# Principles of Inheritance and Variation

- Genetics: It is the branch of science that deals with the principles of inheritance and its practices.
- Mendel was the first to carry out the study on the transmission of characteristics from parents to offspring.
- Mendel proposed that heredity is controlled by genes.
- 's law of inheritance
- Mendel experimented on garden pea plant (*Pisum sativum*) having many visible contrasting characters.
- He used **seven** contrasting pairs of characters or traits in garden pea.

| Trait           | Dominant trait | Recessive trait |
|-----------------|----------------|-----------------|
| Seed shape      | Round          | Wrinkled        |
| Seed colour     | Yellow         | Green           |
| Flower colour   | Violet         | White           |
| Pod shape       | Full           | Constricted     |
| Flower position | Axial          | Terminal        |
| Stem height     | Tall           | Dwarf           |
| Pod colour      | Green          | Yellow          |

- Mendel crossed pea plants having these seven pairs of contrasting characters/traits and produced offspring from them.
- His experiments included three steps
  - Selection of true breeding plants
  - $\circ$  Obtaining  $F_1$  plants by cross pollination
  - Self pollination of F<sub>1</sub> plants to obtain F<sub>2</sub> generation
- **Monohybrid cross:** It is a cross between two parents that have one pair of contrasting characters; for example, a cross between tall (TT or Tt) and dwarf (tt) plants.
- The **phenotypic ratio** obtained in monohybrid cross is 3:1 while **genotypic ratio** is 1:2:1.
- Based on observations on monohybrid crosses, two laws were proposed
  - **First law or law of dominance:** It states that only one parental trait gets expressed in the F<sub>1</sub> generation while both the traits get expressed in the F<sub>2</sub> generation.
  - Law of segregation: It states that two alleles segregate from each other when characters are transferred from parents to offspring during reproduction.
- **Test cross:** It is a cross between organisms with unknown genotype and recessive parents. This cross is used for determining whether the given individual has homozygous or heterozygous genotype.

### Incomplete dominance

- It is the phenomenon where one allele is incompletely dominant over the other member of the allelic pair.
- Both **phenotypic and genotypic ratios** are the same in the case of incomplete dominance, i.e., 1:2:1.
- **Dominant:** It is the character/trait that is able to express itself over another contrasting trait; for example, tall plant is dominant over dwarf plant.
- **Recessive:** It is the character/trait that is unable to express itself over another contrasting trait.

### Co-dominance

- It is the phenomenon where both the alleles of a gene are equally dominant and get expressed together in heterozygous condition; for example, ABO blood group in humans.
- Blood group ABO is an example of multiple alleles.
- **Dihybrid cross:** It is the cross between two parents that have two pairs of contrasting characters; for example, the cross between **round yellow seed** and **wrinkled green seeds**.
- The **phenotypic ratio** obtained in dihybrid cross is **9:3:3:1**.
- On the basis of observation of dihybrid cross, the law of independent assortment was proposed.
  - Law of independent assortment: It states that the members of different pairs of alleles assort independently into gametes.

## Chromosomal theory of inheritance

- It was proposed by Sutton and Boveri.
- Mendel's law was extended as chromosomal theory of inheritance after it was known that genes are located on the chromosomes.

### **Polygenic Inheritance**

- In polygenic inheritance is also known as quantitative inheritance.
- The expression of quantitative traits is controlled by more than one pair of genes and the environment also contributes towards such type of inheritance.
- The most common example of polygenic inheritance is observed in the inheritance of skin colour in human.
- It was first studied by C.B. Davenport (1913).
- Morgan worked on *Drosophila* and found that genes are linked.
- **Linkage:** It is the co-existence of two or more genes on the same chromosome. If the genes lie together, they are inherited together and are said to be linked genes.
- **Recombination:** It is the mixing of the maternal and paternal characters in a sexually reproducing organism so as to bring genetic variation in the offspring.

#### Sex determination

- **Female heterogamy:** Presence of two kinds of sex chromosomes in the female; only one kind is present in the male; for example, birds (the female has ZW sex chromosome while the male has ZZ sex chromosome).
- **Male heterogamy:** Presence of two kinds of sex chromosomes in the male; only one kind is present in the female; for example, humans, Drosophila (the female has XX sex chromosome while the male has XY sex chromosome).
- **In humans**, the genetic make up of the sperm determines the sex of the baby.

# Sex determination in honey bees

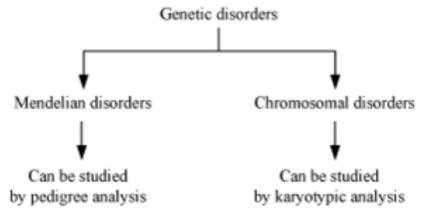
- Show a special mechanism of sex determination called the haplo-diploidy.
- Unfertilized eggs develop into males.
- Fertilized eggs develop into females.

### Sex-Linked Inheritance

• The appearance of a trait because of the presence of an allele either on X chromosome or Y chromosome is called Sex-linked Inheritance.

### • Diseases observed in X-linked Inheritance

- Haemophilia
- Colour-Blindness


#### Criss-Cross Inheritance

• The transfer of a gene from mother to son or father to daughter is called as criss-cross inheritance. For e.g. in X-chromosome linkage

#### Mutation

- It is the sudden change in genotype due to the alteration in DNA sequences.
- Mutation and recombination brings variation in DNA.
- **Point mutation** arises due to the change in a single base pair in DNA; for example, sickle-cell anaemia.
- Frame shift mutation arises due to deletion and insertion of base pairs.
- **Mutagens** are factors that induce mutations; for example, UV radiation.
- Inheritable mutations can be studied by pedigree analysis

### **Genetic Disorders**



• Examples of Mendelian disorder:

- 1. Haemophilia Sex-linked recessive disorder
- 2. Sickle-cell anaemia Autosome-linked recessive disorder
- 3. **Phenylketonuria** Inborn error of metabolism; autosomal-recessive disorder
- Examples of chromosomal disorder:
- 1. An euploidy is the presence of abnormal number of chromosomes in an individual.

0

0

- **Down's syndrome** Characterised by trisomy of the 21st chromosome; chromosomes increase from 46 to 47
- **Klinefelter's syndrome** Characterised by the presence of an additional X-chromosome; Karyotype 47, XXY
- **Turner's syndrome** Characterised by monosomy of sex chromosomes. Karyotype 45, XO