 3 1= = ,  

   z1
2  =  1 1 1 11 1 2

2
2 2� � � � �z z z z z,| | , and | |z z z3

3
3 31 1� � �  

   Therefore,  z1  =  1 1

1
2

2z
z

z
, = , and z

z3
3

1
=  and hence

   1 1 1

1 2 3z z z
+ +  =  z z z1 2 3+ +

    =  z z z z z z1 2 3 1 2 3 1� � � � � � .

Example  2.13

 If z = 2  show that 3 3 4 7� � � �z i

Solution

 z i z i� � � � � � � �3 4 3 4 2 5 7

 z i� � �3 4 7     (1)

 z i z i� � � � � � � �3 4 3 4 2 5 3

 z i� � �3 4 3     (2)

 From (1) and (2), we get 3 3 4 7� � � �z i .

Note
 To find the lower bound and upper bound use z z z z z z1 2 1 2 1 2� � � � � .

3

i

Re

Im

O

2 i− +

1 2-- 12

Fig. 2.19

Fig. 2.20

Im

Re
O

7

3

r = 2

(–3,–4)
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Example  2.14

 Show that the points 1 1
2

3
2

, ,�
� i  and − −

1
2

3
2

i  are the vertices of an equilateral triangle. 

Solution
 It is enough to prove that the sides of the triangle are equal.

 Let z1 1= , z i2
1

2
3

2
�
�

� , and z i3
1

2
3

2
�
�

� .

 The length of the sides of the triangles are

 z z1 2−  =  1 1
2

3
2

3
2

3
2

9
4

3
4

2 3
2

3�
�

�
�

�
��

�

�
�� � � � � � �i i

 z z2 3−  =  �
�

�

�
��

�

�
�� �

�
�

�

�
��

�

�
�� � � � �

1
2

3
2

1
2

3
2

3 3
2

i i

 z z3 1−  =  �
�

�

�
��

�

�
�� � �

�
� � � �

1
2

3
2

1 3
2

3
2

9
4

3
4

3i i

 Since the sides are equal, the given points form an equilateral triangle.

Example  2.15

 Let z z1 2, ,  and z3   be complex numbers such that z z z r1 2 3 0� � � � and z z z1 2 3 0� � � .  

 Prove that z z z z z z
z z z

r1 2 2 3 3 1

1 2 3

� �
� �

� .

Solution

        Given that z1  =  z z r z z z z z z r2 3 1 1 2 2 3 3
2� � � � � �

  ⇒ z1  =  r
z

z r
z

z r
z

2

1
2

2

2
3

2

3

, ,= =

  Therefore  z z z1 2 3+ +  =  r
z

r
z

r
z

2

1

2

2

2

3

+ +

   =  r z z z z z z
z z z

2 2 3 1 3 1 2

1 2 3

� ��

�
�

�

�
�

  z z z1 2 3+ +  =  | |r z z z z z z
z z z

2 2 3 1 3 1 2

1 2 3

+ +  ( ) z z z z1 2 1 2� � �

   =  r
z z z z z z

z z z
2 2 3 1 3 1 2

1 2 3

+ +
   ( | | | | z z=  and | | | | | | | |)z z z z z z1 2 3 1 2 3=

  z z z1 2 3+ +  =  r
z z z z z z

r
z z z z z z

r
2 2 3 1 3 1 2

3
2 3 1 3 1 2� �

�
� �

O
Re

Im

1

1 3
2 2

i−
+

1 3
2 2

i−
−

Fig. 2.21
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  ⇒    
z z z z z z

z z z
2 3 1 3 1 2

1 2 3

+ +
+ +

 =  r . (given that z z z1 2 3 0� � � )

 Thus,  z z z z z z
z z z

2 3 1 3 1 2

1 2 3

+ +
+ +

 =  r .

Example  2.16
 Show that the equation z z2 =  has four solutions.
Solution

 We have, z2  =  z .

    ⇒  | |z 2  =   z  

   ⇒   | |z  z �� �1  =  0 ,

   ⇒    | |z  =  0, or | |z =1 .

   | |z  =  0    � �z 0  is a solution, | |z  =  1 � � � �zz z
z

1 1 .

   Given  z2  =  z  ⇒   z2  =  1
z

   ⇒   z3  =  1.

 It has 3 non-zero solutions. Hence including zero solution, there are four solutions.

2.5.2 Square roots of a complex number 
 Let the square root of a ib+  be x iy+

   That is a ib+  =  x iy+    where x y, ∈

   a ib+  =  x iy x y i xy�� � � � �2 2 2 2

 Equating real and imaginary parts, we get
   x y2 2−  =  a and 2xy b=

   x y2 2 2
�� �  =  x y x y a b2 2 2 2 2 2 24�� � � � �

   x y2 2+  =  a b2 2+ , since x y2 2+ is positive

   Solving   x y2 2−  =  a  and x y a b2 2 2 2� � � , we get

   x  =  � � �
� �

� �a b a y a b a2 2 2 2

2 2
; .

 Since 2xy b=  it is clear that both x  and y will have the same sign when b  is positive, and x  

and y  have different signs when b  is negative.

 Therefore a ib+ = �
�

�
��

�
�
�

�

�
�
�

z a
i b
b

z a
2 2

, where b ¹ 0 .  Re( )z z�� �

 Formula for finding square root of a complex number

 a ib
z a

i b
b

z a
� � �

�
�

��

�
�
�

�

�
�
�2 2

, where z a ib� � and b ¹ 0 .
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Note
 If b  is negative, b

b
� �1, x  and y  have different signs.

 If b  is positive, b
b
=1, x  and y  have same sign.        

Example  2.17
 Find the square root of 6 8− i .

Solution

   We compute  6 8− i  =  6 8 102 2� �� � �  

 and applying the formula for square root, we get

   6 8- i  =  � �
�

��

�
��

�

�
��

10 6
2

10 6
2

i       ( b  is negative, b
b
� �1)

    =  � �� �8 2i

    =  � �� �2 2 2i .

EXERCISE 2.5
 1. Find the modulus of the following complex numbers

  (i) 2
3 4

i
i+

 (ii) 2
1

1 2
1

�
�

�
�
�

i
i

i
i

 (iii) ( )1 10− i  (iv) 2 3 4 4 3i i i( )( )− − .

 2. For any two complex numbers z1  and z2 , such that z z1 2 1= =  and z z1 2 1� � , then show that  
z z

z z
1 2

1 21
+

+
 is a real number.

 3. Which one of the points10 8− i , 11 6+ i  is closest to1+ i .

 4. If | |z = 3 , show that 7 6 8 13≤ + − ≤| |z i .

 5. If z =1, show that 2 3 42� � �z .

 6. If | |z  = 2, show that 8 6 8 12≤ + + ≤| |z i .

 7. If z z1 2, , and z3  are three complex numbers such that z z z1 2 31 2 3= = =, ,  and 

z z z1 2 3 1� � � , show that 9 4 61 2 1 3 2 3z z z z z z� � � .

 8. If the area of the triangle formed by the vertices z iz, , and z iz+  is 50  square units, find the 

value of z .

 9. Show that the equation z z3 2 0� �  has five solutions.

 10. Find the square roots of (i) 4 3+ i   (ii) � �6 8i    (iii) − −5 12i .
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2.6 Geometry and Locus of Complex Numbers
 In this section let us study the geometrical interpretation of complex number z  in complex plane 

and the locus of z  in Cartesian form. 
Example  2.18

Given the complex number z i� �3 2 , represent the complex numbers z iz z iz, , and + in 

one Argand plane. Show that these complex numbers form the vertices of an isosceles right 
triangle.

Solution
 Given that  z i� �3 2 .

 Therefore, iz i i i� �� � � � �3 2 2 3

 z iz i i i i� � �� � � �� � � �3 2 3 2 1 5

 Let A B, ,  and C  be z z iz iz, ,+ and respectively.

 

AB z iz z i

BC iz z iz i

CA z iz

2 2 2

2 2 2

2 2

2 3 13

3 2 13

5

� �� � � � � � �

� � �� � � � � �

� � � �� �i 2 26

 Since AB BC CA2 2 2� �  and AB BC= , DABC is an isosceles right triangle.

Definition 2.5 (circle)

       A circle is defined as the locus of a point which moves in a plane such that its distance from a 
fixed point in that plane is always a constant. The fixed point is the centre and the constant distant 
is the radius of the circle.

Equation of Complex Form of a Circle
 The locus of z  that satisfies the equation  z z r� �0  where z0  is 

a fixed complex number and r is a fixed positive real number consists 

of all points z whose distance from z0  is r .

 Therefore z z r� �0  is the complex form of the equation of a 

circle. (see Fig. 2.23)
 (i) z z r� �0  represents the points interior of the circle.

 (ii) z z r� �0  represents the points exterior of the circle.

Illustration 2.3

 z r x y r� � � �2 2

 � � �x y r2 2 2 ,  represents a circle centre at the origin with radius r units.

1 2 43-1--3 2-4

2

3

4

5

-1

- 2

z
iz

z+iz

1

Re

Im

O

A

B

C

Fig. 2.22

Fig. 2.23
Re

Im

O

z0

z
r
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Example  2.19

 Show that 3 5 4z i� � �  represents a circle, and, find its centre and radius.

Solution

 The given equation 3 5 4z i� � � can be written as

   3 5
3

z i
−

−
 =  4   Þ  z

i
� ��
�
�

�
�
�

5
3 3  =  

4
3

.  

 It is of the form z z r� �0 and so it represents a circle, 

whose centre and radius are 5
3

1
3

, ��
�
�

�
�
�  and 4

3
 respectively.

Example  2.20
 Show that z i� � �2 2 represents interior points of a circle. Find its centre and radius.

Solution

 Consider the equation | |z i+ − =2 2 .

 This can be written as | ( ) |z i− − + =2 2 .

 The above equation represents the circle  with centre z i0 2� � � and 
  radius r = 2.  Therefore z i� � �2 2  represents all points inside the 

circle with centre at � �2 i and radius 2  as shown in figure.

Example  2.21
 Obtain the Cartesian form of the locus of  z  in each of the following cases.
 (i) z = z i−    (ii) 2 3 3z i� � �

Solution

 (i)  we have | |z  =  z i−

    Þ    x iy+  =  x iy i� �

   Þ    x y2 2+  =  x y2 21� �( )

   Þ    x y2 2+  =  x y y2 2 2 1� � �

   Þ    2 1y −  =  0 .

 (ii)  we have 2 3z i− −  =  3

   2 3x iy i�� � � �  =  3 .

  Squaring on both sides, we get
   2 3 2 1

2
x y i�� � � �� �  =  9

   Þ    2 3 2 12 2x y�� � � �� �  =  9

   Þ    4 4 12 4 12 2x y x y� � � �  =  0 , the locus of z  in Cartesian form.

Re

Im

O

5 1,
3 3

 − 
 

0 4
3

r =
Re

z

z

Im

O Re

2 i− +

r=2

0
z

z

=

Fig. 2.25

Fig. 2.24
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EXERCISE 2.6

 1. If z x iy� �  is a complex number such that
z i
z i
�
�

�
4
4

1

             show that the locus of z  is real axis.

 2. If z x iy� �  is a complex number such that Im 2 1
1

0z
iz
�
�

�
�
�

�
�
� � , show that the locus of z is

  2 2 2 02 2x y x y� � � � .
 3. Obtain the Cartesian form of the locus of z x iy� �  in each of the following cases:

  (i) Re iz� ��� �� �
2

3  (ii) Im[( ) ]1 1 0� � �i z  (iii) z i z� � �1  (iv) z z� �1 .

 4. Show that the following equations represent a circle, and, find its centre and radius.

  (i) z i� � �2 3  (ii) 2 2 4 2z i� � �  (iii) 3 6 12 8z i� � � .

 5. Obtain the Cartesian equation for the locus of z x iy� �  in each of the following cases:

  (i) z � �4 16  (ii) z z� � � �4 1 162 2 .

2.7 Polar and Euler form of a Complex Number
 When performing addition and subtraction of complex numbers, we use rectangular form. This is 
because we just add real parts and add imaginary parts; or subtract real parts, and subtract imaginary 
parts. When performing multiplication or finding powers or roots of complex numbers, use an alternate 
form namely, polar form, because it is easier to compute in polar form than in rectangular form.

2.7.1 Polar form of a complex number 
 Polar coordinates form another set of parameters that characterize the vector from the origin to 
the point z x iy� � , with magnitude and direction. The polar coordinate system consists of a fixed point 
O called the pole and the horizontal half line emerging from the pole called the initial line (polar axis).  If 
r is the distance from the pole to a point P and q is an angle of inclination measured from the initial line 
in the counter clockwise direction to the line OP, then r and q  of the ordered pair ( , )r θ are called the 
polar coordinates of P. Superimposing this polar coordinate system on the rectangular coordinate 
system, as shown in diagram, leads to

 Fig. 2.26 Fig. 2.27 Fig. 2.28

   x  =  r cosθ  ...(1)
   y  =  r sinθ . ...(2)
 Any non-zero complex number z x iy� � can be expressed as z r i r� �cos sin .� �

Polar coordinates

P(r,   )

r

θ

 θ

O

P(x,y)

M

r
2

2

x
y

=

+

Superimpose polar coordinates
on rectangular coordinates

O

P(x,y)

x

y

x+
iy

Rectangular coordinates 

O

θ
x r= cosθ

y r= sinθ
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Definition 2.6

 Let r  and θ be polar coordinates of the point P x y( , ) that corresponds to a non-zero  
complex number z x iy� � . The polar form or trigonometric form of a complex number P  is 

z r i� �(cos sin )� � .

 For convenience, we can write polar form as 
                                  z x iy r i r cis� � � �� � �cos sin .� � �
 The value r represents the absolute value or modulus of the complex number z . The angleθ is 

called the argument or amplitude of the complex number z denoted by� � � �arg .z

 (i) If z = 0 , the argument θ  is undefined; and so it is understood that z ¹ 0 whenever polar 
coordinates are used.

 (ii) If the complex number z x iy� � has polar coordinates ( , )r θ , its conjugate z x iy� �  has 
polar coordinates ( , )r �� .

 Squaring and adding (1) and (2), and taking square root, the value of r is given by r z x y� � �2 2 .

  Dividing (2) by (1), r
r

y
x

sin
cos

�
�
� � �tan� y

x
.

Case (i) The real number θ represents the angle, measured in radians, that z makes with the positive real 
axis when z is interpreted as a radius vector. The angle θ  has an infinitely 
many possible values, including negative ones that differ by integral 
multiples of 2p . Those values can be determined from the equation 

tan θ = y
x

where the quadrant containing the point corresponding to z 

must be specified. Each value of q  is called an argument of z, and the 
set of all such values is obtained by adding multiple of 2p to q , and it is 
denoted by arg z.

Case (ii) There is a unique value of θ which satisfies the condition − < ≤� � � . 
 This value is called a principal value of θ or principal argument of z 
and is denoted by Arg z.
 Note that, � � � � � �� � � � �Arg( )z or

Fig. 2.29

y

α x
θ α x

y
III-Quadrant 

α-θ =

IV-Quadrant

α π−θ = α-θ =

z

α

θ α=

x

y y

α

x

θ

I-Quadrant

απ −θ =

II-Quadrant

θ α= απ −θ =

Principal Argument of a complex number

z z

z

O O
O

O

α π−θ =

 Fig. 2.30 Fig. 2.31 Fig. 2.32 Fig. 2.33

Re

Im
z = r (cos θ + isin θ )

θ

r

o
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 The capital A is important here to distinguish the principal value from the general value.

 Evidently, in practice to find the principal angle θ, we usually compute � � �tan 1 y
x

 and adjust 

for the quadrant problem by adding or subtracting � �with  appropriately.

arg , .z Arg z n n     � � �2 � 

 Some of the properties of arguments are

 (1) arg arg argz z z z1 2 1 2� � � �

 (2) arg arg argz
z

z z1

2
1 2

�

�
�

�

�
� � �

 (3) arg argz n zn� � �
 (4) The alternate forms of cos sinq q+ i  are cos( ) sin( ),2 2k i k kπ θ π θ+ + + ∈ .

 For instance the principal argument and argument of  1 1, ,i − , and −i  are shown below:-

z 1 i −1 −i

Arg z( ) 0
p
2 p −

p
2

arg z 2np 2
2

np p
+ 2np p+ 2

2
np p

−

Illustration
 Plot the following complex numbers in complex plane

 (i) 5
4 4

cos sin� �
��

�
�

�
�
�i

 (ii) 4 2
3

2
3

cos sin� �
��

�
�

�
�
�i

 (iii) 3 5
6

5
6

cos sin�
�

��
�
�

�
�
�

� �i

 (iv) 2
6 6

cos� �
��

�
�

�
�
�isin .

2.7.2 Euler’s Form of the complex number
 The following identity is known as Euler’s formula

e ii� � �� �cos sin
 Euler formula gives the polar form z r ei� �

Note
 When performing multiplication or finding powers or roots of complex numbers, Euler form 
can also be used.

Re

Im

O 1

i

-1

i-

5
4

cis π2
4 3cis

π

2cis π−
6

Re

Im

O 1 2 3 4 5

3
6

cis π− 5

Fig. 2.34

Fig. 2.35
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Example  2.22
  Find the modulus and principal argument of the following complex numbers.
 (i) 3 + i  (ii) � �3 i  (iii) − −3 i  (iv) 3 − i
Solution
 (i) 3 + i
   Modulus =  x y2 2

2
23 1 3 1 2� � � � � � � �

   α  =  tan tan� �� �1 1 1
3 6

y
x

�

 Since the complex number 3 + i lies in the first quadrant, 
     has the principal value

   θ  =  � �
�

6
.

 Therefore, the modulus and principal argument of 3 + i are 2 and p
6

 respectively.

 (ii) � �3 i

   Modulus =  2  and

   α  =  tan tan� �� �1 1 1
3 6

y
x

�

  Since the complex number � �3 i  lies in the second quadrant  

  has the principal value
  
   θ  =  � � �

� �
� � �=

6
5
6

.

  Therefore the modulus and principal argument of � �3 i are 2  and 5
6
p respectively.

 (iii) − −3 i

   r  =  2  and � �
�

6
.

   Since the complex number − −3 i lies in the third quadrant, 

  has the principal value, 

   θ  =  � �
�

�
�

� � ��=
6

5
6

.

  Therefore, the modulus and principal argument of − −3 i are 2  and � 5
6
� respectively.

 (iv) 3 − i

   r  =  2  and � �
�

6
.

  Since the complex number lies in the fourth quadrant, 
  has the principal value,

   θ  =  � � ��
�
6

Fig. 2.36

Fig. 2.37

Fig. 2.38

Fig. 2.39

Re

Im

3 i+

O

r =
2
a q=

Re

Im

3 i− +

α
O

r = 2
q p a= −

Reα
θ α π= −

3 i− −

Im

O

r = 2

Re

Im

θ α= −

3 i−

O
r = 2
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  Therefore, the modulus and principal argument of 

  3 − i are 2 and��
6

.

  In all the four cases, modulus are equal, but the arguments are depending on the quadrant in 
which the complex number lies.
Example  2.23

 Represent the complex number (i)− −1 i    (ii) 1 3+ i  in polar form.

Solution

 (i)  Let − −1 i  =  r i(cos sin )� ��

   We have  r  =  x y2 2 2 21 1 1 1 2� � � � � �

   α  =  tan tan� �� �1 11
4

y
x

� .

 Since the complex number − −1 i  lies in the third quadrant, it has the principal value,

   θ  =  � �
�

�
�

� � ��=
4

3
4

   Therefore,   − −1 i  =  2 3
4

3
4

cos sin��
�
�

�
�
� ��

�
�

�
�
�

�

�
�

�

�
��

� �i

    = 2 3
4

3
4

cos sin� �
��

�
�

�
�
�i .

   − −1 i  =  2 3
4

2 3
4

2cos sin�
�

�
���

�
�

�
�
� ��

�
�

�
�
�

�

�
�

�

�
��k ki , k Î .

Note

 Depending upon the various values of k , we get various alternative polar forms.

 (ii) 1 3+ i
   r  =  z � � � � �1 3 22

2

   θ  =  tan� �

�
�

�

�
� �

1 1
3 3

�

   Hence  arg z� �  =  
p
3

. 

 Therefore, the polar form of  1 3+ i  can be written as

   1 3+ i  =  2
3 3

cos sin� �
��

�
�

�
�
�i

    =  2
3

2
3

2cos sin ,�
�

�
���

�
�

�
�
� � ��

�
�

�
�
�

�

�
�

�

�
� �k i k k  .
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Example  2.24
 Find the principal argument Arg z , when z

i
�

�
�

2
1 3

.

Solution
 arg z  =  arg �

�
2

1 3i  

  =  arg arg�� � � �� �2 1 3i ( arg arg arg )

z
z

z z1

2
1 2

�

�
�

�

�
� � �

     
� � �

�
�

�
�
�

�

�
�

�

�
� �

�

�
��

�

�
��

� �� tan tan1 10
2

3
1

  =  � � �
� �

3
2
3

 This implies that one of the values of arg z is 2
3
p .

 Since 2
3
p lies between ��  and p , the principal argument Arg isz 2

3
p .

Properties of polar form

Property 1  If z r i� �� �cos sin ,� � then z
r

i� � �� �1 1 cos sin� � .

Proof

   z−1  =  1 1
z r i
�

�� �cos sin� �
  

    =  
cos sin

cos sin cos sin
� �

� � � �
�� �

�� � �� �
i

r i i
  

    =  
cos sin
cos sin

� �
� �
�� �
�� �
i

r 2 2

   z−1  =  1
r

icos sin� ��� � .

Property 2  
 If z r i1 1 1 1� �� �cos sin� � and z r i2 2 2 2� �� �cos sin� � ,

 then  z z1 2 =  r r i1 2 1 2 1 2cos sin� � � ��� � � �� �� � .

Proof

 z1  =  r i1 1 1cos sin� ��� � and

 z2  = r i2 2 2cos sin� ��� �

 Þ  z z1 2  =  r ri i1 21 1 2 2cos sin cos sin� � � ��� � �� �

Fig. 2.41

Fig. 2.42

1�

1θ
θ 2

+

2�

Re

Im
z 1z

2

z1 z2

1rr 2

21r r
O

O Re

Im

-2 -1 21

2 1 3i+

1
π

3
π

3
π2

Fig. 2.40

θ
θ-

z

z-

r

1-r

Re

Im

O
1
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  =  r r i1 2 1 2 1 2 1 2 2 1cos cos - sin sin sin cos sin cos� � � � � � � �� �� �� �� �
 z z1 2  =  r r i1 2 1 2 1 2cos sin� � � ��� � � �� �� � .

Note
   arg z z1 2� �  =  � �1 2 1 2� � � � � � �arg argz z .

Property 3
If z r i1 1 1 1� �� �cos sin� � and z r i2 2 2 2� �� �cos sin� � ,  then z

z
r
r

i1

2

1

2
1 2 1 2� �� ���� � � �� �cos sin� � � � .

Proof: Using the polar form of z1and z2, we have 

 z
z

1

2

 =  
r
r

i
i

1

2

1 1

2 2

cos sin
cos sin

� �
� �
�� �
�� �

  =  
r
r

i i
i i

1

2

1 1 2 2

2 2 2 2

cos sin cos sin
cos sin cos sin

� � � �
� � � �
�� � �� �
�� � ��� �

  =  
r
r

i1

2
2

1 2 1 2 1 2 2 1cos cos sin sin sin cos sin cos
cos

� � � � � � � �
�

�� � � �� �
� ssin2�

 z
z

1

2

 =  r
r

i1

2
1 2 1 2cos sin� � � ��� � � �� �� � .

Note 

 arg z
z

1

2

�

�
�

�

�
�  =  � �1 2 1 2� � � � � � �arg argz z .

Example  2.25

 Find the product 3
2 3 3

6 5
6

5
6

cos sin cos sin� � � �
��

�
�

�
�
� � ��

�
�

�
�
�i i  in rectangular from.  

Solution: 

The Product 
 
3
2 3 3

6 5
6

5
6

cos sin cos sin� � � �
��

�
�

�
�
� � ��

�
�

�
�
�i i

    =  3
2

6
3

5
6 3

5
6

�
�
�

�
�
� ��

�
�

�
�
� � ��

�
�

�
�
�

�

�
�

�

�
�( ) cos sin� � � �i

    =  9 7
6

7
6

cos sin� ��
�
�

�
�
� �

�
�
�

�
�
�

�

�
�

�

�
�i

    =  9
6 6

cos sin�
�

�
�

��
�
�

�
�
� � ��

�
�

�
�
�

�

�
�

�

�
�i

Re

Im

z 1

z 2

z1

z 2-

1θ

1r(
,

)

r1
r2-(
, 1

2

θ
θ-

)

O

2θ

2r(
,

)

Fig. 2.43
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    =  9
6 6

� �
�
�

�
�
� �

�
�
�

�
�
�

�

�
�

�

�
�cos sin� �i

    =  9 3
2 2

9 3
2

9
2

� �
�

�
��

�

�
�� � � �

i i  , Which is in rectangular form.

Example  2.26

 Find the quotient
2 9

4
9
4

4 3
2

3
2

cos sin

cos sin

� �

� �

��
�
�

�
�
�

��
�
�

�
�
� �

��
�
�

�
�
�

�

�
�

�

�
�

i

i
 in rectangular form.

Solution

 
2 9

4
9
4

4 3
2

3
2

cos sin

cos sin

� �

� �

��
�
�

�
�
�

��
�
�

�
�
� �

��
�
�

�
�
�

�

�
�

�

�
�

i

i

  =  1
2

9
4

3
2

9
4

3
2

cos sin� � � �
�

��
�
�

�
�
�

�

�
�

�

�
� � �

��
�
�

�
�
�

�

�
�

�

�
�

�

�
�

�

�
�i

  =  1
2

9
4

3
2

9
4

3
2

cos sin� � � �
��

�
�

�
�
� � ��

�
�

�
�
�

�

�
�

�

�
�i

  =  1
2

15
4

15
4

1
2

4
4

cos sin cos sin� �
�

��
�
�

�
�
� �

�
�
�

�
�
�

�

�
�

�

�
� � ��

�
�

�
�
� �i i 44

4
�

�
��

�
�

�
�
�

�

�
�

�

�
�

  =  
1
2 4 4

1
2

1
2

1
2

cos sin� ��
�
�

�
�
� �

�
�
�

�
�
�

�

�
�

�

�
� � ��

�
�

�
�
�i i

 
2 9

4
9
4

4 3
2

3
2

cos sin

cos sin

� �

� �

��
�
�

�
�
�

��
�
�

�
�
� �

��
�
�

�
�
�

�

�
�

�

�
�

i

i
 = 1

2 2
1

2 2
2

4
2

4
� � �i i . Which is in rectangular form.

Example  2.27

 If z x iy� �  and arg z
z
�
�

�
�
�

�
�
� �

1
1 2

p , show that x y2 2 1� � .

Solution

   Now,   z
z
�
�

1
1

 =  x iy
x iy

x iy
x iy

� �
� �

�
� �
� �

1
1

1
1

( )
( )

 =  
x iy x iy
x iy x iy
�� � ��� �� � �� �
� �� � � �� �

1 1
1 1

( )
( ) ( )

   ⇒     z
z
�
�

1
1

 =  ( ) ( )
( )

x y i y
x y

2 2

2 2

1 2
1

� � �
� �

.

   Since, arg z
z
�
�

�
�
�

�
�
�

1
1

 =  p
2

     Þ  tan�

� �
�

�
�

�

�
�

1
2 2

2
1

y
x y

 =  p
2

 

   ⇒      2
12 2

y
x y� �

 =  tan p
2

 ⇒ + − =x y2 2 1 0

   � �x y2 2  =  1.
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EXERCISE 2.7
 1. Write in polar form of the following complex numbers

   (i) 2 2 3+ i  (ii) 3 3− i  (iii) − −2 2i  (iv) i

i

�

�

1

3 3
cos� �sin

.

 2. Find the rectangular form of the complex numbers

   (i) cos sin cos sin� � � �
6 6 12 12
��

�
�

�
�
� ��
�
�

�
�
�i i  (ii) 

cos sin

cos sin

� �

� �
6 6

2
3 3

�

��
�
�

�
�
�

i

i
.

     3.  If x iy x iy x iy x iy a ibn n1 1 2 2 3 3�� � �� � �� � �� � � � , show that

   (i) x y x y x y x y a bn n1
2

1
2

2
2

2
2

3
2

3
2 2 2 2 2�� � �� � �� � �� � � �

  ( ) tan tanii �

�

��

�
�

�

�
� �

�
�
�

�
�
� �� 1

1

1 2y
x

b
a

kr

rr

n

� , k∈ .

 4. If 1
1

2 2�
�

� �
z
z

icos sin ,� �  show that z i� tan� .

 5. If cos cos cos sin sin sin ,� � � � � �� � � � � � 0 show that

   (i) cos cos cos cos3 3 3 3� � � � � �� � � � �� � and

   (ii) sin sin sin sin3 3 3 3� � � � � �� � � � �� � .

 6. If z x iy� � and arg z i
z
�
�

�
�
�

�
�
� �2 4

p
, show that x y x y2 2 3 3 2 0� � � � � .

2.8 de Moivre’s Theorem and its Applications
      Abraham de Moivre (1667–1754) was one of the mathematicians to use 

complex numbers in trigonometry. 

  The formula (cos sin ) (cos sin )� � � �� � �i n i nn  known by his name, was 

instrumental in bringing trigonometry out of the realm of geometry and into that of 
analysis.

2.8.1 de Moivre's Theorem
de Moivre’s Theorem

Given any complex number cos sin�� ���� i  and any integer n,
(cos sin ) cos sin�� �� �� ���� �� ��i n i nn

.

Corollary
 (1) (cos sin ) cos sin� � � �� � �i n i nn  (2) (cos sin ) cos sin� � � �� � ��i n i nn

 (3) (cos sin ) cos sin� � � �� � ��i n i nn  (4) sin cos cos sin� � � �� � �� �i i i .

 Now let us apply de Moivre’s theorem to simplify complex numbers and to find solution of 
equations.

de Moivre 
1667–1754
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Example  2.28

 If z i� �� �cos sin� � , show that z
z

n z
z

i nn
n

n
n� � � �

1 2 1 2cos sin� �and .

Solution

 Let z i� �� �cos sin� � .
 By de Moivre’s theorem ,

   zn  =  cos sin cos sin� � � ��� � � �i n i nn  

   1
zn

 =  z n i nn� � cos sin� � �

   Therefore,  z
z

n
n+

1  =  cos sin cos sinn i n n i n� � � ��� � � �� �

   z
z

n
n+

1  =  2cos nθ .

 Similarly,

   z
z

n
n−

1  =  cos sin cos sinn i n n i n� � � ��� � � �� �

   z
z

n
n−

1  =  2i nsin θ .

Example  2.29

 Simplify sin cos� �
6 6

18

��
�
�

�
�
�i .

Solution
   We have, sin cos� �

6 6
� i  =  i icos sin� �

6 6
��

�
�

�
�
� .

 Raising to the power 18 on both sides gives,

   sin cos� �
6 6

18

��
�
�

�
�
�i  =  i i� � ��

�
�

�
�
�

18
18

6 6
cos sin� �

    =  �� � ��
�
�

�
�
�1 18

6
18

6
cos sin� �i

    =  � �� � � �cos sin3 3 1 0� �i i .

   Therefore,   sin cos� �
6 6

18

��
�
�

�
�
�i  =  1.

Example  2.30

 Simplify  1 2 2
1 2 2

30� �
� �

�
�
�

�
�
�

cos sin
cos sin

� �
� �

i
i

.

Solution
  Let   z  =  cos sin2 2� �� i .

  As | |z  =  | |z zz2 1= = , we get 


z
z

i� � �
1 2 2cos sin� � .
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  Therefore,  1 2 2
1 2 2
� �
� �

cos sin
cos sin

� �
� �

i
i

 =  1

1 1
1

1
�

�
�

�� �
�

�
z

z

z z
z

z .

  Therefore,   1 2 2
1 2 2

30� �
� �

�
�
�

�
�
�

cos sin
cos sin

� �
� �

i
i

 =  z i30 302 2� �� �cos sin� �

   =  cos sin60 60� �� i .

Example  2.31

 Simplify    (i) ( )1 18+ i   (ii) ( )� �3 3 31i .

Solution
 (i) ( )1 18+ i

   Let  1+ i  =  r icos sin� ��� � . Then, we get

   r  =  1 1 22 2� �  ; � �
� �

�
�
�
�
� �

�tan 1 1
1 4

, 

   θ  =  �
�

�
4

       ( 1+ i  lies in the first Quadrant)

   Therefore 1+ i  =  2
4 4

cos sin� �
��

�
�

�
�
�i

 Raising to power 18 on both sides,

   ( )1 18+ i  =  2
4 4

2
4 4

18
18

18

cos sin cos sin� � � �
��

�
�

�
�
�

�

�
�

�

�
� � ��

�
�

�
�
�i i .

 By de Moivre’s theorem,

   ( )1 18+ i  =  2
18

4
18

4
9 cos sin� �

��
�
�

�
�
�i

    =  2 4
2

4
2

2
2 2

9 9cos sin cos sin�
�

�
� � �

��
�
�

�
�
� � ��

�
�

�
�
�

�

�
�

�

�
� � ��

�
�

�
�

i i ��

   ( )1 18+ i  =  2 5129 ( )i i= .

 (ii) ( )� �3 3 31i

   Let  � �3 3i  = r icos sin� ��� � . Then, we get

   r  =  �� � � � �3 3 12 2 3
2

2 ,

   α  =  tan tan� �

�
� �1 13

3
3

3
� ,

   θ  =  � � �
� �

� � � �
3

2
3

  ( � �3 3i  lies in II Quadrant)

   Therefore,  � �3 3i  =  2 3 2
3

2
3

cos sin� �
��

�
�

�
�
�i .
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 Raising power 31 on both sides,

   ( )� �3 3 31i  =  2 3 2
3

2
3

31
31

� � ��
�
�

�
�
�cos sin� �i

    =  2 3 20 2
3

20 2
3

31� � ��
�
�

�
�
� � ��

�
�

�
�
�

�

�
�

�

�
�cos sin�

�
�

�i

    =  2 3 2
3

2
3

31� � ��
�
�

�
�
�cos sin� �i

    =  2 3
3 3

31� � ��
�
�

�
�
� � ��

�
�

�
�
�

�

�
�

�

�
�cos sin�

�
�

�i

    =  2 3
3 3

2 3 1
2

3
2

31 31� � � ��
�
�

�
�
� � � � � �

�

�
��

�

�
��cos sin� �i i .

2.8.2 Finding nth roots of a complex number
 de Moivre’s formula can be used to obtain roots of  complex numbers. Suppose n is a positive 

integer and a complex numberω is n th root of z denoted by z n1/ , then we have
   ω n  =  z . ...(1)
   Let  ω  =  � � �cos �� �i sin  and

   z  =  r i r k i k kcos cos ,� � � � � ��� � � �� � � �� �� � �sin sin2 2 

 Since w is the nth root of z , then 
   ω n  =  z
  ⇒  � � �n nicos �� �sin  =  r k i k kcos ,� � � ��� � � �� �� � �2 2sin 

By de Moivre’s theorem,
   � � �n n i ncos sin�� �  =  r k i k kcos ,� � � ��� � � �� �� � �2 2sin 

Comparing the moduli and arguments, we get

   ρ n  =  r  and n k k� � �� � �2 , 

   ρ  =  r n1/  and � � �
�

�
�

2k
n

k,  .

   Therefore, the values of ω are r k
n

i k
n

kn1 2 2/ cos sin ,� � � ���
�
�

�
�
� �

��
�
�

�
�
�

�

�
�

�

�
� � .

 Although there are infinitely many values of k , the distinct values of ω  are obtained when

k n� �0 1 2 3 1, , , , , . When k n n n� � �, , ,1 2we get the same roots at regular intervals (cyclically). 

Therefore the nth roots of complex number z r i� �� �cos� �sin  are

z r k
n

i k
n

n n1 1 2 2/ / cos sin�
��

�
�

�
�
� �

��
�
�

�
�
�

�

�
�

�

�
�

� � � �
, , , , , ,k n� �0 1 2 3 1

.
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 If we set�
� �

�
�� �

ren
i k

n
2

, the formula for the n th roots of a 

complex number has a nice geometric interpretation, as shown in 

Figure. Note that because | |� � rn  the n  roots all have the same 

modulus rn  they all lie on a circle of radius rn  with centre at the 

origin. Furthermore, the n  roots are equally spaced along the 

circle, because successive n  roots have arguments that differ by

2p
n

.

Remark

(1) General form of de Moivre's Theorem

 If x is rational, then cos sinx i x� ��  is  one of the values of (cos sin )� �� i x .

(2) Polar form of unit circle 

   Let z  =  e ii� � �� �cos sin . Then, we get

   z 2  =  cos sin� �� i 2

   ⇒   x iy+ 2  =  cos sin2 2 1� �� �

   ⇒   x y2 2+  =  1.

 Therefore,  z =1 represents a unit circle (radius one) centre at the origin.

2.8.3 The nth  roots of unity

 The solutions of the equation zn =1 , for positive values of integer n ,  are the n  roots of the unity. 

In polar form the equation zn = 1 can be written as 

 z k i kn = +( ) + +( )cos sin0 2 0 2π π = ei k2 p ,  k = 0 1 2, , , .

 Using deMoivre’s theorem, we find the n th roots of unity from the equation given below:

 z k
n

i k
n

e k n
i k
n= 





+ 











= = −cos sin , , , , , ,2 2 0 1 2 3
2π π π

 11 . … (1)

 Given a positive integer n , a complex number z is called an n th root of unity if  and only if zn =1.

If we denote the complex number byω , then 

   ω  = e i
n

i i
n

i
n

2 2 2� � �
� �cos sin

   ⇒    ω n  =  e e
i
n

n
i

2
2 1

�
��

�
�

�

�
� � � .

Fig. 2.44

Re

Im

O

P

θ = 
2

n
π

ω

mω

1nω −

2nω −

     nth root of a complex number

θ

 n r
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 Therefore ω is an n th root of unity. From equation (1), the 

complex numbers 1 2 1, , , ,� � �

n� are n th roots of unity. The 
complex numbers 1 2 1, , , ,� � �

n�  are the points in the complex 
plane and are the vertices of a regular polygon of n  sides inscribed 
in a unit circle as shown in Fig 2.45. Note that because the n th 
roots all have the same modulus 1, they will lie on a circle of 
radius 1 with centre at the origin. Furthermore, the n roots are 
equally spaced along the circle, because successive n th roots have 

arguments that differ by 2p
n

.

 The n th roots of unity 1 2 1, , , ,� � �

n�  are in geometric 

progression with common ratio ω .

 Therefore 1 1
1

02 1� � � � �
�
�

��� � �
�
�



n
n

 since � n �1 and ω ¹1 .

The sum of all the nth roots of unity is
1 02 1� � � � ��� � �

n .

 The product of  n n, th roots of unit is 

   1 2 1�� � n�  =  � �0 1 2 3 1
1

2� � � � � �
�

� ( )
( )

n
n n

    =  � � �n
n

i
n

i n ne e� � � � � � � � � �
� �

� �
( ) ( )

( )
1

2 2
1

2
1 11

The product of all the nth roots of unity is
1 2 1�� � n� � ( )− −1 1n .

 Since | |� �1,  we have �� �� �| |2 1 ;  hence � � � �� � � � � �� �1 0 1( ) ,k k k n

� � � � �n k n k k k k n� � �� � � � � �( ) , 0 1

Therefore,    � � �n k k k k n� �� � � � � � �, .0 1

Note

 (1) All the n  roots of n th roots unity are in Geometrical Progression

 (2) Sum of the n  roots of n th roots unity is always equal to zero.

 (3) Product of the n  roots of n th roots unity is equal to ( )− −1 1n .

 (4) All the n  roots of n th roots unity lie on the circumference of a circle whose centre is at the 
origin and radius equal to 1 and these roots divide the circle into n  equal parts and form a 
polygon of n  sides.

Fig. 2.45

1 Re

Im

O1-

i

i-

P

Q
θ = 

2
n

π

m

ω

ω

1nω −

2nω −

nth roots of unity

θ

12th_Maths_EM_Vol1_CH 2_Complex Numbers.indd   88 07-12-2021   11:52:04



Complex Numbers89

Example  2.32
 Find the cube roots of unity. 

Solution

 We have to find 1
1
3 . Let  z = 1

1
3  then z3 1=  .

 In polar form, the equation z3 1=  can be written as

 z k i k e ki k3 20 2 0 2 0 1 2= + + + = =cos( ) sin( ) , , , ,p p p
 .

    Therefore, z k i k e k
i k

= 





+ 





= =cos sin , , ,2
3

2
3

0 1 2
2

3π π π

.

 Taking k = 0 1 2, , , we get,

 k = 0,  z  =  cos sin0 0 1� �i .

 k =1, z  =  cos sin cos sin2
3

2
3 3 3

p p
p

p
p

p
� � ��

�
�

�
�
� � ��

�
�

�
�
�i i

   =  � � � � �cos sinp p
3 3

1
2

3
2

i i .

 k = 2 , z  =  cos sin cos sin4
3

4
3 3 3

p p
p

p
p

p
� � ��

�
�

�
�
� � ��

�
�

�
�
�i i

   =  � � � � �cos sinp p
3 3

1
2

3
2

i i .

 Therefore,  the cube roots of unity are

          1 1 3
2

1 3
2

, ,− + − −i i   Þ   1,ω , and ω 2 ,  where �
�

� �
� �e ii 2

3 1 3
2

.

Example  2.33
 Find the fourth roots of unity.

Solution

 We have to find 1
1
4 . Let  z = 1

1
4 . Then z4 1= .

 In polar form, the equation z4 1= can be written as

 z4  =  cos sin , , , ,0 2 0 2 0 1 22�� � � �� � � �k i k e ki k� � �
 .

 Therefore, z  =  cos 2
4

2
4

2
4k i k e

i k� � ��
�
�

�
�
� �

�
�
�

�
�
� �sin , k = 0 1 2, , ,3.

 Taking k = 0 1 2 3, , , , we get  

  k = 0,  z  =  cos 0 0 1� �i sin .

  k =1,  z  =  cos sin� �
2 2

�
�
�

�
�
� �

�
�
�

�
�
� �i i .

Fourth roots of unity

1 Re

Im

O1-

i

i-

Fig. 2.47

Fig. 2.46
Cube roots of unity

1

1 3
2 2

i− +

 1 3
2 2

i− −

Re

Im

O
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  k = 2,  z  =  cos sin� �� � �i 1.

  k = 3,  z  =  cos sin cos sin3
2

3
2 2 2

� � � �
� � � � � �i i i .

 Fourth roots of unity are 1 1, , ,i i− −    Þ    1 2 3, , ,ω ω ωand , where �
�

� �e i
i 2

4 .

Note

 (i) In this chapter the letterω is used for n th roots of unity. Therefore the value ofω is depending 

on n as shown in following table.

value of n 2 3 4 5  k

value of ω  e
i 2

2
p

e
i 2

3
p

e
i 2

4
p

e
i 2

5
p



e
i
k

2p

 (ii) The complex number z eiθ  is a rotation of z by θ  radians in the counter clockwise direction 

about the origin.

Example  2.34

 Solve the equation z i3 8 0� � , where z∈ .

Solution

  Let           z i3 8 0� � . Then, we get

       z3  =  −8i

   =  8 8
2

2
2

2( ) cos ,� � � ��
�
�

�
�
� � � ��

�
�

�
�
�

�

�
�

�

�
� �i k i k k�

�
�

�sin  . 

  Therefore, z  =  8 4
6

4
6

3 cos � ��
�
�

�
�
� �

� ��
�
�

�
�
�

�

�
�

�

�
�

� � � �k i ksin , k = 0 1 2, , .

 Taking k = 0 1 2, , , we get,

 k = 0,  z  = 2
6 6

2 1
2

3
2

2 3
2

1
2

cos ��
�
�

�
�
� � ��

�
�

�
�
�

�

�
�

�

�
� � � �

�

�
��

�

�
�� � �

� �i i isin
��

�
��

�

�
�� � �3 i 2

6 6
2 1

2
3

2
2 3

2
1
2

cos ��
�
�

�
�
� � ��

�
�

�
�
�

�

�
�

�

�
� � � �

�

�
��

�

�
�� � �

� �i i isin
��

�
��

�

�
�� � �3 i

 k =1,  z  =  2
2 2

2 2 0 0 2 2cos � ��
�
�

�
�
� �

�
�
�

�
�
�

�

�
�

�

�
� � � �� � � � �i i i isin .

 k = 2,  z  =  2 7
6

7
6

2
6 6

cos cos� �
�

�
�

��
�
�

�
�
� �

�
�
�

�
�
�

�

�
�

�

�
� � ��

�
�

�
�
� � ��i isin sin

��
�

�
�
�

�

�
�

�

�
�

   =  2
6 6

2 3
2

1
2

3� �
�
�

�
�
� �

�
�
�

�
�
�

�

�
�

�

�
� � � �

�

�
��

�

�
�� � � �cos � �i i isin .

 The values of z are 3 2 3− − −i i i, , and .
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Example  2.35

 Find all cube roots of 3 + i .

Solution
We have to find 3

1
3+( )i . Let  z i= +( )3

1
3 . Then, z3  =  3 � � �� �i r icos� �sin .

   Then,   r  =  3 1 2
6

� � � �, and � �
�  (

 3 + i  lies in the first quadrant)

   Therefore,  z3  =  3 2
6 6

� � ��
�
�

�
�
�i icos sin� �

   Þ    z  =  2 12
18

12
18

0 1 23 cos sin , , ,� � � ���
�
�

�
�
� �

��
�
�

�
�
�

�

�
�

�

�
� �

k i k k .

  Taking k = 0 1 2, , , we get

 k = 0,  z  =  2
18 18

1
3 cos sinp p

+






i  ;

 k =1,  z  =  2 13
18

13
18

1
3 cos sinp p

+






i ;

 k = 2,  z  =  2 25
18

25
18

2 7
18

7
18

1
3

1
3cos sin cos sinp p p p

+






= − −






i i


.

Example  2.36
 Suppose z z z1 2 3, , and are the vertices of an equilateral triangle inscribed in the circle    

z = 2.  If  z i1 1 3� � , then find z z2 3and .

Solution
 z = 2  represents the circle with centre ( , )0 0  and radius 2.

 Let A, B, and C be the vertices of the given triangle. Since the vertices z z z1 2 3, , and form an 

equilateral triangle inscribed in the circle z = 2 , the sides of this triangle AB, BC, and CA  

subtend 2
3
p radians (120 degree) at the origin (circumcenter of the triangle).

 (The complex number z eiθ  is a rotation of z  by θ  radians in the counter clockwise direction 

about the origin.)
 Therefore, we can obtain z z2 3and  by the rotation of z1 by 2

3
p  and 4

3
p respectively.

 Given that           OA
� ���

 =  z i1 1 3� � ;

            OB
� ���

 =  z e i e
i i

1

2
3

2
31 3

� �

� �� �
   =  1 3 2

3
2
3

�� � ��
�
�

�
�
�i icos sin� �

                            =  1 3 1
2

3
2

2�� � � �
�

�
��

�

�
�� � �i i ;

Re

Im

O

 
1 1 3z i= +

A

2
3
π

2
3
π

2 2z = −

B

C

2

3 1 3z i= −

Fig. 2.48
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             OC
� ���

 =  z e z e e
i i i

1

4
3

2

2
3

2
32

� � �

� � �

                                 =  � ��
�
�

�
�
�2 2

3
2
3

cos sin� �i

   =  � � �
�

�
��

�

�
�� � �2 1

2
3

2
1 3i i .

  Therefore,   z2  =  � � �2 1 33, and z i .

EXERCISE 2.8

 1. If � �1is a cube root of unity, show that a b c
b c a

a b c
c a b

� �
� �

�
� �
� �

� �
� �
� �

� �
� �

2

2

2

2 1.

 2. Show that 3
2 2

3
2 2

3
5 5

�
�

�
��

�

�
�� � �

�

�
��

�

�
�� � �

i i .

 3. Find the value of 
1

10 10

1
10 10

10

� �

� �

�

�

�
�
�

�

�

�
�
�

sin cos

sin cos
.

� �

� �

i

i

 4. If 2 1 2 1cos cos ,� �� � � �x
x

y
y

and  show that

   (i) x
y

y
x

� � �� �2cos � �  (ii) xy
xy

i� � �� �1 2 sin � �

   (iii) x
y

y
x

i m n
m

n

n

m� � �� �2 sin � �  (iv) x y
x y

m nm n
m n� � �� �1 2cos � � .

 5. Solve the equation z3 27 0� � .

 6. If � �1 is a cube root of unity, show that the roots of the equation z �� � � �1 8 03 are

� � �1 1 2 1 2 2, ,� � .

 7. Find the value of cos sin .2
9

2
91

8 k i k
k

� �
��

�
�

�
�
�

�
�

 8. If � �1 is a cube root of unity, show that

   (i) ( ) ( ) .1 1 1282 6 2 6� � � � � �� � � �

   (ii) 1 1 1 1 1 12 4 8 211

�� � �� � �� � �� � �� � �� � � � � .

 9. If z i� �2 2 , find the rotation of z  by θ  radians in the counter clockwise direction about the 
origin when

   (i) � �
�

3
 (ii) � �

�
2
3

 (iii) � �
�

3
2

.
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EXERCISE 2.9

Choose the correct or the most suitable answer from the given four alternatives :

 1. i i i in n n n+ + ++ + +1 2 3  is

  (1) 0   (2) 1  (3) −1  (4) i  

 2. The value of ( )i in n

n

1

1

13

 is

  (1) 1+ i    (2) i   (3) 1  (4) 0  

 3. The area of the triangle formed by the complex numbers z iz, ,  and z iz+  in the  
Argand’s diagram is

  (1) 1
2

2| |z   (2) | |z 2   (3) 3
2

2| |z   (4) 2 2| |z  

 4. The conjugate of a complex number is 1
2i −

. Then, the complex number is

  (1) 1
2i +

   (2) �
�
1
2i

  (3) −
−
1
2i

  (4) 1
2i −

 

 5. If z
i i

i
�

�� � �

�

3 3 4

8 6

3
2

2

( )

( )
, then | |z  is equal to

  (1) 0   (2) 1  (3) 2   (4) 3  

 6. If z  is a non zero complex number, such that 2 2iz z=  then | |z  is 

  (1) 1
2

  (2) 1  (3) 2   (4) 3  

 7. If | |z i� � �2 2 , then the greatest value of | |z  is

  (1) 3 2−   (2) 3 2+    (3) 5 2−   (4) 5 2+  

 8. If z
z

� �
3 2 , then the least value of | |z  is

  (1) 1  (2) 2   (3) 3   (4) 5  

 9. If | |z =1 , then the value of 1
1
+
+

z
z

 is

  (1) z   (2) z   (3) 1
z

  (4) 1 

 10. The solution of the equation | |z z i� � �1 2  is

  (1) 3
2

2− i   (2) � �
3
2

2i   (3) 2 3
2

− i   (4) 2 3
2

+ i  

 11. If | | , | | , | |z z z1 2 31 2 3= = =  and | |9 4 121 2 1 3 2 3z z z z z z� � � , then the value of | |z z z1 2 3+ +  is

  (1) 1   (2) 2   (3) 3    (4) 4  

 12. If z  is a complex number such that z∈� �\  and z
z

� �
1

 , then | |z  is

  (1) 0    (2) 1  (3) 2   (4) 3  
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 13. z z1 3, , and z3  are complex numbers such that z z z1 2 3 0� � �  and | | | | | |z z z1 2 3 1= = =  then 

z z z1
2

2
2

3
2+ +  is

  (1) 3    (2) 2   (3) 1  (4) 0  

 14. If z
z
�
�

1
1

 is purely imaginary, then | |z  is

  (1) 1
2

   (2) 1  (3) 2   (4) 3  

 15. If z x iy� �  is a complex number such that | | | |z z� � �2 2 , then the locus of z  is

  (1) real axis (2) imaginary axis (3) ellipse (4) circle

 16. The principal argument of 3
1� � i

 is

  (1) −5
6
p   (2) −2

3
p    (3) −3

4
p   (4) −p

2
  

 17. The principal argument of (sin cos )40 40 5� � �i  is

  (1) � �110    (2) � �70    (3) 70°    (4) 110°   

 18. If ( ) ( ) ( ) ( )1 1 2 1 3 1� � � � � �i i i ni x iy , then 2 5 10 1 2� � �( )n  is

  (1) 1  (2) i   (3) x y2 2+   (4) 1 2+ n  

 19. If � �1 is a cubic root of unity and ( )1 7� � �� �A B , then ( , )A B  equals 

  (1) ( , )1 0   (2) ( , )−1 1   (3) ( , )0 1   (4) ( , )1 1  

 20. The principal argument of the complex number 
1 3

4 1 3

2
�� �
�� �
i

i i
 is

  (1) 2
3
p   (2) p

6
  (3) 5

6
p   (4) p

2
 

 21. If α  and β  are the roots of x x2 1 0� � � , then � �2020 2020�  is

  (1) −2   (2) −1  (3) 1   (4) 2  

 22. The product of all four values of cos sin� �
3 3

3
4

��
�
�

�
�
�i  is

  (1) −2   (2) −1  (3) 1  (4) 2  

 23. If � �1 is a cubic root of unity and 
1 1 1
1 1
1

32 2

2 7

� � �� �
� �

k , then k  is equal to

  (1) 1  (2) −1  (3) 3i   (4) − 3i   

 24. The value of 1 3
1 3

10
�
�

�

�
��

�

�
��

i
i

 is

  (1) cis 2
3
p   (2) cis 4

3
p   (3) −cis 2

3
p   (4) −cis 4

3
p  
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 25. If � �
� cis 2

3
, then the number of distinct  roots of 

z
z

z

�
�

�
�

1
1

1
0

2

2

2

� �
� �
� �

  (1) 1  (2) 2   (3) 3   (4) 4   

SUMMARY
 In this chapter we studied

 Rectangular form of a complex number is x iy x yi++ ++( )or , where x and y are real 
numbers.  

 Two complex numbers z x iy1 1 1�� ��  and z x iy2 2 2�� ��  are said to be equal if and only if 
Re( ) Re( )z z1 2== and Im( ) Im( )z z1 2== . That is x x y y1 2 1 2== ==and .

 The conjugate of the complex number x iy++ is defined as the complex number x iy−− .

Properties of complex conjugates 

 (1) z z z z1 2 1 2� � �  (6) Im( )z z z
i

�
�
2

 (2) z z z z1 2 1 2� � �  (7) z zn n� � � � � , where n is an integer 

 (3) z z z z1 2 1 2=  (8) z is real if and only if z z=  

 (4) z
z

z
z

z1

2

1

2
2 0

�

�
�

�

�
� � �,  (9) z  is purely imaginary if and only if z z� �  

 (5) Re( )z z z
�

�
2

 (10) z z=

  If z x iy�� �� , then x y2 2++ is called modulus of z . It is denoted by z .

Properties of Modulus of a complex number

 (1) z z=  (5) z
z

z
z

z1

2

1

2
2 0� �,

 (2) z z z z1 2 1 2� � � (Triangle inequality) (6) z zn n= , where n is an integer

 (3) z z z z1 2 1 2=  (7) Re z z� � �

 (4) z z z z1 2 1 2� � �  (8) Im z z� � �
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Formula for finding square root of a complex number

 a ib
z a

i b
b

z a
� � �

�
�

��

�
�
�

�

�
�
�2 2

, where z a ib� � and b ¹ 0 .

 Let r  and θ be polar coordinates of the point P x y( , ) that corresponds to a non-zero  
complex number z x iy� � . The polar form or trigonometric form of a complex number P  is 

z r i� �(cos sin )� � .

Properties of polar form

Property 1: If z r i� �� �cos sin ,� � then z
r

i� � �� �1 1 cos sin� � .

Property 2:  If z r i1 1 1 1� �� �cos sin� � and z r i2 2 2 2� �� �cos sin� � , 

then  z z1 2 = r r i1 2 1 2 1 2cos( ) sin( )� � � �� � �� � .

Property3:   If z r i1 1 1 1� �� �cos sin� � and z r i2 2 2 2� �� �cos sin� �  , 

then z
z

r
r

i1

2

1

2
1 2 1 2� �� ���� � � �� �cos sin� � � � .

de Moivre’s Theorem
(a) Given any complex number cos sin�� ���� i  and any integer n,

    (cos sin ) cos sin�� �� �� ���� �� ��i n i nn

(b)  If x is rational, then cos sinx i xθ θ+   in one of the values of cos sinθ θ+( )i x  

 The nth roots of complex number z r i� �� �cos� �sin  are

z r k
n

i k
n

n n1 1 2 2/ / cos sin�
��

�
�

�
�
� �

��
�
�

�
�
�

�

�
�

�

�
�

� � � � , k n� �0 1 2 3 1, , , , , .
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