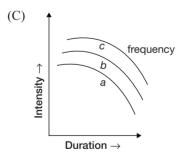

## Water Resources Engineering


- 1. The region where air coming from the pole (cooler and denser) and the air of the middle cell (warmer and lighter) meet is called \_\_\_\_\_.
  - (A) cold front (B) warm front
  - (C) polar front (D) occluded front
- **2.** The intensity-duration-frequency curve from the following is

(Where a < b < c)









(D) None of these

- **3.** The rate of evaporation from a water body increases directly with increase in:
  - I. Radiation
  - II. Wind upto a critical value
  - III. Atmospheric pressure
  - IV. Quality of water
  - (A) Only II, III, IV are correct
  - (B) Both I and II are correct
  - (C) Both II and III are correct
  - (D) Only I, II, IV are correct

- Time: 60 Minutes4. The infiltration capacity curves which are developed from infiltrometer tests or the hydrograph analysis
  - methods are used to estimate \_\_\_\_\_ from a given storm.
  - (A) infiltration (B) rainfall
  - (C) run-off (D) All of these
- 5. \_\_\_\_\_ hydrograph is independent of rainfall duration. (A) Instantaneous unit hydrograph
  - (B) Synthetic unit hydrograph
  - (C) Direct run-off hydrograph
  - (D) Unit hydrograph

TEST

- 6. When the seepage takes place from the stream into the ground, it is called \_\_\_\_\_\_ stream.
  - (A) perennial stream (B) influent stream
  - (C) effluent stream (D) ephemeral stream
- 7. A structure with a useful life period of 100 years is designed for a 50-year flood. Then the risk in the design is given by \_\_\_\_\_.
  - (A) 0.68 (B) 0.71
  - (C) 0.87 (D) 0.99
- **8.** The peak flow in outflow hydrographs in a channel routing occurs at \_\_\_\_\_.
  - (A) intersection point of inflow and outflow hydrographs
  - (B) before intersection
  - (C) after intersection
  - (D) Any of these
- 9. For unconfined aquifers, the storage coefficient
  - (A) is essentially the same as the specific yield.
  - (B) does not exist.
  - (C) is essentially the same as the specific retention.
  - (D) is essentially the same as the porosity.
- 10. In surface float method, the actual velocity of flow  $(V_a)$  is equal to \_\_\_\_\_\_ times of surface velocity  $(V_c)$ .
  - (A) 0.2 (B) 0.4
  - (C) 0.8 (D) 0.85
- **11.** In a river flow which has shallow depth velocity at different depths at a cross-section 0.2d, 0.4d and 0.8d from the bottom are 0.1, 0.2, 0.5 m/s respectively. Find the mean velocity at that cross-section.
  - (A) 0.3 m/s (B) 0.2 m/s
  - (C) 0.4 m/s (D) 0.35 m/s

12. A sample has a hydraulic conductivity of 12 m/day. What would be its intrinsic permeability? (in darcys) (A) 12.68 (B) 13.12

- (C) 14.35 (D) 16.89
- During a recuperation test conducted on a open well in a region, the water level in the well was depressed by 4 m and it was observed to rise by 2 m in 90 minutes.

What would be the yield from that well having a diameter of 6 m under a depression head of 3 m?

- (A) 35.1 m<sup>2</sup>/h
- (B) 39.19 m<sup>3</sup>/h
- (C)  $48.32 \text{ m}^{3}/\text{h}$
- (D)  $51.6 \text{ m}^3/\text{h}$
- 14. Calculate the peak of the outflow hydrograph in a river reach using Muskingham method given the following inflow hydrograph. Take  $C_0 = 0.032$ ,  $C_1 = 0.53$  and the starting value of outflow hydrograph as  $10^3$ /s.

| Time (hours)                                                                   | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|--------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|
| Inflow (m <sup>3</sup> /s)                                                     | 10 | 20 | 30 | 40 | 50 | 40 | 30 | 20 |
| <ul> <li>(A) 30.2 m<sup>3</sup>/s</li> <li>(B) 42.4 m<sup>3</sup>/s</li> </ul> |    |    |    |    |    |    |    |    |
| (C) $51.6 \text{ m}^{3/\text{s}}$                                              |    |    |    |    |    |    |    |    |

- (D)  $20.8 \text{ m}^3/\text{s}$
- **15.** An urban area has a run-off coefficient of 0.35 and an area of 0.8 km<sup>2</sup>. The maximum depth of rainfall with a 30-year return period is as follows:

| Duration (min)         | 3  | 5  | 10 | 20 | 30 | 40 |
|------------------------|----|----|----|----|----|----|
| Depth of rainfall (mm) | 10 | 15 | 20 | 25 | 30 | 35 |

If a culvert for drainage at the outlet of this area is to be designed for a time period of 30 years, estimate the peak flow rate. Take the time of concentration for the drainage area as 20 minutes.

- (A)  $5.83 \text{ m}^3/\text{s}$
- (B) 15.55 m<sup>3</sup>/s
- (C)  $2.78 \text{ m}^{3/\text{s}}$
- (D) 10.13 m<sup>3</sup>/s

## Direction for questions 16 and 17:

The drainage area of water shed is 60 km<sup>2</sup>. The  $\phi$ -index is 0.4 cm/h. Base flow at outlet 12 m<sup>3</sup>/s, 1 hour-UHG of water shed is triangular in shape with a time base of 10 hours. Peak ordinate occurs at 5 hours.

**16.** Peak ordinate of UHG in  $(m^3/s)$  is \_\_\_\_\_.

| (A) | 13.33 | (B) | 23.33 |
|-----|-------|-----|-------|
| (C) | 33.33 | (D) | 43.33 |

17. For a storm of depth of 6.4 cm and duration of 1 hour, the peak ordinate in  $m^3/s$  of hydrograph is \_\_\_\_\_.

| (A) | 153 | (B) 181 |
|-----|-----|---------|
| (C) | 212 | (D) 240 |

 A storm of 3 hours duration occurred over a basin of area 555.2 km<sup>2</sup>. The resulting flow measurement is as follows:

| Time (hours) | 0  | 2   | 4   | 6   | 8   | 12 | 15 |
|--------------|----|-----|-----|-----|-----|----|----|
| Q (m³/s)     | 10 | 210 | 310 | 360 | 260 | 60 | 10 |

If base flow =  $10 \text{ m}^3/\text{s}$ , find the depth of run-off over a catchment.

| (A) | 2.53 cm | (B) 0.81 cm |
|-----|---------|-------------|
| (C) | 3.14 cm | (D) 1.43 cm |

- 19. The total observed run-off volume during a 7 hours storm with a uniform intensity of 2 cm/h is  $25 \times 10^6$  m<sup>3</sup>. If the area of the basic is 300 km<sup>2</sup>, find the average infiltration rate for the basin in (mm/h).
  - (A) 2.18 (B) 3.63
  - (C) 5.72 (D) 8.14
- 20. The infiltration rate for excess rain on a small area was observed to be 5 cm/h at the beginning of rain and decreased exponentially toward an equilibrium of 0.6 cm/h. A total of 35 cm of water infiltrated during 10 hours interval. Determine *k* of the Horton's equation.
  (A) 0.05/h
  - (A) 0.03/h(B) 0.11/h
  - (C) 0.15/h
  - (D) 0.2/h
- 21. Match the following in List I with List II.

|     | List I             |    | List II             |  |  |  |
|-----|--------------------|----|---------------------|--|--|--|
| Ρ.  | Transpiration      | 1. | Phytometer          |  |  |  |
| Q.  | Evapotranspiration | 2. | Rainfall simultator |  |  |  |
| R.  | Evaporation        | 3. | Lysimeter           |  |  |  |
| S.  | Infiltration       | 4. | Water balance metho |  |  |  |
| Cod | es:                |    |                     |  |  |  |
|     | PQRS               |    | PQRS                |  |  |  |
| (A) | 2 4 3 1            |    | (B) 1 3 4 2         |  |  |  |
| (C) | 3 2 1 4            |    | (D) 4 1 2 3         |  |  |  |

**22.** If 9.2 litres of water is added to an evaporation pan of 1.3 m diameter to bring the water surface to the stipulated level and if a nearby rainguage measured a rainfall of 8.8 mm. What is the evaporation recorded for the day?

| (A) 0.6 mm | (B) 1.87 mm |
|------------|-------------|
| (C) 2.3 mm | (D) 3.2 mm  |

## Direction for questions 23 and 24:

A one-day rainfall of 16 cm in Hyderabad is found to have a return period of 100 years.

Calculate the probability that one-day rainfall of this magnitude or larger magnitude:

- 23. Will not occur in Hyderabad during the next 50 years.
  - (A) 0.01 (B) 0.99
  - (C) 0.605 (D) 0.53

24. Will occur in next year.

- (A) 0.01 (B) 0.99
- (C) 0.605 (D) 0.53
- **25.** Find out the mean precipitation of a catchment which is in a triangular shape of side 10 km. Rainguages installed at each corner recorded 10 cm, 15 cm, 20 cm respectively.

| (A) 15 cm | (B) | 12 cm |
|-----------|-----|-------|
|-----------|-----|-------|

(C) 17 cm (D) 14 cm

## 3.826 | Part III • Unit 9 • Water Resources Engineering

|                |                |                |                |                |             | Answer Keys |             |              |              |  |  |  |  |
|----------------|----------------|----------------|----------------|----------------|-------------|-------------|-------------|--------------|--------------|--|--|--|--|
| <b>1.</b> C    | <b>2.</b> A    | <b>3.</b> D    | <b>4.</b> C    | <b>5.</b> A    | <b>6.</b> B | <b>7.</b> C | <b>8.</b> D | <b>9.</b> A  | <b>10.</b> D |  |  |  |  |
| 11. B          |                |                |                | 15. A          | 16. C       | 17. C       | 18. D       | 19. D        | <b>20.</b> C |  |  |  |  |
| 11. В<br>21. В | 12. С<br>22. В | 13. В<br>23. С | 14. В<br>24. А | 15. A<br>25. A | 16. C       | 17. C       | 18. D       | <b>19.</b> L | )            |  |  |  |  |