

(d) v = u

(d) None of these

Velocity and Acceleration, Resultant and Component of Velocities

(c) $\frac{ac-b^2}{s^2}$ (d) $\frac{ac-b^2}{s}$

 $\int 2t + 13$, $0 \le t \le 5$

Basic Level

(b) $v = u + \frac{at^2}{2}$

(b) $-2av^2$

(b) $\frac{ac - b^2}{s^3}$

1.

2.

3.

relation is valid

(a) $v = u + at^2$

(a) -2av

(a) $\frac{b^2 - ac}{s^3}$

The initial velocity of a particle is $u(\operatorname{at} t = 0)$, and the acceleration f is given by at. Which of the following

A particle is moving in a straight line such that the distance described s and time taken t are given by

If a particle, moving in a straight line, covers a distance s in time t, given by the relations $s^2 = at^2 + 2bt + c$, then

 $t = as^2 + bs + c$, a > 0. If v is the velocity of the particle at any time t, then its acceleration is

(c) v = u + at

(c) $-2av^3$

4.	The speed v of a body n	noving on a straight track varie	es according to $v = \begin{cases} 3t + 8 \end{cases}$,	$5 < t \le 7$.
		noving on a straight track varie	4t+1,	<i>t</i> > 7
	The distances are meas	sured in $metres$ and $time t$ in se	conds. The distance in metr	es moved by the particle at the
end	of 10 seconds is			
	(a) 127	(b) 247	(c) 186	(d) 313
5.	If the velocity of a parti	icle moving in a straight line is	given by $v^2 = se^s$, then its a	cceleration is
	(a) $\frac{v^2}{2s}$	(b) $\frac{v^2}{2s}(s+1)$	(c) $\frac{v^2}{2}(s-1)$	(d) $\frac{v}{2}(s+1)$
6.		$\it metre$ from the origin. The velo		on $s = t^3 - 9t^2 + 24t + 6$, where <i>s</i> instant when the acceleration
	(a) $v = 3$	(b) $v = -3$	(c) $v = 0$	(d) $v = -6$
7•	For a particle moving in the acceleration <i>a</i> is give	a a straight line, if time t be regen by	arded as a function of veloci	ity v , then the rate of change of
	(a) $a^2 \frac{d^2t}{dv^2}$	(b) $a^3 \frac{d^2t}{dv^2}$	$(c) -a^3 \frac{d^2t}{dv^2}$	(d) None of these
8.	If the law of motion of	a particle moving in a straight	line is given by $ks = \log\left(\frac{1}{v}\right)$,	then its acceleration a is given
	by			
	(a) $a = -kv$	(b) $a = -kv^3$	(c) $a = -kv^2$	(d) None of these

138 Dynamics

to rest is

(a) $2\frac{\sqrt{v_0}}{a}$

10.

(b) $\frac{\sqrt{v_0}}{a}$

and s is the distance covered. Then acceleration is

	(a) A function of t	(b) a function of s	(c) a function of v	(d) constant
11.	If the displacement of a	a particle varies with time as \sqrt{x}	t = t + 7, then	
	(a) The velocity of the is proportional to <i>t</i>	particle is inversely proportiona	al to t (b)	The velocity of the particle
	(c) The velocity of the	particle is proportional to \sqrt{t}	(d) The particle moves w	ith a constant acceleration
12.	The x and y displaceme	ent of a particle in the xy-plane	at any instant are given by	$x = at^2$ and $y = 2at$, where a is
	a constant. The velocity	of the particle at any instant is	given by	
	(a) $4a\sqrt{t^2+4}$	(b) $2a\sqrt{t^2+1}$	(c) $4a\sqrt{t^2+1}$	(d) $\frac{a}{2}\sqrt{t^2+4}$
13.	The acceleration of a p displacement of this pa	article, starting from rest, varient t will be	es with time according to t	he relation $a = -s\omega^2 \sin \omega t$. The
	(a) $s \sin \omega t$	(b) $s\omega\cos\omega t$	(c) $s\omega\sin\omega t$	(d) $-\frac{1}{2}(s\omega^2\sin\omega t)t^2$
14.	A particle moves along	a straight line in such a way the	at its distance from a fixed	point on the line, at any time
	t from the start, is give	n by the equation $s = 6 - 2t + 3t^3$.	Its acceleration after 1 seco	ond of motion is
	(a) 12	(b) 16	(c) 18	(d) None of these
15.	A particle moves in a st	raight line with a velocity given	by $\frac{dx}{dt} = x + 1$. The time take	en by the particle to traverse a
	distance of 99 metres is			
	(a) $\log_{10} e$	(b) $2\log_e 10$	(c) $2\log_{10} e$	(d) $\frac{1}{2}\log_{10}e$
16.		ong the straight road for half v_2 . The average velocity is given		y v_1 and the remaining half
	(a) $v_1 + v_2$	(b) $\frac{v_1 + v_2}{2}$	(c) $\frac{2v_1v_2}{v_1+v_2}$	(d) $\sqrt{v_1v_2}$
17.	If a particle moves alon	g a straight line according to th	e law $s^2 = at^2 + 2bt + c$, then	its acceleration is given by
	(a) $\frac{a-v}{s}$	(b) $\frac{a-v^2}{s}$	(c) $\frac{a-v^2}{s^2}$	(d) $\frac{a-v}{s^2}$
18.	If a particle has two velocities between the two velocities	ocities each equal to u in magnitudes is	de and their resultant is also	of magnitude <i>u</i> , then the angle
	(a) 60°	(b) 30°	(c) 90°	(d) 120°
19.		v are inclined at such an angle the thick that v is of mathem v is of mathem v		v inclined at the same angle is
	(a) 2 <i>u</i>	(b) <i>v</i>	(c) 2v	(d) <i>u</i>
20.	If a particle having simfirst two velocities is	nultaneous velocities 3 <i>m/sec.</i> , 5	m/sec. and 7 m/sec. at res	t, then the angle between the
	(a) 120°	(b) 150°	(c) 60°	(d) 90°

A point moves rectilinearly with deceleration whose modulus depends on the velocity of the particle as $a\sqrt{v}$, where a is a positive constant. At the initial moment its velocity is equal to v_0 . The time it takes before it comes

The law of motion of a particle moving in a straight line is given by $s = \frac{1}{2}vt$, where v is the velocity at time t

(c) $\frac{v_0}{a}$ (d) $\frac{a}{\sqrt{v_0}}$

21.	The greatest	and	d least r	nagnit	udes o	f the	resu	ltants o	f tw	70 V	elocitie	s of	const	ant	magnitude	s are	u	and	ν
	respectively.	If	a partic	e has	these	veloc	ities	incline	d at	an	angle	2α ,	then	the	resultant	veloc	ity	is	of
	magnitude																		

(a)
$$\sqrt{u^2 \cos^2 \alpha + v^2 \sin^2 \alpha}$$

(a)
$$\sqrt{u^2 \cos^2 \alpha + v^2 \sin^2 \alpha}$$
 (b) $\sqrt{u^2 \sin^2 \alpha + v^2 \cos^2 \alpha}$

(c)
$$\sqrt{u^2 \cos \alpha + v^2 \sin \alpha}$$

22. A particle possesses simultaneously two velocities 10
$$m/sec$$
. and 15 m/sec . in directions inclined at an angle of 60° , then its resultant velocity is

(b)
$$5\sqrt{19} \ m/\sec$$

A particle is moving with a velocity of 30 m/sec. The components of the velocity in m/sec at angle 30° and 45° 23. in opposite sides to its direction are

(a)
$$\sqrt{3} - 1, \sqrt{3} + 1$$

(b)
$$30(\sqrt{3}-1), 15(\sqrt{6}-\sqrt{3})$$
 (c) $30(\sqrt{3}+1), 30(\sqrt{3}-1)$

(c)
$$30(\sqrt{3}+1), 30(\sqrt{3}-1)$$

- (d) None of these
- If *OP* makes 4 revolutions in one *second*, the angular velocity in radians per second is 24.

(a)
$$\pi$$

(b)
$$2\pi$$

(c)
$$4\pi$$

A velocity $\frac{1}{4}m/s$ is resolved into two components along *OA* and *OB* making angles 30° and 45° respectively with the given velocity, then the component along OB is

[AIEEE 2004]

(a)
$$\frac{1}{8}(\sqrt{6} - \sqrt{2})m/s$$
 (b) $\frac{1}{4}(\sqrt{3} - 1)m/s$

(b)
$$\frac{1}{4}(\sqrt{3}-1)m/s$$

(c)
$$\frac{1}{4}m/s$$

(d)
$$\frac{1}{8}m/s$$

Advance Level

26. Two straight railways converge to a level crossing at an angle α and two trains are moving towards the crossing with velocities u and v. If a and b are the initial distances of the trains from the crossing, the least distance between them will be after time t given by

(a)
$$\frac{(au+bv)+(av+bu)\cos\alpha}{u^2+v^2+2uv\cos\alpha}$$
 (b)
$$\frac{(au+bv)-(av+bu)\cos\alpha}{u^2+v^2-2uv\cos\alpha}$$
 (c)
$$\frac{(au+bv)-(av+bu)\cos\alpha}{u^2+v^2+2uv\cos\alpha}$$
 (d) None of these

(b)
$$\frac{(au + bv) - (av + bu)\cos a}{(au + bv)^2 + (av + bu)\cos a}$$

(c)
$$\frac{(au + bv) - (av + bu)\cos a}{(au + bv)^2 + 2au \cos a}$$

- A particles moves from rest, away from a fixed point O, with an acceleration $\frac{\mu}{x^2}$, where x is the distance of the 27.

particle from O. If it is at rest, then its distance from O is b. The velocity when it is at a distance 2b from O is

(a)
$$\frac{\mu}{b}$$

(b)
$$\frac{\mu}{h^2}$$

(c)
$$\sqrt{\frac{\mu}{b^2}}$$

(d)
$$\sqrt{\frac{\mu}{b}}$$

- 28. The velocity v of a particle is at any time related to the distance travelled by the particle by the relation v = as + b, where a > 0 and $b \le a/2$. Which of the following statements will be true for this motion (Given s = 0when t = 0)
 - (a) The displacement of the particle at time *t* is $s = \frac{b}{c}(e^{at} 1)$ (b)

The

particle will

experience a retardation if b > 0

- (c) The particle will be at rest at t = 0acceleration
- (d) The motion of the particle is under constant
- A particle moving in a straight line is subject to a resistance which produces a retardation kv^3 , where v is the 29. velocity and k is a constant. If u is the initial velocity of the particle, then

(a)
$$v = \frac{u}{1 + kxu}$$

$$(b) v = \frac{u}{1 + xu}$$

(c)
$$v = \frac{ku}{1 + kxu}$$
 (d) $v = \frac{u}{1 - kxu}$

(d)
$$v = \frac{u}{1 - kxu}$$

A man rows directly across a flowing river in time t_1 and rows an equal distance down the stream in time t_2 . If *u* be the speed of the man in still water and *v* be that of the stream, then $t_1:t_2=$

(a)
$$u + v : u - v$$

(b)
$$u - v : u + v$$

(c)
$$\sqrt{u+v}:\sqrt{u-v}$$

(d)
$$\sqrt{u-v}:\sqrt{u+v}$$

other is

31.

	(a) 20 <i>sec</i> .	(b) 36 <i>sec</i> .	(c) 30 sec.	(d) None of these
32.	A train A is moving tow	vards east with a velocity of 30	km/hr and another train	B is moving on parallel lines
	towards west with a vel	ocity of 40 km/hr . The relative	velocity of train A with res	pect to train B is
	(a) 10 <i>km/hr</i>	(b) 70 km/hr towards east	(c) 70 km/hr towards we	st(d) None of these
33.	Two scooterists P and	Q are moving due north at 4	8 km/hr and 36 km/hr re	spectively. The velocity of P
	relative to Q is			
	(a) 12 km/hr due south	(b) 12 <i>km/hr</i> due north	(c) 84 km/hr due south	(d) 84 km/hr due north
34.		3, moves with speed u and $2u$ re	espectively in two straight	lines inclined at an angle α ,
	then the relative velocit	y of B with respect to A is		
	(a) $u\sqrt{5+4\cos\alpha}$	(b) $u\sqrt{5-4\cos\alpha}$	(c) $u\sqrt{4-5\cos\alpha}$	(d) $u\sqrt{4+5\cos\alpha}$
35.		at the rate of 44 <i>m/sec</i> , is struct f 33 <i>m/sec</i> . The magnitude and		
	(a) $50, \tan^{-1} \frac{3}{4}$	(b) $55, \tan^{-1}\left(\frac{-3}{4}\right)$	(c) $40, \cos^{-1} \frac{3}{4}$	(d) None of these
36.		rate of 4 <i>km/hr</i> eastward, the w <i>n/hr</i> , it seems to blow from nor		
	(a) $5/\sqrt{2km/hr}$	(b) $5\sqrt{2} km / hr$	(c) 5km/hr	(d) $5\frac{1}{2}km/hr$
37•	-	ng along a straight line with vo to the path of <i>A</i> , then the veloc		r particle <i>B</i> has a velocity 5
		(b) $\sqrt{19} \ m \ / \sec$	(c) 19 m/sec	(d) None of these
38.	A train A is moving tov	vards east with a velocity of 30	o <i>km/h</i> and another train i	B is moving on parallel lines
	towards west with a spe	ed of 40 km/h . The velocity of t	train A relative to train B is	
	(a) 10 <i>km/h</i>	(b) 70 km/h towards east	(c) 70 km/h towards wes	(d) None of these
39.	A car is travelling at a	velocity of 10 km/h on a strai	ght road. The driver of the	e car throws a parcel with a
	velocity of $10\sqrt{2} km / hr$	when the car is passing by a n	nan standing on the side of	the road. If the parcel is to
	reach the man, the direc	tion of throw makes the follow	ing angle with the direction	of the car
	(a) 135 °	(b) 45°	(c) $\tan^{-1}(\sqrt{2})$	(d) $\tan^{-1}(1/\sqrt{2})$
40.		a river to an exactly opposite juber the inclination to the curre	=	
	(a) 90°	(b) 120 °	(c) 150°	(d) None of these
41.	A ship is moving with v	elocity 12 <i>km/hr</i> in east direction in east dir	=	=
	(a) 20 km/hr	(b) 22 km/hr	(c) 18 km/h	(d) $20\sqrt{2} \ km/h$
42.	•	ls east from a point A to a poin	•	* *
•	to C at the rate of 5 km,	\sqrt{h} . If $AB = 12 \text{ km}$ and $BC = 5 \text{ kn}$ ty direct from A to C are respec	n, then its average speed fo	
	(a) $\frac{13}{9} km/h \text{ and } \frac{17}{9} km$	-		(c) $\frac{17}{9} km/h$ and $\frac{17}{9} km/h$ (d)

Two trains, each 250 m long, are moving towards each other on parallel lines with velocities of 20 km/hr and 30 km/hr respectively. The time that elapses from the instant when they first meet until they have cleared each

(d) None of these

None of these

Advance Level

43.

45.

direction of the wind is towards

(c) 7.5 km/hr south-west

(b) North

(a) North-east

A person travelling towards the north-east, finds that the wind appears to blow from north, but when he

doubles his speed it seems to come from a direction inclined at an angle $\tan^{-1}\frac{1}{2}$ on the east of north. The true

A man is walking towards north with speed $4.5 \ km/hr$. Another man is running towards west with speed 6

A man is swimming in a lake in a direction 30° east of north with a speed of $5 \, km/hr$ and a cyclist is going on

(a) 7.5 km/hr at an angle $\tan^{-1}\left(\frac{3}{4}\right)$ south of west (b) 7.5 km/hr at an angle $\tan^{-1}\left(\frac{3}{4}\right)$ west of south

km/hr. The magnitude and direction of the relative velocity of the second with respect to first is

(c) East

	cyclist is	snore towards east at a speed o	i 10 km/nr. The direction o	t the swimmer relative to the
	(a) 30° west of north	(b) West-north	(c) 60° west of north	(d) None of these
46.	respectively. A passes t	oving uniformly on two straight the intersection of the road wh wo cars and the time when they	nen B has still to move 50	· · · · · · · · · · · · · · · · · · ·
	(a) $20\sqrt{5} \ km$, 30 minutes	(b) 20 km, 10 minutes	(c) 20 km, 20 minutes	(d) None of these
47.	•	rain moving at the rate of $60\sqrt{3}$ and direction of the apparent ve		
	(a) 120 <i>km/hr</i> , making	an angle of 60 o with the motior	n of the train	
	(b) 120 <i>km/hr</i> making a	in angle of 30° with the motion	of the train	
	(c) 120 km/hr making a	in angle of 45° with the motion	of the train	
	(d) None of these	S		
48.	_	ards eastwards at the rate of 4 nis speed it appears to come fro		
	(a) $4\sqrt{2} km / hr, 90^{o}$	(b) $5\sqrt{2} km / hr, 60^{ o}$	(c) $4\sqrt{2} km / hr, 135^{o}$	(d) None of these
49.	bank and 20 minutes t	s to cross a river in a straight li o do the return journey. The cu er is 6 <i>km/hr</i> . The width of the s	arrent flows at the rate of	3 km/hr and the speed of the
	(a) $\frac{\sqrt{15}}{4}, \frac{3}{4}$	(b) $\frac{\sqrt{10}}{4}, \frac{1}{3}$	(c) $\sqrt{6}, \frac{1}{2}$	(d) None of these
50.	If a moving particle has	s two equal velocities inclined a	at an angle 2α such that the	eir resultant velocity is twice
	as great as when they a	re inclined at an angle $2eta$, then	1	
	(a) $\cos \alpha = 2 \cos \beta$	(b) $\cos \beta = 2 \cos \alpha$	(c) $\cos \alpha = 3 \cos \beta$	(d) $\cos \beta = 3\cos \alpha$
51.	-	a river is u m/sec and that of to and then comes back to its or		
	(a) $\frac{u^2 - v^2}{u^2}$	(b) $\frac{u^2 - v^2}{v^2}$	(c) $\frac{u^2 - v^2}{u}$	$(d) \frac{u^2 - v^2}{v}$

4 40	D	amics
1/1/2	i iwn:	amics
144	$\nu_{\rm MII}$	ammos

53.

54.

(a) $\tan^{-1} \left(\frac{5}{36} \right)$

9 seconds is (a) 66 cm/sec

direction of motion of the train is given by

(b) $\tan^{-1} \left(\frac{1}{20} \right)$

The time taken by him to cross the canal perpendicular to the flow is (b) 1.5 min.

(b) 30 cm/sec

speed 5/3 times that of the current, then the speed of the current in m/min is

	(a) 30	(b) 40	(c) 50	(d) 6	
			Rectilin	ear motion with acc	eleration
			Basic Level		
55.	A body starts from second <i>metre</i> of it		leration of $8m/\sec^2$. Then the	time it will take in tr	aversing the
	(a) $\sqrt{2}$ sec	(b) $\frac{1}{2}$ sec	(c) $\left(\frac{\sqrt{2}-1}{2}\right)$ sec	(d) $\left(\frac{\sqrt{2}+1}{\sqrt{2}}\right)$ see	c
56.	A body starts from the distance cover		niform acceleration. The ratio of	f the distance covered	in n th sec to
	(a) $\frac{2}{n} - \frac{1}{n^2}$	(b) $\frac{1}{n^2} - \frac{1}{n}$	(c) $\frac{2}{n^2} - \frac{1}{n}$	(d) $\frac{2}{n} + \frac{1}{n^2}$	
57•	If a particle move seconds are in	es in a straight line with	uniform acceleration, the distan	nce traversed by it in	consecutive
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of the	ese
58.		vith constant acceleration for the velocity at <i>C</i> , the mid-p	A to B in the straight line A soint of AB is	B has velocities <i>u</i> and	v at A and B
	(a) $\frac{u+v}{2}$	(b) $\sqrt{u^2 + v^2}$	(c) $\sqrt{\frac{u^2+v^2}{2}}$	(d) None of the	ese
59.	•		; in the eleventh and fifteenth s Its initial velocity, and the accel		
	(a) 60, 40	(b) 70, 30	(c) 90, 60	(d) None of the	ese
60.	_	= =	initial velocity u and uniform	_	
	distances travelle	d in t^{th} and $(t+1)^{th}$ seconds i	s 100 cm, then its velocity after	t seconds, in cm/sec. i	S
	(a) 20	(b) 30	(c) 50	(d) 80	
61.	If the coordinate	s of a point moving with	the constant acceleration be	x_1, x_2, x_3 at the inst	tants t_1, t_2, t_3
	respectively, then				
	$x_1(t_2-t_3)+x_2(t_3-t_1)$	$)+x_3(t_1-t_2)=$			
	(a) $f(t_1 - t_2)(t_2 - t_3)$	$(t_3 - t_1)$ (b) $2f(t_1 - t_2)(t_2 - t_3)(t_3 - t_3)$	(c) $\frac{f}{2}(t_1 - t_2)(t_2 - t_3)(t_3 - t_3)$	(d) None of the	ese
62.	•		it crosses a fixed point, a stop wand 220 cm in the next five seco		-

(c) 36 cm/sec

A thief, when detected, jumps out of a running train at right angles to its direction with a velocity of 5 m/min. If the velocity of the train is 36 km/hr, then the angle θ between the direction in which the thief falls and the

A 30 m wide canal is flowing at the rate of 20 m/min. A man can swim at the rate of 25 m/min. in still water.

A man crosses a 320 m wide river perpendicular to the current in 4 minutes. If in still water he can swim with a

(c) $\tan^{-1} \left(\frac{5}{120} \right)$

(c) 2.0 min.

(d) None of these

(d) 2.5 min.

(d) 45 cm/sec

(b) In geometrical progression (c) In the ratio 1:3:7

(d) 60 cm

(d) $\frac{1}{v} = \frac{1}{v_1} + \frac{1}{v_2}$

(d) 30 sec

		Advance	Level	
67.	For $\frac{1}{m}$ of the distance	e between two stations a train	is uniformly accelerated	and $\frac{1}{n}$ of the distance it is
	uniformly retarded, it greatest velocity to its a	starts from rest at one station average velocity is	n and comes to rest at the	other. Then the ratio of its
	(a) $m+n+1:1$	(b) $\left(\frac{1}{m} + \frac{1}{n}\right)$:1	(c) $\frac{1}{m} + \frac{1}{n} + 1 : 1$	(d) $m+n+1:mn$
68.		n A with uniform acceleration f_1 to come to rest at B . If the dista		
	minutes to complete this			
69.	_	(b) 2 <i>m/sec</i> is fired into a wood-block were fired into a similar piece	<u>-</u>	
	(a) 500 <i>m/sec</i>	(b) $\frac{500}{\sqrt{3}} m / \sec$	(c) $500\sqrt{3}m / \sec$	(d) None of these
70.		the distance with velocity v_0 . time and with velocity v_2 for the time of motion is		
	(a) $\frac{v_0 + v_1 + v_2}{3}$	(b) $\frac{2v_0 + v_1 + v_2}{4}$	(c) $\frac{2v_0(v_1+v_2)}{2v_0+v_1+v_2}$	(d) $\frac{v_0(v_1+v_2)}{v_0+v_1+v_2}$
71.	The first moves with con	same straight line starting at the nstant velocity u and the second will be maximum at time		=
	(a) $t = \frac{2u}{f}$	(b) $t = \frac{u}{f}$	(c) $t = \frac{u}{2f}$	(d) $t = \frac{u^2}{f}$
72.	then runs for 11 minute	from a station with constant a es at this speed and retards un ff. The maximum speed (in <i>kn</i>	iformly during the next 3 n	ninutes and stops at the next
	(a) 30	(b) 35	(c) 40	(d) 45

A body starts from rest and moves in a straight line with uniform acceleration F, the distances covered by it in

A bullet of mass 0.006 kg travelling at 120 metres/sec penetrates deeply into a fixed target and is brought to

A person travelling on a straight line moves with uniform velocity v_1 for some time and with uniform velocity

A particle starts with a velocity of 200 cm/sec and moves in a straight line with a retardation of 10 cm/sec².

(c) 30 cm

(c) 10 sec

(c) $\frac{2}{v} = \frac{1}{v_1} + \frac{1}{v_2}$

63.

64.

65.

66.

second, fourth and eighth seconds are

Then the time it takes to describe 1500 cm is

rest in 0.01 sec. The distance through which it penetrates the target is

(b) 6 cm

 v_2 for the next equal time. The average velocity 'v' is given by

(b) $v = \sqrt{v_1 v_2}$

(b) 5 sec, 15 sec.

(a) In arithmetic progression

(a) $v = \frac{v_1 + v_2}{2}$

(a) 10 sec, 30 sec

73.	A point moves from	n rest with constant accelera	ation. If it covered $\frac{5}{25}$ part of	its total distance in its last seco	nc
	of motion, then up	to what time it travelled			
	(a) 5 second	(b) $\frac{5}{9}$ second	(c) (a) and (b) both	are true (d) $6\frac{1}{3}$ seco	no
				Motion under gravity	<u>, (</u>
			Basic Level		
74.	If a particle is thro to come to earth ag		a velocity of <i>u cm/sec</i> under gra	avity, then the time for the partic	
	(a) $\frac{u}{g}$ sec	(b) $\frac{2u}{g}$ sec	(c) $\frac{u}{2g}$ sec	(d) None of these	₹ 5.
75.			om the same point with the sam t_1 sec and second takes t_2 sec to	ne velocity, one vertically upwar to reach the ground, then $t_1t_2 =$	'ds
	(a) $\frac{h}{g}$	(b) 2gh	(c) $\frac{2h}{g}$	(d) gh	
76.	If a particle is proje		s at a height h after t_1 seconds a	and again after t_2 seconds, then h	ı =
	(a) gt_1t_2	(b) $\sqrt{gt_1t_2}$	(c) $2gt_1t_2$	(d) $\frac{1}{2}gt_1t_2$	
77•		tower, 98 m high, a body is hit strikes the ground is	projected vertically upwards	with a velocity of 39.2 <i>m/sec</i> . T	'he
78.				(d) 55 m/sec seconds are timings of free f	al
	<u> </u>	e above the moon's and earth			
79.				(d) 2:7 dropped from the top of the hou	ıse
	passes the lowest s	storey in $\frac{1}{4}$ sec . The height o	f the house is		
80.		(b) 110 ft erent masses m_1 and m_2 are odies to fall through these di		(d) None of these s h_1 and h_2 . The ratio of the time	ıes
	(a) $h_1 : h_2$		(c) $h_1^2:h_2^2$	(d) $h_2:h_1$	

Q

144 Dynamics

81.

82.

83.

84.

(a) Variable

(a) 1:4

(a) 1.25 m

(a) 7000 cm/sec

(c) Dependent on the position of the chord

by A to that taken by B, to reach the ground is

(b) 2:1

(b) 2.5 m

(b) 7848 cm/sec

the ground it takes 4 seconds to return to the same point, again. The velocity of projection of the body is

(b) Constant

(c) 1:2

(c) 3 m

Two particles A and B are dropped from the height of 5 m and 20 m respectively. Then the ratio of time taken

A body is projected upwards with a certain velocity , and it is found that when in its ascent, it is 29430 cm from

A particle is projected from the top of tower 5 m high and at the same moment another particle is projected

upward from the bottom of the tower with a speed of 10 m/s, meet at distance 'h' from the top of tower, then h

(d) None of these

(c) 8000 cm/sec

(d) 1:1

(d) None of these

(d) None of these

The time to slide down the chord through the highest point of a vertical circle is

(d) $\frac{2u-gt}{2g}$

	(a) $\frac{n+m}{\sqrt{2gm}}$	(b) $\frac{n+m}{\sqrt{2gn}}$	(c) $\frac{n-m}{\sqrt{2gm}}$	(d) $\frac{m-n}{\sqrt{2gn}}$
87.	-	ec ² be the accelerations du	•	and Q . If a particle occupies n
	seconds less and acqu	ires a velocity of m metre/	sec more at place P than place	$ce\ Q$ in falling through the same
	distance, then m/n eq	uals		
	(a) g_1g_2	(b) $\sqrt{\frac{g_1}{g_2}}$	$(c) \sqrt{\frac{g_2}{g_1}}$	(d) $\sqrt{g_1g_2}$
88.			seconds it passes through a pad. The height of the glass above	ane of glass and loses half of its ve the ground is
	(a) 2000 m	(b) 2500 m	(c) 2943 m	(d) None of these
89.	upwards from the bo		-	instant another body is thrown in the middle of the tower. The
	(a) 20 <i>m/sec</i>	(b) 25 <i>m/sec</i>	(c) 24.5 <i>m/sec</i>	(d) None of these
90.		<u>-</u>	•	me moment another particle is nen the upper one has described
	$\left(\frac{1}{n}\right)^{th}$ of the distance,	then the velocities when the	y meet are in the ratio	
	(a) $2:n-2$	(b) $(n-2):2$	(c) $(n+2):2$	(d) $2:n+2$
91.		rm the bottom of the tower		time another particle is thrown in just reach the top of the tower.
	l.	2	3 h	[UPSEAT 1998]
	(a) $\frac{h}{2}$	(b) $\frac{3}{5}h$	(c) $\frac{3h}{4}$	(d) $\frac{h}{4}$
92.		-	sing with acceleration f and t at time T after the second ston	seconds after this another stone e is dropped is
	(a) $\frac{1}{2}(g+f)(t+T)$	(b) $\frac{1}{2}(g+f)(t+2T)$	(c) $\frac{1}{2}(g+f)(2t+T)$	(d) $\frac{1}{2}(g-f)(t+2T)$
93.	A stone is dropped sl	lowly from the top of the w	vall and it reaches the surface	e of the water with the velocity
	3924 cm/sec, if sound	of splash is heard after $4\frac{10}{47}$	$\frac{9}{5}$ seconds, then the velocity of	of sound will be
	(a) 312 metre/sec	(b) 302 <i>metre/sec</i> .	(c) 321 metre/sec	(d) 342 metre/sec
			Laws of motion, Appar	ent weight of a body on lift
		Ва	sic Level	

If a body is projected vertically upwards with velocity u and t seconds after words another body is similarly

projected with the same velocity, then the two bodies will meet after T seconds of the projection of the second

A stone falling from the top of a vertical tower described m metres, when another is let fall from a point n metres below the top. If the two stones fall from rest and reach the ground together, then the time taken by

(c) $\frac{2u - gt}{g}$

85.

86.

body, where T =

them to reach the ground is

(b) $\frac{u-2gt}{2g}$

Dynamics

94.		ing with an acceleration fm/sc ift and catches it again in t seco			wards with a velocity of
	(a) $\frac{2v}{f-g}$	(b) $\frac{v}{f-g}$	(c) $\frac{v}{f+g}$	(d)	$\frac{2v}{f+g}$
95.	A body weighs most				[Roorkee 1994]
	(a) At the earth's surface earth	te(b) Above the earth's surface	(c) Inside t	the earth (d)	At the centre of the
96.	A dyne is the force whic	h produces an acceleration of 1d	m/sec ² wher	n acted on a mass of	f
-	(a) 1mg	(b) 10 gm	(c) 1gm		1kg
97.		ends with a uniform acceleration is doubled, then the mass of t	on f . If a certain	ain part of the ballo	_
			_	-	gM
	(a) $\frac{fM}{f+g}$	(b) $\frac{fM}{f+2g}$	(c) $\frac{1}{2f+g}$	(d)	$\frac{c}{2f+g}$
98.		a particle of mass m changes its oduces the changes, then $F =$	velocity fron	n <i>u</i> to <i>v</i> in describin	g a distance x . If F is the
	(a) $\frac{1}{2}m(v^2-u^2)$	(b) $\frac{1}{2x}m(v^2-u^2)$	$(c) \ \frac{1}{2x}m(v^2)$	$+u^2$) (d)	None of these
99.	average force applied by				
	(a) 4×10^3 dynes	(b) $4 \times 10^4 dynes$	(c) $4 \times 10^5 d$	lynes (d)	4×10^6 dynes
100.		16 metric tons, moves at the r exerted by breaks obtaining it			g breaks it stops in 500
	(a) 800 N	(b) 1600 N	(c) 3200 N	(d)	6400 N
101.	A mass of 8 kg is rolled	l a grass with a velocity of 28 n	n/sec. If the	resistance be $\left(\frac{1}{10}\right)^{t}$	of the weight, then the
	body comes to rest after	travelling			
	(a) 200 m	(b) 400 m	(c) 600 m		800 m
102.	If a force F_1 acts on a r	mass of 10 kg and in one-fifth ϕ	of a second p	produces in it a vel	ocity of 2 <i>m/sec</i> and the
	other force F_2 acting on	a mass of 625 kg in a minute p	roduces in it	a velocity of 18 km,	/hr, then $F_1:F_2$
	(a) 24:25	(b) 48:25	(c) 24:5	(d)	48:125
103.		the boards fixed at a height of $\frac{1}{2}$ pth of 5 m . If the mass of the			
	(a) 588 N	(b) 1176 <i>N</i>	(c) 1764 N	(d)	None of these
104.	A man weighing 60 kg j	umps off a railway train runnin nrust of the packet on his hand i	g on horizon		
	(a) 0	(b) 10 <i>kg wt</i> .	(c) 50 kg w	vt. (d)	70 kg wt.
105.		ball at rest for 0.01 sec with a ust after being pushed is	n average fo	orce of 50 N. If the	ball weighs 0.2 kg, ther
	(a) 3.5 <i>m/sec</i>	(b) 2.5 <i>m/sec</i>	(c) 1.5 m/s	ec (d)	4.5 m/sec
106.		n fired into a wall with a veloci	-	c loses its velocity	in penetrating through 5
		erage force exerted by the wall			
	(a) 10 ⁴ gm wt	(b) 10 ⁶ dynes	(c) 10 ⁵ dyn		None of these
107.	_	nd at rest is acted upon by a c	onstant force	e of W kg weight, t	hen in seconds it moves
	through a distance of				_
	(a) $\frac{gTW}{2M}$ metre	(b) $\frac{gTW^2}{2M}$ metre	(c) $\frac{g^2TW}{2M}m$	netre (d)	$\frac{gT^2W}{2M}$ metre

(d) 2 tons

109.	· ·	is cut down 50 <i>cm</i> , then a bulled eximate thrust of gas on the bull	2	ith velocity 361 <i>m/sec</i> instead
	(a) 317.6 metric ton we	eight (b)	318.4 metric ton weight	(c) 319.3 metric ton
	weight	(d) 320.8 metric ton weight		
110.		to move on smooth rails and a bis smooth. A force of 60 Newto [UPSEAT 1993]		
	(a) 3	(b) 0.6	(c) 0.5	(d) o
111.		kilogram is standing in a lift won of floor when lift coming dow		m acceleration of 25 <i>cm/sec</i> ² .
	(a) $\frac{70 \times 956}{981} kg - wt$	(b) $\frac{70 \times 1006}{981} kg - wt$	(c) $\frac{70 \times 25}{981} kg - wt$	(d) $\frac{70 \times 981}{25} kg - wt$
		Advance	Level	
112.		of mass M , a fire arm of mass m and gun cartage will be respective	_	gun cartage is fired. The real
	(a) $\frac{Mu}{M+m} = \frac{Mu}{M-u}$	(b) $\frac{Mu}{M+m} = \frac{mu}{M+m}$	(c) $\frac{M+m}{Mu} = \frac{M+m}{mu}$	(d) $\frac{M+m}{M-m} = \frac{M+m}{Mm}$
113.	The shortest time from vertical distance h feet	n rest to rest in which a stead is	y load of P tons can lift a	weight of W tons through a
	(a) $\sqrt{\left(\frac{2h}{g} \cdot \frac{P}{P-W}\right)}$	(b) $\sqrt{\left(\frac{2h}{g} \cdot \frac{P}{P+W}\right)}$	(c) $\sqrt{\left(\frac{2h}{g} \cdot \frac{P+W}{P-W}\right)}$	(d) None of these
114.		400 kg, is discharged from a d to stop the gun after a recoil of		a velocity of 490 <i>m/sec</i> . The
	(a) 245/16 metric ton	(b) 15 metric ton	(c) 20 metric ton	(d) None of these
115.		long and is inclined to the horiz lown it from rest at the highest j		_
	(a) $16/\sqrt{5}$ ft/sec	(b) 16 ft / sec	(c) $16\sqrt{5} ft / \sec$	(d) $16 / \sqrt{7} ft / sec$.
116.	=	rough inclined plane whose ince of descending the distance $4\sqrt{8}$		45° and whose coefficient of
	(a) 0.8 sec	(b) 1.2 sec	(c) 1.4 sec	(d) 1.62 sec
117.		d descent of a particle projecte		
	respectively, the coeffic	cient of friction is		
	(a) $\frac{t_2 - t_1}{t_2 + t_1} \tan \alpha$	(b) $\frac{t_2 + t_1}{t_2 - t_1} \tan \alpha$	(c) $\frac{t_2^2 - t_1^2}{t_2^2 + t_1^2} \tan \alpha$	(d) $\frac{t_2^2 + t_1^2}{t_2^2 - t_1^2} \tan \alpha$
			Motion of two partic	les connected by a string
		Basic L	evel	

118. A pulley carrying a total load W hangs in a loop of a chord which passes over two fixed pulleys and has unequal weights P and Q freely suspended from the ends, each segment of the chord vertical. If W remains at rest, then

W =

108. A train is moving with constant velocity. If the resistance of its motion is 10 lbs per ton (of mass) and the force

(c) 2000 tons

exerted by the engine is 200 lbs wt, then the mass of engine is (a) 20 tons (b) 200 tons (c) 20

148 Dynamics

(2)	PQ
(a)	P+Q

(b)
$$\frac{2PQ}{P+Q}$$

(c)
$$\frac{3PQ}{P+Q}$$

(d)
$$\frac{4PQ}{P+Q}$$

- Two particles of masses m_1 and m_2 are connected by a light inextensible string m_2 is placed on a smooth horizontal table and the string passes over a light pulley at the edge of the table and m_1 is hanging freely. If m_1 is replaced by m_2 and m_2 is replaced by m_3 , then the acceleration of the system remains unaltered if m_1, m_2, m_3 are in
 - (a) A.P.
- (b) G.P.

(c) H.P.

- (d) None of these
- **120.** A light string passing over a light smooth pulley carries masses of 3 kg and 5 kg at its ends. If the string breaks after the masses have moved 9 m, then the 3 kg mass will farther rise $(g = 10m / sec^2)$
- (b) 1.95 m

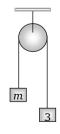
- 121. A body of mass 90 qm is placed on a smooth table from the distance 2.45 metre from end and is attached to a rope which is hanging from the end of table, then time taken by body to reach to end of table will be
- (b) $\sqrt{3}$ sec

(c) 2 sec

- **122.** Two bodies of mass 8 and 10 *gm* is attached to a light rope which is passing over a smooth pulley. If this system is given to a velocity $\frac{3}{16}$ g cm/sec. then small body will move downwards and heavy body will move upwards, then after what time they will move in opposite directions
- (b) $\frac{23}{14}$ sec

- (c) $\frac{27}{16}$ sec
- 123. Two masses m_1 and m_2 are connected by a light inextensible string and suspended over a smooth fixed pulley.

(a) Pressure on the pulley = m_1g


[Roorkee 1994]

(b) Pressure on the pulley = $m_2 g$

(c) Pressure $< (m_1 + m_2)g$

- (d) Pressure > $(m_1 + m_2)g$
- 124. Two strings pass over a smooth pulley, on one side they are attached to masses of 3 and 4 kg respectively, and on the other to a mass of 5 kg. Then the tensions of the strings are
 - (a) 2, 3 kg wt.
- (b) 5/2, 10/3 kg wt.
- (c) 3, 4 kg wt.
- (d) None of these
- 125. A body of mass 5 gram is placed on a smooth table and is connected by a string passing over a light smooth pulley at the edge with a body of mass 10 gram. The common acceleration is
 - (a) 2g/3
- (b) 3 q/2

- (c) 2.5 q
- (d) 0.5 g
- 126. Two masses are attached to the pulley as shown in fig., find acceleration of centre of mass

(a) $\frac{g}{4}$

Advance Level

- 127. A light string passing over a light smooth pulley carries masses of 3 kg and 5 kg at its ends. If the string breaks after the masses have moved 9 m, how much further the 3 kg mass will rise (Take $q = 10 \text{ m/sec}^2$)
 - (a) 1.75 m

- **128.** A mass 2Q on a horizontal table, whose coefficient of friction is $\sqrt{3}$ is connected by a string with a mass 6Q which hangs over the edge of the table. Eight seconds after the commencement of the motion, the string breaks. The distance of the new position of equilibrium of 2Q from its initial position is

(d) None of these

129.	rest over a distanc	-	oth horizontal table which is le	ngth, and draws another mass from vel with the top of the plane over
	(a) 86.5 <i>kg</i>	(b) $96.5 kg$	(c) 106.5 <i>kg</i>	(d) 116.5 <i>kg</i>
130.	Masses of 5 kg and	3 kg rest on two inclined per the common vertex. After	lanes each inclined at 30° to the	ne horizontal and are connected by emoved. How far up the plane will
	(a) 1.9/8 m	(b) 2.9/8 m	(c) 3.9/8 m	(d) 4.9/8 m
				Impact of elastic ladies
			Basic Level	
131.	Two equal perfectl	y elastic balls impinges dire	ectly, then after impact they	
	(a) Are at rest		(b) Interchange their	r velocities
	(c) Move with the	same velocities	(d)	Move with twice velocities
132.	A sphere impinges the impact are as	directly on an equal sphere	e at rest. If the coefficient of re	stitution is e , their velocities after
				[UPSEAT 1999]
	(a) 1 : <i>e</i>	(b) <i>e</i> : 1	(c) $1+e:1-e$	(d) $1-e:1+e$
133.	A ball is dropped rebounding after	from a height of 22.5 m	etre on a fixed horizontal pla	nne. If $e = 2/5$, then it will stop
	(a) 5 sec.	(b) 6 sec.	(c) 7 sec.	(d) 8 sec.
134.	An elastic ball with distance covered by	_	2 is dropped from rest at a hei	ght h on a smooth floor. The total
	(a) More than 2h		(b) Less than 2h but	more than $(3/2)h$
	(c) Less than (3/2))h but more that $(4/3)h$	(d) Less then $(4/3)h$	
135.	Hailstorm are obse	erved to strike the surface	of a frozen lake in a directio	n making an angle of 30^{o} to the
	vertical and to reberestitution is	ound at an angle of 60^{o} to t	the vertical. Assuming the conta [MNR 1986]	act to be smooth, the coefficient of
	(a) 1/3	(b) 2/3	(c) $1/\sqrt{3}$	(d) None of these
136.		oall falls from the ceiling of he coefficient of restitution		g two times reaches the half of the
	(a) $(0.50)^{1/2}$	(b) $(0.50)^{1/3}$	(c) $(0.50)^{1/4}$	(d) $(0.25)^{1/2}$
137.				of mass 2 <i>kg</i> moving with velocity impact is
	(a) 120 <i>m/sec</i>	(b) $\frac{1}{2}$ m/sec	(c) 1 m/sec	(d) o m/sec
138.	A ball is dropped from coefficient of restitu		a fixed horizontal plane. If it rebo	ounds to a height of 16 dm, then the
	(a) 16/25	(b) 0.8	(c) 16 <i>g</i> /25	(d) 0.8 g
		A	dvance Level	
139.		height <i>h</i> upon a fixed horiz	ontal plane, $\it e$ is the coefficient	of restitution, the whole distance
	(a) $\frac{1+e^2}{1-e^2}h$	(b) $\frac{1-e^2}{1+e^2}h$	(c) $\frac{1+e^2}{(1-e^2)h}$	(d) $\frac{1-e^2}{(1+e^2)h}$
			\ /··	· / /

(c) 130.4 m

(a) 117.6 m

(b) 120.4 m

150	Dyna	mics

given by

140.		-	-	gainst the wall and returns to the tion, the time of flight of the ball
	(a) $\left[\frac{2(1-e)c}{eg}\tan\alpha\right]^{1/2}$	(b) $\left[\frac{2(1+e)c}{eg}\tan\alpha\right]^{1/2}$	(c) $2(1+e)c \tan \alpha$	(d) None of these
141.	_			ball of mass 10 kg moving with the velocities (in m/sec) of the
	(a) 0, 0	(b) 7/3, 10/3	(c) 2/3, 5/3	(d) 2, 2
142.	Three balls of masses	m_1 , m_2 , m_3 are lying in stra	aight line. The first ball is	moved with a certain velocity so
		after impact first ball comes		ird. If the coefficient of elasticity impact the second ball comes to
	(a) A.P.,	(b) G.P.	(c) H.P.	(d) None of these
143.	A sphere impings direc	ctly on an equal sphere which	is at rest. Then the origina	l kinetic energy lost is equal
	(a) $\frac{1+e^2}{2}$ times the init	tial K.E.(b)	$\frac{1-e^2}{2}$	(c) $\frac{1-e^2}{2}$ times the initial
	K.E.	(d) None of these		
				Projectile motion
144.				qual height 2 <i>metre</i> , which are at
	(a) $\sqrt{(2/g)}$	(b) $\sqrt{(2g)}$	(c) $2\sqrt{(2/g)}$	(d) $\sqrt{(g/2)}$
	•	• -	•	, , , , , , , , , , , , , , , , , , ,
145.	_	er a triangle from one end of	norizontal base. If α, β are	e the base angles and θ the angle
	of projection, then (a) $\tan \theta = \tan \alpha - \tan \beta$	(b) $\tan \theta = \tan \beta - \tan \alpha$	(c) $\tan \theta = \tan \alpha + \tan \beta$	(d) None of these
146	•	•	•	ec at an angle of 60° with the
140.		n the inclined plane, inclined	•	•
	(a) 21 dm	(b) 2.1 dm	(c) 30 dm	(d) 6 dm
147.	If you want to kick a resistance)			should be kicked is (assuming no
	(a) 45°	(b) 90°	(c) 30°	(d) 60°
148.	The path of projectile i			[MNR 1971; UPSEAT 1998]
	(a) Straight line	(b) Circle	(c) Ellipse	(d) Parabola
149.			with a velocity of 29.43 n	n / \sec at an elevation of 30°. The
	Ŭ	ds to a height of 9.81 m are		
150.	_	(b) 1, 2 er of height 100 m , a ball is $= 10m / \sec^2$, then the angle of		(d) 2, 3 of 10 m/sec. It takes 5 seconds to

151. A particle is projected with initial velocity u making an angle α with the horizontal, its time of flight will be

[MNR 1979; UPSEAT 1998]

	(a) $\frac{2u\sin\alpha}{\alpha}$	(b) $\frac{2u^2 \sin \alpha}{\sigma}$	(c) $\frac{u \sin \alpha}{a}$	(d) $\frac{u^2 \sin \alpha}{\sigma}$
152.	The escape velocity for	a body projected vertically u	s upwards is 11.2 km/sec. If	the body is projected in a
Ū		le of 60° with the vertical, ther	•	J 1 J
	(a) 11.2 km/sec	(b) $5.6\sqrt{3}km/\sec$	(c) 5.6 km/sec	(d) None of these
153.	A particle is projected w	with the speed of $10\sqrt{5}m/\sec$ at	an angle of 60° from the ho	orizontal. The velocity of the
	projectile when it reache	es the height of 10 m is ($g = 9.8$)	m / \sec^2)	
	(a) $4\sqrt{(19)} m / \sec$	(b) $\sqrt{(179)} m / \sec$	(c) 15 m / sec	(d) $5\sqrt{(15)} m / \sec$
154.	From the top of a hill of the ground. The angle of	height 150 m , a ball is projected projection of the ball is	ed with a velocity of 10 <i>m/se</i>	ec. It takes 6 second to reach
	(a) 15 °	(b) 30°	(c) 45°	(d) 60°
155.		from the top of a cliff 200 m l horizontal distance from the fo	-	
	(take $g = 10m / \sec^2$)			
	(a) 595.3 m	(b) 695.3 m	(c) 795.3 m	(d) 895.3 m
156.	angle to the direction of	vith a velocity of 39.2 <i>m/sec</i> at projection after the time		
157	(a) 8 sec	(b) 5 sec ely be the maximum ranges up	(c) 6 sec	(d) 10 sec
15/•		plane. Then R_1, R, R_2 are in	and down an memica plane	and it be the maximum
	(a) Arithmetic-Geometri	· -	(b) A.P.	
	(c) G.P.	10 Pr 081 0001011 (111011 1)	(d) H.P.	
158.	If t_1 and t_2 are the tire	mes of flight of two particles	having the same initial vel	ocity u and range R on the
	horizontal, then $t_1^2 + t_2^2$ i	s equal to		
	(a) 1	(b) $4u^2/g^2$	(c) $u^2/2g$	(d) u^2/g
159.	A particle is projected at	an angle of 45° with a velocit	y of 9.8 metre per second. Th	ne horizontal range will be
	(a) 9.8 metre	(b) 4.9 metre	(c) $9.8/\sqrt{2}$ metre	(d) $9.8\sqrt{2}$ metre
160.		d respectively from the same the same height, the ratio of the	-	
	(a) $\sqrt{3}:1$	(b) $1:\sqrt{3}$	(c) 1:1	(d) 1:2
161.	If a projectile having ho angle of projection are	orizontal range of 24 acquires a	a maximum height of 8, the	n its initial velocity and the
	_	_	_	[Roorkee Screeninig 1990]
	(a) $24\sqrt{g}$, $\sin^{-1}(0.6)$	(b) $8\sqrt{g}$, $\sin^{-1}(0.8)$	(c) $5\sqrt{g}$, $\sin^{-1}(0.8)$	(d) $5\sqrt{g}$, $\sin^{-1}(0.6)$
162.	The range of a projectile then the range will be	e fixed at an angle of 15^{o} is 50	m, if it is fixed with the sar	me speed at an angle of 45^{o} ,
	(a) 50 m	(b) 100 m	(c) 150 m	[UPSEAT 2002] (d) None of these
163.	A particle is thrown wit	th velocity u at an angle of 30°	from horizontal line when	it becomes perpendicular to
	its original position			[UPSEAT 2002]
	24		(c) $u\sqrt{3}$	
	(a) $\frac{2u}{}$	(b) 2ug	(c) =	(d) None of these

164. *AB* is the vertical diameter of a circle in a vertical plane. Another diameter *CD* makes an angle of 60° with *AB*, then the ratio of the time taken by a particle to slide along *AB* to the time taken by it to slide along *CD* is

152	2 Dynamics			
	(a) 1:1	(b) $\sqrt{2}:1$	(c) $1:\sqrt{2}$	(d) $3^{1/4}:2^{1/2}$
165.		-	e of inclination 60° along the line ocity of projection is $(g = 9.8m/s)$	ine of greatest slope. If it comes ec^2)
	(a) $9.8 m/s$	(b) 10 <i>m/s</i>	(c) 16.97 <i>m/s</i>	(d) 19.6 <i>m/s</i>
166.	A body is projected th	nrough an angle $lpha$ from ver	tical so that its range is half of	maximum range, $lpha$ is
	(a) 60°	(b) 75°	(c) 30°	(d) 22.5°
		Adv	vance Level	
167.	=	n of an enemy's position on tile must not be less than	a hill h feet high is β . Show the	nat is order to shell if the initial
	(a) $[gh(1 + \sin \beta)]^{1/2}$	(b) $[gh(1-\sin\beta)]^{1/2}$	(c) $[gh(1 + \csc \beta)]^{1/2}$	(d) $[gh(1-\cos \beta)]^{1/2}$
168.	•	test range up an inclined p freely during the correspon		ection and the distance through
	(a) 2	(b) $\frac{1}{2}$	(c) 1	(d) 3
169.	A stone is projected s it rises are	Z	s maximum and equal to 80 ft.	Its time of flight and the height
	(a) $\sqrt{3}$, 1	(b) $\sqrt{4}$, 15	(c) $\sqrt{5}$, 20	(d) None of these
170.	The velocity and dire which is 50 yds. away		which passes in horizontal dire	ection just over the top of a wall
	(a) 40,30°	(b) $40\sqrt{6}, 45^{\circ}$	(c) 50,60°	(d) None of these
171.	_	un on top of a tower, 272 fe ction of projection are	et high hits the ground at a dist	tance of 4352 feet in 17 seconds.
	(a) 256, 30°	(b) $256\sqrt{2},45^{\circ}$	(c) 180,60°	(d) None of these
172.		slipping down on smooth t plane, then the inclination	=	time taken in falling from the
	(a) 45°	(b) 60°	(c) 75°	(d) 30°
				Work power and Energy
		Ba	asic Level	
173.		ricks per minute from the g norse power at which he is v	-	of 3.3 <i>metres</i> high. If each brick
174.	(a) 0.0325 A weight of 10 metric	(b) 0.325 c tons is dragged in half an	(c) 3.25 hour through a distance of 110	(d) None of these metre up a rough inclined plane
	inclined at an angle of	of 30^{o} to the horizon, the c	oefficient of friction being $1/$	$\overline{3}$. The horse power (nearly) of
	the engine by which t	this work will be done is		
	(a) 6	(b) 8	(c) 10	(d) 20
175.		ojected upwards with such body at the time of projection		he height 196 <i>metres</i> only. The
	(a) 5000 <i>Joule</i>	(b) 5762.4 Joule	(c) 6000 Joule	(d) None of these
176.	-	•	elocity of 400 <i>metres per secon</i> velocity of the target after imp	d and is embedded in it. If the fact is
	(a) 400/81 m/sec	(b) 400 m/sec	(c) 300 m/sec	(d) None of these

177.		A bullet is shot with a velocity of 600 m/sec into a target weighing 12 kg and is free to move with a velocity 1.5 m/sec after impact. Then the percentage loss of kinetic energy in the impact is										
	(a) 79.75 %	(b) 89.75 %	(c) 99.75 %	(d) None of these								
178.	A 15 kg block is moving on ice with a speed of 5 $metre\ per\ second$ when a 10 kg block is dropped onto vertically. The two together move with a velocity which in $metre\ per\ second$ is											
	(a) 3	(b) $\sqrt{(15)}$	(c) 5	(d) Indeterminate								
179.		-	•	ce and rebounds with the same ce exerted by the surface on the								
	(a) 0.1	(b) 1.0	(c) 5.0	(d) 10.0								
		Adva	ance Level									
180.	the brick reach the m			ne bricks in such a manner that such that bricks just reach the								
	(a) 1/3	(b) 1/4	(c) 1/5	(d) 1/6								
181.		kg falls vertically through the ground. The resistance of		of mass 100 gm and drives it a								
181.		•		of mass 100 gm and drives it a (d) None of these								
	distance of 10 cm in t (a) 3441/210 kg wt A bullet of mass m pe	the ground. The resistance of (b) 4441/210 kg wt	the ground is (c) 5441/210 kg wt	-								
	distance of 10 cm in t (a) 3441/210 kg wt A bullet of mass m pe	the ground. The resistance of (b) 4441/210 kg wt enetrates a thickness a of a p	the ground is (c) 5441/210 kg wt	(d) None of these								
182.	distance of 10 cm in to (a) 3441/210 kg wt A bullet of mass m per thickness to which the (a) $Ma/(m+M)$ A glass marble, whose	the ground. The resistance of (b) $4441/210 \ kg \ wt$ enetrates a thickness a of a period bullet will penetrate is (b) $ma/(m+M)$ ermass is $(1/10)kg$ falls from	the ground is (c) $5441/210 \ kg \ wt$ c) a height of 2.5 m and rebound	(d) None of these splate is free to move, then the (d) None of these is to a height of 1.6 m. Then the								
182.	distance of 10 cm in to (a) 3441/210 kg wt A bullet of mass m per thickness to which the (a) $Ma/(m+M)$ A glass marble, whose	the ground. The resistance of (b) $4441/210 \ kg \ wt$ enetrates a thickness a of a period bullet will penetrate is (b) $ma/(m+M)$ ermass is $(1/10)kg$ falls from	the ground is (c) $5441/210 \ kg \ wt$ c) a height of 2.5 m and rebound	(d) None of these splate is free to move, then the (d) None of these								
182.	distance of 10 cm in to (a) 3441/210 kg wt A bullet of mass m per thickness to which the (a) $Ma/(m+M)$ A glass marble, whose average force between	the ground. The resistance of (b) $4441/210 \ kg \ wt$ enetrates a thickness a of a period bullet will penetrate is (b) $ma/(m+M)$ ermass is $(1/10)kg$ falls from	the ground is (c) $5441/210 \ kg \ wt$ c) a height of 2.5 m and rebound	(d) None of these splate is free to move, then the (d) None of these is to a height of 1.6 m. Then the								
182. 183.	distance of 10 cm in to (a) 3441/210 kg wt A bullet of mass m per thickness to which the (a) $Ma/(m+M)$ A glass marble, whose average force between second, is (a) 10.58 N	the ground. The resistance of (b) $4441/210 \ kg \ wt$ enetrates a thickness a of a period bullet will penetrate is (b) $ma/(m+M)$ errors is $(1/10)kg$ falls from the marble and the floor, in the marble and the floor, in the water up to 2 m height period m is m and m in the marble and the floor, in m is m in the marble and the floor, in m is m in m i	the ground is (c) $5441/210 \ kg \ wt$ plate of mass M at rest. If this (c) $(M-m)a/(m+M)$ a height of 2.5 m and rebound f the time during which they a (c) $12.58 \ N$	(d) None of these splate is free to move, then the (d) None of these is to a height of 1.6 m. Then the are in contact be one-tenth of a								

* * *

Dvnamics

Assignment (Basic and Advance Level)

1	2	2	4	F	6	7	0	•	10	44	12	42	44	45	10	47	10	10	20
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	С	b	b	b	b	С	С	а	d	d	b	а	С	b	С	b	d	d	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
а	b	b	d	а	С	d	а	а	С	b	b	b	b	b	С	b	b	а	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
а	d	С	а	С	а	b	С	а	а	С	b	С	d	С	а	а	С	С	С
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
С	b	d	d	а	а	С	b	С	С	b	С	а	b	С	d	С	b	С	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
b	С	b	а	d	С	d	С	d	b	С	b	d	d	а	b	С	b	d	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	b	С	а	b	b	d	а	d	С	а	b	а	а	С	d	С	d	b	d
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
d	С	С	b	а	b	d	а	d	d	b	d	а	b	a	С	d	b	а	b
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160

Indices and Surds 153

b	b	С	С	С	d	а	d	b	а	а	С	а	b	С	а	d	b	а	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
С	b	d	С	С	b	С	С	С	b	b	d	а	b	b	а	С	а	d	С

181	182	183	184
b	а	d	b