CUET (UG)

Chemistry Sample Paper - 3

Solved

Maximum Marks: 200 Time Allowed: 45 minutes **General Instructions:** 1. The test is of 45 Minutes duration. 2. The test contains 50 questions out of which 40 questions need to be attempted. 3. Marking Scheme of the test: a. Correct answer or the most appropriate answer: Five marks (+5). b. Any incorrectly marked option will be given minus one mark (-1). c. Unanswered/Marked for Review will be given zero mark (0). Attempt any 40 questions End centred unit cell is present in _____ crystal systems. 1. [5] b) hexagonal and cubic a) orthorhombic and monoclinic c) cubic and triclinic d) tetragonal and rhombohedral 2. Iodine molecules are held in the crystals lattice by: [5] a) coulombic forces b) covalent bonds c) London forces d) dipole-dipole interactions 3. An atom located at the body center of a cubic unit cell is shared by [5] a) 8 unit cells b) 4 unit cells c) 1 unit cell d) 2 unit cells 4. Brass is an example of [5] b) molecular crystal a) covalent crystal c) ionic crystal d) metallic crystal 5. Solubility of gas in liquid decreases with increase in [5] a) shows a negative deviation from b) is saturated Raoult's law c) forms an ideal solution d) shows a positive deviation from Raoult's law

6.	A colligative property is:		[5]
	a) boiling point	b) vapour pressure	
	c) electrical conductivity	d) osmotic pressure	
7.	Isotonic solutions have same		[5]
	a) vapour pressure	b) boiling temperature	
	c) osmotic pressure	d) freezing temperature	
8.	Which among the following is soluble in water?		[5]
	a) Phenol	b) Formic acid	
	c) Benzene	d) Chloroform	
9. The standard reduction potential for Zn is -0.76 V. Which of the following correct when Zn is placed in dilute acid solution?			[5]
	a) Zn is readily oxidized.	b) Zn cannot liberate hydrogen from acids.	
	c) Zn ²⁺ is readily reduced.	d) Zn remains as it is.	
10.	A galvanic cell can behave as an electroly	tic cell when:	[5]
	a) $E_{cell} > E_{ext}$	b) $E_{cell} = E_{ext}$	
	c) $E_{ext} > E_{cell}$	d) $E_{cell} = 0$	
11.	The cell constant of a conductivity cell		[5]
	a) changes with temperature of electrolyte	b) changes with change of electrolyte	
	c) remains constant for a cell	d) changes with change of concentration of electrolyte	
12.	Why is the minimum energy needed for a	n effective collision?	[5]
	a) Enough energy is needed to give	b) Energy is needed to break bonds.	

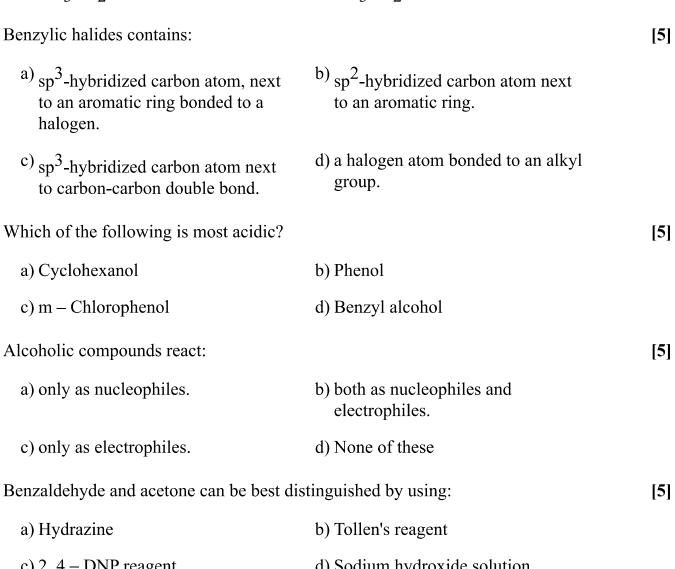
	c) A minimum energy is needed, so that the particles will collide many times per second.	d) Energy is needed to orient the particles correctly.	
13.	A first order reaction takes 30 minutes for would be:	50% completion. The value of rate constant k	[5]
	a) $2.31 \times 10^{-3} \text{ min}^{-1}$	b) $1.25 \times 10^{-3} \text{ min}^{-1}$	
	c) $2.75 \times 10^{-4} \text{min}^{-1}$	d) $2.5 \times 10^{-3} \text{ min}^{-1}$	
14. Name the order of reaction which proceeds with a uniform rate throughout.		s with a uniform rate throughout.	[5]
	a) Third order	b) Second order	
	c) First order	d) Zero order	
15.	Which is not an example of coagulation?		[5]
	a) Purification of water by alum	b) Formation of delta at the river banks	
	c) Creaming of milk	d) Rubber plating and chrome tanning	
16.	16. The average molecular mass of colloidal can be determined by		[5]
	a) Tyndall effect	b) Flocculation value	
	c) Brownian movement	d) Osmotic pressure measurement	
17.	17. The temperature above which the formation of micelles takes place is called		[5]
	a) critical temperature	b) Boyle's temperature	
	c) inversion temperature	d) Kraft temperature	
18.	Which of the following processes does no	t occur at the interface of phases?	[5]
	a) Heterogeneous catalysis	b) Corrosion	
	c) Homogeneous catalysis	d) Crystallisation	
19.	Which of the following reactions is an exa	ample of auto reduction?	[5]
	a) $Fe_3O_4 + 4CO \rightarrow 3Fe + 4CO_2$	b) $Cu_2O + C \rightarrow 2Cu + CO$	

	c) $\operatorname{Cu}^{2+}(\operatorname{aq}) + \operatorname{Fe}(\operatorname{s}) \to \operatorname{Cu}(\operatorname{s}) + \operatorname{Fe}^{2+}(\operatorname{aq})$	d) $Cu_2O + \frac{1}{2} Cu_2 S \rightarrow 3Cu + 3Cu + \frac{1}{2} SO_2$	
20.	O. Electrolytic refining is used to purify which of the following metals?		[5]
	a) Zn and Hg	b) Cu and Zn	
	c) Zr and Ti	d) Ge and Si	
21. Self reduction of Cu ₂ S to Cu can be carried out in:		[5]	
	a) Bessemer converter	b) Down's Process	
	c) Both Bessemer converter and Pierce - Smith converter	d) Pierce - Smith converter	
22.	In blister copper, the blisters are formed	d due to passing out of	[5]
	a) CO ₂ gas	b) N ₂ gas	
	c) CO gas	d) SO ₂ gas	
23.	Pure N ₂ is prepared in the laboratory by heating a mixture of :		[5]
	a) NH ₄ Cl and NaNO ₂	b) NH ₄ Cl and NaOH	
	c) NH ₄ OH and NaCl	d) NH ₄ Cl and NaNO ₃	
24.	4. In XeO ₃ and XeF ₆ the oxidation state of Xe is		[5]
	a) +6	b) +4	
	c) +3	d) +1	
25.	Iodine is liberated from KI solution wh	en treated with:	[5]
	a) FeSO ₄	b) CuSO4	
	c) NiSO ₄	d) ZnSO ₄	
26.	The most stable ion is		[5]
	a) Fe ²⁺	b) _{Mn} 2+	
	a) Fe ²⁺ c) Cr ²⁺	d) All are equally stable	

27.	Which of the following transition metals	s does not show variable oxidation state?	[5]
	a) Cr	b) Sc	
	c) Cu	d) Ti	
28.	Lanthanoid contraction is due to increas	e in:	[5]
	a) shielding by 4f electrons	b) effective nuclear charge	
	c) atomic number	d) atomic radius	
29.	Mohr's salt is a better volumetric agent	then ferrous sulphate because:	[5]
	a) Its reaction are less violent	b) It is less readily oxidized in the solid state	
	c) All the chemical reactions given by ferrous sulphate are given by Mohr's salt	d) It does not effloresce like ferrous sulphate	
30.	Which of the following coordination compounds exhibits linkage isomerism?		[5]
	a) [Co(en) ₃]Cl ₃	b) [Co(NH ₃) ₅ NO ₂](NO ₃) ₂	
	c) [Co(NH3)3Cl3]	d) [Co(NH3)5(CO3)]Cl	
31.	How many ions are produced from the c	complex [Co(NH ₃) ₆] Cl ₂ in solution?	[5]
	a) 2	b) 3	
	c) 4	d) 6	
32.	What would be the major product of the $^{H}_{H}$ C = O + CH ₃ MgI $\xrightarrow{H_2O}$	given reaction?	[5]
	a) Ethanol	b) Ethanal	
	c) Propanol	d) Propanal	
33.	The synthesis of 3 – octyne is achieved by adding a bromoalkane into a mixture of sodium amide and an alkyne. The bromoalkane and alkyne respectively are		[5]
	a) BrCH ₂ CH ₂ CH ₃ and CH ₃ CH ₂ CH ₂ C \equiv CH	b) $BrCH_2CH_2CH_2CH_3$ and CH_3C $\equiv CH$	

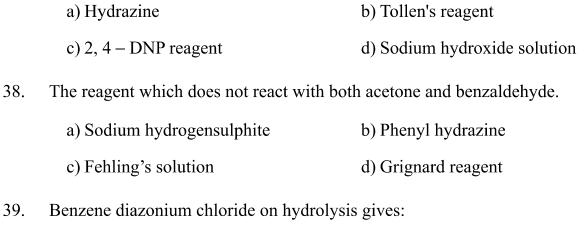
	c) $BrCH_2CH_2CH_2CH_3$ and $CH_3CH_2C \equiv CH$	d) $BrCH_2CH_2CH_2CH_3$ and $CH_3CH_2C \equiv CH$
34.	Benzylic halides contains:	
	a) sp ³ -hybridized carbon atom, next to an aromatic ring bonded to a halogen.	b) sp ² -hybridized carbon ato to an aromatic ring.
	c) sp ³ -hybridized carbon atom next to carbon-carbon double bond.	d) a halogen atom bonded to group.
35.	Which of the following is most acidic?	
	a) Cyclohexanol	b) Phenol

c) m – Chlorophenol


Alcoholic compounds react:

a) only as nucleophiles.

c) only as electrophiles.


36.

37.

[5]

[5]

40. [5] Which of the following amines can be resolved into enantiomers?

	a) 4 – (dimethylamino) pyridine	b) 2 – pentanamine	
	c) 3 – pentanamine	d) Trimethylamine	
41.	Sec – Butylamine is the common name of	of which compound?	[5]
	a) N – ethylethanamine	b) 2 – butanamine	
	c) N – methyl – 1 – propanamine	d) 1 – butanamine	
42.	The most appropriate base pair in a doub	le helix of DNA is	[5]
	a) A – T	b) A – C	
	c) C – T	d) T – G	
43.	are joined together by phosphodies the pentose sugar.	ter linkage between 5' and 3' carbon atoms of	[5]
	a) Nucleosides	b) Nucleic acids	
	c) Proteins	d) Nucleotides	
44.	Which of the following acids is a vitamin?		[5]
	a) Adipic acid	b) Aspartic acid	
	c) Saccharic acid	d) Ascorbic acid	
45.	Which of the following polymers have tetrafluoroethene monomer units?		[5]
	a) Teflon	b) Nylon	
	c) Acrilan	d) Polystyrene	
46.	Painting material among the following is		[5]
	a) Polyvinyl chloride	b) Glyptal	
	c) Polystyrene	d) Polypropene	
47.	Melamine formaldehyde polymer is:		[5]
	a) Copolymer	b) Elastomers	
	c) Condensation polymer	d) Both condensation polymer and copolymer	

48.	The purpose of adding bithional to medicated soaps is		[5]
	a) To impart antiseptic properties	b) To make it look attractive	
	c) To give a good smell	d) To prevent soap from drying	
49.	Amoxycillin is synthetic modification of		[5]
	a) Streptomycin	b) Tetracycline	
	c) Penicillin	d) Chlorampheniol	
50.	Tranquilizers act as antidepressant by		[5]
	a) Decreasing the degradation of noradrenaline	b) Binding itself to noradrenaline	
	c) Performing the function of neurotransmitters	d) Increasing the degradation of noradrenaline	

Solutions

1. (a) orthorhombic and monoclinic

Explanation: orthorhombic and monoclinic

2.

(c) London forces

Explanation: The London dispersion force is the weakest intermolecular force. The London dispersion force is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles. This force is sometimes called an induced dipole-induced dipole attraction.

Iodine molecules are a class of non- polar molecular solid in which constitute molecules are held together by London or dispersion forces. These solids are soft and non-conductor of electricity.

3.

(c) 1 unit cell

Explanation: In body centered cubic cell, an atom at the body-centre is shared by 1 unit cell.

Thus, this atom contributes one atom to the unit cell.

4.

(d) metallic crystal

Explanation: Brass shows all the characteristics of Metallic Crystal.

5.

(d) shows a positive deviation from Raoult's law

Explanation: If the azeotropic solution has a lower boiling point than either of its two liquids then it shows positive deviation from Raoult's law.

6.

(d) osmotic pressure

Explanation: osmotic pressure, as it depends upon number of particles(moles).

7.

(c) osmotic pressure

Explanation: An isotonic solution refers to two solutions having the same osmotic pressure across a semipermeable membrane. This state allows for the free movement of water across the membrane without changing the concentration of solutes on either side.

8.

(b) Formic acid

Explanation: Formic acid (HCOOH) has the polar group -OH and can form H-bond with water. Thus, formic acid is highly soluble in water.

9. (a) Zn is readily oxidized.

Explanation: Since $E^o_{Zn^{2+}/Zn}$ is negative, Zn has greater tendency to be oxidized than hydrogen.

10.

(c) $E_{ext} > E_{cell}$

Explanation: $E_{ext} > E_{cell}$

11.

(c) remains constant for a cell

Explanation: The cell constant of a conductivity (k) cell remains constant for a battery cell.

12.

(b) Energy is needed to break bonds.

Explanation: Energy is needed to break bonds. This energy, used to initiate the reaction, is called the activation energy.

13. (a) $2.31 \times 10^{-3} \text{ min}^{-1}$

Explanation: K=0.693

$$t_{1/2}=0.693/30=2.31\times 10^{-3} \text{ min}^{-1}$$

14.

(d) Zero order

Explanation: Zero order reaction proceeds with a uniform rate throughout.

rate
$$=k[A]^0=k=$$
 constant.

The rate of the reaction is independent of the reactant concentration.

15.

(c) Creaming of milk

Explanation: Creaming of milk

16.

(d) Osmotic pressure measurement

Explanation: Average molecular mass of colloidal solution is determined by Osmotic Pressure measurement.

17.

(d) Kraft temperature

Explanation: Kraft temperature

18.

(c) Homogeneous catalysis

Explanation: Homogeneous catalysis

19.

(d)
$$Cu_2O + \frac{1}{2} Cu_2 S \rightarrow 3Cu + 3Cu + \frac{1}{2} SO_2$$

Explanation:
$$Cu_2O + \frac{1}{2} Cu_2 S \rightarrow 3Cu + 3Cu + \frac{1}{2} SO_2$$

This chemical reaction includes the reduction of copper (I) oxide by copper (I) sulphide. In this process, copper is reduced by itself hence this process is known as an auto reduction and the solidified copper so, obtained is known as blister copper.

20.

(b) Cu and Zn

Explanation: Copper and zinc are two metals that are generally purified by using electrolyte refining. In this process, impure metal is used as an anode, and a strap of the same metal in pure form is used as a cathode. Impurities from the blister copper or impure zinc deposit as anode mud.

21.

(c) Both Bessemer converter and Pierce - Smith converter

Explanation: Both Bessemer converter and Pierce - Smith converter can be used for the self reduction of CuS to get metal

22.

(d) SO_2 gas

Explanation: The blisters are formed due to passing out of SO₂.

$$2\text{FeS} + 3\text{O}_2 \rightarrow 2\text{FeO} + 2\text{SO}_2$$

$${\sf FeO} + {\sf SiO2} \longrightarrow FeSiO_3$$

$$2\text{Cu}_2\text{S} + 3\text{O}_2 \longrightarrow 2\text{Cu}_2\text{O} + 2\text{SO}_2$$

$$2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$$

23. (a) NH₄Cl and NaNO₂

Explanation: Nitrogen gas can be prepared in the laboratory by heating a mixture of ammonium cholride and sodium nitrite in a test tube over a Bunsen burner

$$NH_4Cl+ NaNO_2 ---> heat N_2 + 2H_2O + NaCl$$

24. **(a)** +6

Explanation: The oxidation state of Xe is +6. XeO₃, the oxidation of Xe is calculated as x+3(-2)=0 gives x=+6.

Similarly, for XeF_6 , x + 6(-1) = 0 which is x = +6.

25.

(b) CuSO₄

Explanation: Cu^{2+} will reduce to Cu^{+} and I^{-} will oxidize to I_{2} .

Molecular equation:

$$2 \text{CuSO}_4 + \text{KI} \rightarrow \text{CuI} + \text{I}_2 + \text{K}_2 \text{SO}_4$$

Ionic equation:

$$2Cu^{2+} + I^{-} \rightarrow 2CuI + I_{2} \uparrow$$

26.

(b) Mn^{2+}

Explanation: For Manganese, +2 is the most stable oxidation state because of d⁵ configuration.

27.

(b) Sc

Explanation: In case of scandium the number of electrons in the 3d and 4s orbital is 1 and 2 respectively. By removing three electrons from its d and s orbital it forms a very stable inert gas configuration. Therefore, after that electron removal there is no such oxidation state is possible.

28.

(b) effective nuclear charge

Explanation: Lanthanide contraction increase due to effective nuclear charge.

29.

(b) It is less readily oxidized in the solid state

Explanation: Mohr's salt is a better volumetric agent than ferrous sulphate because it is less readily oxidized in the solid state. Also, Mohr's salt is more stable than FeSO₄.

30.

(b) [Co(NH₃)₅NO₂](NO₃)₂

Explanation: [Co(NH₃)₅NO₂](NO₃)₂ will exhibit linkage isomerism as it contains nitrite ligand which have the same composition differing with the connectivity of the metal to a ligand. It can bind from N as well as from O side.

31.

(b) 3

Explanation: The given compound will dissociate to give $[Co(NH_3)_6]^{2+}$ and 2 Cl⁻ ions in solution i.e. a total of 3 ions. The two Cl⁻ ions satisfy the primary ionisable valence of Co²⁺ whereas the 6 NH₃ molecules satisfy the non ionisable secondary valence of Co²⁺.

32. (a) Ethanol

Explanation: Ethanol

33.

(d) BrCH₂CH₂CH₂CH₃ and CH₃CH₂C \equiv CH

Explanation:
$$R-C \equiv C-H$$
 $\xrightarrow{Na^* NH_2^*}$ $R-C \equiv C$ $\xrightarrow{Na^{\oplus}}$ $R-C \equiv C-CH_2R$ $\xrightarrow{Na^{\oplus}}$ R

NaNH₂ is a very strong base it will abstract H from alkyne (But-1-yne in this case) and then nucleophilic substitution reaction will occur as shown where the resulting compound will be Oct-1-yne as here the reactants contain a total of 8 C.

34. (a) sp³-hybridized carbon atom, next to an aromatic ring bonded to a halogen. **Explanation:** Benzylic halides are the compounds in which the halogen atom is bonded to an sp³-hybridized carbon atom next to an aromatic ring. For example C₆H₅CH₂Cl.

35.

(c) m – Chlorophenol

Explanation: In cases of halogen derivatives of phenols or aniline or benzoic acid etc, it is very helpful to understand that all halogens, when attached to benzene ring, exerts -I as well as +R effect.

In case of Cl, Br and I, the +R effect has almost no effect on reactivity, acidic character or basic character of the benzene ring. It is due to very less effective overlapping involving 2p of carbon and 3p or 4p or 5p of halogen.

Hence, only -I effect becomes the deciding factor, which is most dominant from orthoposition and least effective from para-position. So m chlorophenol is most acidic. (b) both as nucleophiles and electrophiles.

Explanation: Alcohols as nucleophile: The bond between O–H is broken when alcohol react as nucleophiles.

Alcohols as electrophile: The bond between C-O is broken when alcohol reacts as electrophiles

37.

(b) Tollen's reagent

Explanation: Tollen's Test is used to distinguish between aldehyde and ketone. It uses the fact that aldehydes are easily oxidised to their corresponding acids while ketones are not. Tollen's reagent is aqueous ammonical silver nitrate solution which reacts with aldehydes as shown.

$$RCHO + 2Ag^{+} + 2OH^{-} \rightarrow RCOO^{-} + Ag + H_{2}O.$$

$$RCOR + 2Ag^{+} + 2OH \rightarrow No reaction$$

If this test is carried in a glass tube, the Ag formed forms a mirror on the sides of the test tube so the test is also known as the silver mirror test.

Aldehydes show Tollen's test while acetone which is a ketone does not give Tollen's test.

38.

(c) Fehling's solution

Explanation: Fehling's solution oxidises aliphatic aldehydes very easily but does not react with acetone and aromatic aldehyde; benzaldehyde.

39.

(d)
$$O_2N$$
— NH_2

Explanation: O_2N — NH_2 has highest value of pk_b

40.

(b) 2 – pentanamine

Explanation: 2-pentamine will have a chiral centre, therefore it can be resolved into enantiomers.

The C* in 2-pentan amine is the chiral center.

41.

(b) 2 – butanamine

Explanation: Sec – Butylamine is the common name of 2-butanamine (CH₃CH₂CHNH₂CH₃).

42. **(a)**
$$A - T$$

Explanation: Two nucleic acid chains are wound about each other and held together by hydrogen bonds between pairs of bases. The two strands are complementary to each other because the hydrogen bonds are formed between specific pairs of bases. Adenine forms hydrogen bonds with thymine whereas cytosine forms hydrogen bonds with guanine. So base pair in a double helix of DNA is A-T.

43.

(d) Nucleotides

Explanation: When nucleoside is linked to phosphoric acid at 5'-position of sugar moiety, we get a nucleotide and nucleotides are joined by a phosphodiester bond between 5' and 3' carbon atoms of the pentose sugar.

44.

(d) Ascorbic acid

Explanation: Ascorbic acid is vitamin C. Aspartic acid is an amino acid. Adipic acid and saccharic acid are dicarboxylic acids.

45. (a) Teflon

Explanation: Teflon has $CF_2 = CF_2$ (tetrafluoroethene) as monomer unit. Teflon is manufactured by heating tetrafluoroethene with a free radical or persulphate catalyst at high pressures.

46.

(b) Glyptal

Explanation: Gyptal is a polyester formed from condensation of ethylene glycol and phthalic acid. It is used in paints and lacquers.

47.

(d) Both condensation polymer and copolymer

Explanation: Melamine formaldehyde polymer is formed by the condensation polymerisation of melamine and formaldehyde. It is a copolymer of these two different monomers.

48. (a) To impart antiseptic properties

Explanation: Biithionol (also called bithional) is added to soaps to impart antiseptic properties.

49.

(c) Penicillin

Explanation: Ampicillin and Amoxycillin are synthetic modifications of penicillins. These have broad spectrum whereas Penicillin G has a narrow spectrum.

50. (a) Decreasing the degradation of noradrenaline

Explanation: Transquilizers function by different mechanisms. For example, the antidepressant drugs inhibit the enzymes which catalyse the degradation of the neurotransmittor noradrenaline. If the enzyme is inhibited, this important neurotransmitter is slowly metabolised and can activate its receptor for longer periods of time, thus counteracting the effect of depression.