

Equation in Different forms and Slope of Line

(d) x - y - 2 = 0

(d) x + 2y - 10 = 0

(d) 3x + 4y + 6 = 0

[MNR 1978]

[Karnataka CET 2004]

[MP PET 1986]

[MP PET 2000]

[MP PET 1984]

Basic Level

(c) x + y + 1 = 0

(c) x + y - 6 = 0

(d) None of these

(b) There will be a set of parallel lines

The equation of the straight line which passes through the point (1,-2) and cuts off equal intercepts from axes, is

In the equation $y - y_1 = m(x - x_1)$ if m and x_1 are fixed and different lines are drawn for different values of y_1 , then

Equation of the straight line making equal intercepts on the axes and passing through the point (2, 4) is

(b) x - y = 1

(b) 2x + y - 8 = 0

(b) 3x + 4y - 10 = 0

The equation of the line joining the origin to the point (-4, 5) is

1.

2.

3.

9.

10.

(a) x + y = 1

(a) 4x - y - 4 = 0

(a) 3x + 4y + 5 = 0

(a) The lines will pass through a single point

(c) There will be one line only

4.	The equation of the straigh	nt line passing through the point (3	3, 2) and perpendicular to the	line $y = x$ is [MNR 1979; MP PET 2002]
	(a) $x - y = 5$	(b) $x + y = 5$	(c) $x + y = 1$	(d) $x - y = 1$
5.	The equation of the line perp	pendicular to the line $\frac{x}{a} - \frac{y}{b} = 1$ and	passing through the point at w	which it cuts x-axis, is [Rajasthan PET 1996]
	(a) $\frac{x}{a} + \frac{y}{b} + \frac{a}{b} = 0$	(b) $\frac{x}{b} + \frac{y}{a} = \frac{b}{a}$	(c) $\frac{x}{b} + \frac{y}{a} = 0$	(d) $\frac{x}{b} + \frac{y}{a} = \frac{a}{b}$
6.	The equation of the line pa	assing through the point (1, 2) and p	perpendicular to the line $x + y$	y + 1 = 0 is [MNR 1981]
	(a) $y - x + 1 = 0$	(b) $y - x - 1 = 0$	(c) $y - x + 2 = 0$	(d) $y-x-2=0$
7.	If the equations $y = mx + c$	and $x \cos \alpha + y \sin \alpha = p$ represent	t the same straight line, then	
	(a) $p = c \sqrt{1 + m^2}$	(b) $c = p \sqrt{1 + m^2}$	$(c) cp = \sqrt{1 + m^2}$	(d) $p^2 + c^2 + m^2 = 1$
8.	A line passes through the p	point of intersection of $2x + y = 5$ a	and $x + 3y + 8 = 0$ and parallel	to the line $3x + 4y = 7$ is
				[Rajasthan PET 1984; MP PET 1991]
	(a) $3x + 4y + 3 = 0$	(b) $3x + 4y = 0$	(c) $4x - 3y + 3 = 0$	(d) 4x - 3y = 3

The equation of straight line passing through the intersection of the lines x - 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0 is

(c) 3x + 4y - 5 = 0

11.

12.

13.

(a) 5x + 4y = 0

(a) $\frac{x}{3} - \frac{y}{2} = 1$

(a) 4x + 3y = 24

(b) 3x + 4y = 2

(b) $\frac{x}{3} + \frac{y}{2} = 1$

(b) y-4 = x+3

Equation of the line passing through (1, 2) and parallel to the line y = 3x - 1 is

The equation of the line which cuts off an intercept 3 units on OX and an intercept -2 unit on OY, is

	(a) $y + 2 = x + 1$	(b) $y + 2 = 3(x + 1)$	(c) $y-2=3(x-1)$	(d) $y-2 = x-1$				
14.	Equation of the line passing	g through (–1, 1) and perpendicular	r to the line $2x + 3y + 4 = 0$ is		[MP PET 1984]			
	(a) $2(y-1) = 3(x+1)$	(b) $3(y-1) = -2(x+1)$	(c) $y-1=2(x+1)$	(d) $3(y-1) = x+1$				
15.	The equation of line passing	g through (c , d) and parallel to ax	+by+c=0 is	[Raja	sthan PET 1987]			
	(a) $a(x+c)+b(y+d) = 0$	(b) $a(x+c)-b(y+d) = 0$	(c) $a(x-c)+b(y-d) = 0$	(d) None of these				
16.	The equation of a line throu	ugh the intersection of lines x	= 0 and $y = 0$ and through the	e point (2, 2) is	[MP PET 1984]			
	(a) $y = x - 1$	(b) $y = -x$	(c) $y = x$	(d) $y = -x + 2$				
17.	Equation of a line through t	the origin and perpendicular to the	e line joining (a , 0) and ($-a$, 0)	is	[MP PET 1984]			
	(a) $y = 0$	(b) $x = 0$	(c) $x = -a$	(d) $y = -a$				
18.	For what values of a and b	the intercepts cut off on the coord	dinate axes by the line $ax + by$	+8 = 0 are equal in length	n but			
	opposite in signs to those of	cut off by the line $2x - 3y + 6 = 0$ c	on the axes					
	(a) $a = \frac{8}{3}, b = -4$	(b) $a = -\frac{8}{3}, b = -4$	(c) $a = \frac{8}{3}, b = 4$	(d) $a = -\frac{8}{3}, b = 4$				
19.	For specifying a straight line	e how many geometrical paramete	ers should be known		[MP PET 1982]			
	(a) 1	(b) 2	(c) 4	(d) 3				
20.	The equation of line passing	g through point of intersection of	line $3x - 2y - 1 = 0$ and $x - 4y$	$+3 = 0$ and the point $(\pi,$	0) is			
				[Raja	sthan PET 1987]			
	(a) $x-y=\pi$	(b) $x - y = \pi(y + 1)$	$(c) x - y = \pi(1 - y)$	(d) $x + y = \pi(1 - y)$				
21.	A line perpendicular to the line $ax + by + c = 0$ and passes through (a, b) . The equation of the line is							
				[Rajasthan PET 1988; MP I	PET 1995]			
	(a) $bx - ay + (a^2 - b^2) = 0$	(b) $bx - ay - (a^2 - b^2) = 0$	(c) $bx - ay = 0$	(d) None of these				
22.	If the line passing through ((4, 3) and $(2, k)$ is perpendicular to	y = 2x + 3, then $k =$	[Rajasthan PET 1985; MP I	PET 1999]			
	(a) −1	(b) 1	(c) -4	(d) 4				
23.	The line passes through (1,0	0) and $(-2, \sqrt{3})$ makes an angle of	with <i>x</i> -axis	[Raja	sthan PET 1985]			
	(a) 60°	(b) 120°	(c) 150°	(d) 135°				
24.	If a and b are two arbitrary	constants, then the straight line (a	(a-2b)x + (a+3b)y + 3a + 4b = 0) will pass through				
				_	sthan PET 1990]			
	(a) $(-1,-2)$	(b) (1, 2)	(c) $(-2,-3)$	(d) (2,3)				
25.	·	g through the point of intersection	n of the lines $4x - 3y - 1 = 0$ ar	1d 5x - 2y - 3 = 0 and part	rallel to the			
	line $2y - 3x + 2 = 0$, is			[Rajasthan P	ET 1985,86, 88]			

(c) 5x - 4y = 0

(c) 3y - 4x = 24

The equation of a line through (3, -4) and perpendicular to the line 3x + 4y = 5 is [Rajasthan PET 1981, 84, 86; MP PET 1984]

(c) $\frac{x}{2} + \frac{y}{3} = 1$ (d) $\frac{x}{2} - \frac{y}{3} = 1$

(d) 4x - 5y = 0

(d) $y+4=\frac{4}{3}(x-3)$

[MP PET 1984]

	(a) $x - 3y = 1$	(b) $3x - 2y = 1$	(c) 2x - 3y = 1	(d) $2x - y = 1$	
26.	The equation of line pass	ing through (4, –6) and makes an	angle 45° with positive <i>x</i> -axis,	, is [Raj	asthan PET 1984]
	(a) $x - y - 10 = 0$	(b) $x - 2y - 16 = 0$	(c) $x - 3y - 22 = 0$	(d) None of these	
27.	The straight line passes t	through the point of intersection o	f the straight lines $x + 2y - 10$	= 0 and $2x + y + 5 = 0$, is	[IIT 1983]
	(a) $5x - 4y = 0$	(b) $5x + 4y = 0$	(c) $4x - 5y = 0$	(d) 4x + 5y = 0	
28.	The equation to the straig	ght line passing through the point	$(a\cos^3\theta, a\sin^3\theta)$ and perpen	dicular to the line $x \sec \theta$ +	$y cosec \theta = a ,$
	is				
					[AMU 1975]
	(a) $x \cos \theta - y \sin \theta = a c$	os 2θ	(b) $x \cos \theta + y \sin \theta = a \cos \theta$	$\cos 2\theta$	
	(c) $x \sin \theta + y \cos \theta = a \cos \theta$	$\cos 2\theta$	(d) None of these		
29.	Equation of the right bise	ector of the line segment joining th	e points $(7, 4)$ and $(-1, -2)$ is		[AMU 1979]
	(a) $4x - 3y = 15$	(b) $3x + 4y = 15$	(c) $4x + 3y = 15$	(d) None of these	
30.	Equations of lines which p	passes through the points of inters	ection of the lines $4x - 3y - 1$	= 0 and $2x - 5y + 3 = 0$ an	d are equally
	inclined to the axes are				[AMU 1981]
	(a) $y \pm x = 0$	(b) $y-1 = \pm 1(x-1)$	(c) $x-1 = \pm 2(y-1)$	(d) None of these	
31.	Equation of line passing t	through (1, 2) and perpendicular to	3x + 4y + 5 = 0 is	[Raj	asthan PET 1995]
	(a) $3y = 4x - 2$	(b) $3y = 4x + 3$	(c) $3y = 4x + 4$	(d) $3y = 4x + 2$	
32.	The equation of a straigh	t line passing through the points (-	–5, –6) and (3, 10) is		[MNR 1974]
	(a) $x - 2y = 4$	(b) $2x - y + 4 = 0$	(c) $2x + y = 4$	(d) None of these	
33.	A straight line through P((1, 2) is such that its intercept betwe	een the axes is bisected at <i>P.</i> I	ts equation is	[EAMCET 1994]
	(a) $x + 2y = 5$	(b) $x - y + 1 = 0$	(c) $x + y - 3 = 0$	(d) $2x + y - 4 = 0$	
34.	The equation to the straig	ght line passing through the point	of intersection of the lines $5x$	x - 6y - 1 = 0 and $3x + 2y +$	5 = 0 and
	perpendicular to the line	3x - 5y + 11 = 0 is			[MP PET 1994]
	(a) $5x + 3y + 8 = 0$	(b) $3x - 5y + 8 = 0$	(c) $5x + 3y + 11 = 0$	(d) $3x - 5y + 11 = 0$	
35.	The opposite vertices of a	a square are (1, 2) and (3, 8), then t	he equation of a diagonal of t	the square passing through	the point (1,
	2) is				
					[Roorkee 1981]
	(a) $3x - y - 1 = 0$	(b) $3y - x - 1 = 0$	(c) $3x + y + 1 = 0$	(d) None of these	
36.		c+c=0 always passes through (1, -			[AMU 2000]
	(a) In A.P.	(b) In H.P.	(c) In G.P.	(d) None of these	
37.	The equation of the straig	ght line joining the origin to the po		= 0 and $y + 2x - 2 = 0$ is	[MP PET 2001]
	(a) $3x + 4y = 0$	(b) $3x - 4y = 0$	(c) 4x - 3y = 0	(d) 4x + 3y = 0	
38.	A straight line makes an a	angle of 135° with the <i>x</i> -axis and c	cuts y -axis at a distance –5 from	om the origin. The equation	
	4 >> -	4.)	4.	4 D	[MP PET 1998]
	(a) $2x + y + 5 = 0$	(b) $x + 2y + 3 = 0$	(c) $x + y + 5 = 0$	(d) $x + y + 3 = 0$	

If line y = mx meets the lines x + 2y - 1 = 0 and 2x - y + 3 = 0 at the same point, then m equals

39.

46	Straight	Line

	(a) 1	(b) -1	(c) 2	(d) -2
40.	Equation of a line passing t	hrough (1, – 2) and perpendicular	to the line $3x - 5y + 7 = 0$ is	[Rajasthan PET 2003]
	(a) $5x + 3y + 1 = 0$	(b) $3x + 5y + 1 = 0$	(c) $5x - 3y - 1 = 0$	(d) $3x - 5y + 1 = 0$
41.	The line $\frac{x}{a} - \frac{y}{b} = 1$ cuts the	e x-axis at P. The equation of the lin	ne through <i>P</i> perpendicular to	the given line is [Kerala (Engg.) 2002]
	(a) $x + y = ab$	(b) $x + y = a + b$	$(c) ax + by = a^2$	$(d) bx + ay = b^2$
42.	The equation of line perper	ndicular to $x = c$ is		[Rajasthan PET 2001]
	(a) $y = d$	(b) $x = d$	(c) $x = 0$	(d) None of these
43.	The inclination of the straig	ht line passing through the point	(-3,6) and the midpoint of the	line joining the point $(4, -5)$ and $(-2,9)$
	is			
				[Kerala (Engg.) 2002]
	(a) $\pi/4$	(b) $\pi / 6$	(c) $\pi/3$	(d) $3\pi/4$
44.	If the intercept made by the	e line between the axis is bisected	at the point (5, 2), then its equ	lation is
	(a) $5x + 2y = 20$	(b) $2x + 5y = 20$	(c) $5x - 2y = 20$	(d) $2x - 5y = 20$
45.	The equation of the line pa	ssing through (1, 1) and parallel to	the line $2x + 3y - 7 = 0$ is	[Rajasthan PET 1993, 96]
	(a) $2x + 3y - 5 = 0$	(b) $3x + 2y - 5 = 0$	(c) $3x - 2y - 7 = 0$	(d) $2x + 3y + 5 = 0$
46.	The equation of a straight I	ine passing through origin and thr	ough the point of intersection	of lines $x + y - 2 = 0$ and
	2x - y + 1 = 0 is			
				[Rajasthan PET 1993]
	(a) $5x - y = 0$		$(c) \qquad x + 5y = 0$	
47.	The equations $(b-c)x + (c-c)x$	$(a-a)y + a - b = 0$ and $(b^3 - c^3)x + (c^3)x$		
	(a) $b+c=0$		(b) $b = c$ and $c = a$ and a	=b or $a+b+c=0$
	(c) a+b=0		(d) $a+b+c \neq 0$	
48.		-	_	and $2x + 5y - 9 = 0$ and having infinite
	slope and at a distance of	2 units from the origin, has the eq		
	(a) $x = 2$	(b) $3x + y - 1 = 0$		(d) None of these
49.	The equation of the line wh	nose slope is 3 and which cuts off a	an intercept 3 from the positive	
	(a) $y = 3x - 9$	(b) $y = 3x + 3$	(c) $y = 3x + 9$	(d) None of these
50.	The equations of the lines v	which cuts off an intercept –1 from		
	(a) $x-y+1=0, x+y+1=$	= 0	(b) $x-y-1=0, x+y-1=$	= 0
	(c) $x-y-1=0, x+y+1=0$		(d) None of these	
51.	If the line segment joining ((2,3) and (–1, 2) is divided internally	y in the ratio 3:4 by the line x	+2y = k, then k is
	(a) $\frac{41}{7}$	(b) $\frac{5}{7}$	(c) $\frac{36}{7}$	(d) $\frac{31}{7}$
52.	If $A(1,1)$, $B(\sqrt{3} + 1.2)$ and C	$(\sqrt{3}, \sqrt{3} + 2)$ be three vertices of a	square, then the diagonal thro	ouah <i>B</i> is
	(a) $y = (\sqrt{3} - 2)x + (3 - \sqrt{3})$		(c) $y = x$	(d) None of these
53.		y = 0 + 2 = 0 divides the line joining the	•	[Karnataka CET 2002]
<i>3</i> 3.	(a) 1: 2	(b) 2: 1	(c) 2: 3	(d) 3: 4
	(∞/ ·· -	\~/ !	(0) 0	(5) 5. 1

Advance Level

54.	For the straight lines given true	by the equation $(2+k)x + (1+k)y$	= 5 + 7k , for different values	s of <i>k</i> which of the following statements is	;
				[IIT 197 ⁻	1]
	(a) Lines are parallel		(b) Lines pass through the	the point (-2, 9)	
	(c) Lines pass through the	e point (2,–9)	(d) None of these		
55.	The line joining two points	A(2,0), $B(3,1)$ is rotated about A	in anti-clockwise direction th	hrough an angle of 15^o . The equation \odot	f
	the line in the new position	, is			
	(a) $\sqrt{3}x - y - 2\sqrt{3} = 0$	(b) $x - \sqrt{3}y - 2 = 0$	(c) $\sqrt{3}x + y - 2\sqrt{3} = 0$	(d) $x + \sqrt{3}y - 2 = 0$	
56.	If the slope of a line passing	g through the point $A(3,2)$ be $3/4$, then the points on the line	which are 5 units away from A, are[IIT 190	65]
	(a) (5,5),(-1,-1)	(b) (7,5),(-1,-1)	(c) $(5,7),(-1,-1)$	(d) (7,5),(1,1)	
57.	The equation of a line passi	ing through the point of intersect	ion of the lines $x + 5y + 7 = 0$), $3x + 2y - 5 = 0$ and perpendicular to	
	the line $7x + 2y - 5 = 0$ is g	given by		[Rajasthan PET 1987; MP PET 1993]	
	(a) $2x - 7y - 20 = 0$	(b) $2x + 7y - 20 = 0$	(c) $-2x + 7y - 20 = 0$	(d) $2x + 7y + 20 = 0$	
58.	Equations of diagonals of s	quare formed by lines $x = 0, y = 0$	0, x = 1 and y = 1 are	[MP PET 1984	4]
	(a) $y = x, y + x = 1$	(b) $y = x, x + y = 2$	(c) $2y = x, y + x = \frac{1}{3}$	(d) $y = 2x, y + 2x = 1$	
59.	If the middle points of the s	sides BC, CA and AB of the triar	ngle <i>ABC</i> be (1, 3), (5, 7) and	(-5, 7), then the equation of the side	
	<i>AB</i> is				
	(a) $x - y - 2 = 0$	(b) $x - y + 12 = 0$	(c) $x + y - 12 = 0$	(d) None of these	
60.	Given the four lines with eq	nuations $x + 2y = 3$, $3x + 4y = 7,2$	2x + 3y = 4 and $4x + 5y = 6$,	then these lines are [IIT 1980])]
	(a) Concurrent	(b) Perpendicular	(c) The sides of a rectan	ngle (d) None of these	
61.	The equation of straight line	e passing through (– a , 0) and ma	king the triangle with axes of	area ' T', is	
	(a) $2Tx + a^2y + 2aT = 0$	(b) $2Tx - a^2y + 2aT = 0$	$(c) 2Tx - a^2y - 2aT = 0$	(d) None of these	
62.	The points $A(1,3)$ and $C(5,1)$	1) are the opposite vertices of rect	tangle. The equation of line p	passing through other two vertices and of	ŗ
	gradient 2, is			[Rajasthan PET 199	1]
	(a) $2x + y - 8 = 0$	(b) $2x - y - 4 = 0$	(c) $2x - y + 4 = 0$	(d) $2x + y + 7 = 0$	
63.	The intercept cut off from J	-axis is twice that from x-axis by	the line and line is passes thro	ough (1, 2) then its equation is	

64. The equation of line, which bisect the line joining two points (2, -19) and (6, 1) and perpendicular to the line joining two points (-1, 3) and (5, -1), is [Rajasthan PET 1987]

(a) 3x - 2y = 30

(a) 2x + y = 4

(b) 2x - y - 3 = 0

(b) 2x + y + 4 = 0

(c) 2x + 3y = 20

(c) 2x - y = 4

(d) None of these

(d) 2x - y + 4 = 0

[AMU 1972; Rajasthan PET 1985]

(a) $2x + 2y + \sqrt{2} = 0$

(a) $\frac{x}{x_1} + \frac{y}{y_1} = 2$

(a) 5x - 8y + 60 = 0

(a) 3x - 2y = 0

unit distant from origin and cuts OB and OC, is

(b) $2x + 2y - \sqrt{2} = 0$

(b) $\frac{x}{x_1} + \frac{y}{y_1} = \frac{1}{2}$

(b) 8x - 5y + 60 = 0

(b) 2x - 3y = 0

The diagonal passing through origin of a quadrilateral formed by x = 0, y = 0, x + y = 1 and 6x + y = 3, is

The equation of line whose mid point is (x_1, y_1) in between the axes, is

65.

66.

67.

68.

69.	Equation of one of the sides	s of an isosceles right angled triang	le whose	hypotenuse is $3x + 4$	y = 4	and the opposite vertex of the
	hypotenuse is (2, 2), will be					[MNR 1986]
	(a) $x - 7y + 12 = 0$	(b) $7x + y - 12 = 0$	(c) x	-7y + 16 = 0	(d)	7x + y + 16 = 0
70.	A line $4x + y = 1$ passes thro	ough the point $A(2,-7)$ meets the li	ne <i>BC</i> wł	hose equation is $3x - 4$	4y + 1	I = 0 at the point <i>B</i> . The
	equation to the line AC so the	hat $AB = AC$, is				[IIT 1971]
	(a) $52x + 89y + 519 = 0$	(b) $52x + 89y - 519 = 0$	(c) 89	9x + 52y + 519 = 0	(d)	89x + 52y - 519 = 0
71.	Equation of the line which p	passes through the point (-4, 3) and	the por	tion of the line interce	pted	between the axes is divided
	internally in the ratio 5:3 by	this point, is			[A	MU 1973; Dhanbad Engg. 1971]
	(a) $9x + 20y + 96 = 0$	(b) $20x + 9y + 96 = 0$	(c) 9	x - 20y + 96 = 0	(d)	None of these
72.	A line is such that its segme	nt between the straight lines $5x - y$	y - 4 = 0	and $3x + 4y - 4 = 0$ is	bised	ted at the point (1, 5), then its
	equation is					[Roorkee 1988]
	(a) $83x - 35y + 92 = 0$	(b) $35x - 83y + 92 = 0$	(c) 3:	5x + 35y + 92 = 0	(d)	None of these
73.	A(-1,1), B(5,3) are opposite	e vertices of a square in <i>xy</i> -plane. 1	The equa	tion of the other diago	onal ((not passing through A, B) of the
	square is given by					[EAMCET 1993]
	(a) $x - 3y + 4 = 0$	(b) $2x - y + 3 = 0$	(c) <i>y</i>	+3x-8=0	(d)	x + 2y - 1 = 0
74.	The point $P(a,b)$ lies on the	straight line $3x + 2y = 13$ and the	point $Q(l)$	(b, a) lies on the straigh	t line	4x - y = 5, then the equation
	of line PQ is					[MP PET 1999]
				+y=-5		•
75.	If $P(1+t/\sqrt{2},2+t/\sqrt{2})$ be	any point on a line then the range	e of valu	es of t for which the t	ooint	P lies between the parallel lines
	x + 2y = 1 and $2x + 4y = 15$					
	(a) $-\frac{4\sqrt{2}}{3} < t < \frac{5\sqrt{2}}{6}$	(b) $0 < t < \frac{5\sqrt{2}}{6}$	(c) –	$-\frac{4\sqrt{2}}{3} < t < 0$	(d)	None of these
76.	The equations of the sides A	AB , BC and CA of the $\triangle ABC$ are y	y - x = 2,	x + 2y = 1 and 3x + y	+5 =	= 0 respectively. The equation of
	the altitude through B is					
	(a) $x - 3y + 1 = 0$	(b) $x - 3y + 4 = 0$	(c) 3 <i>x</i>	x - y + 2 = 0	(d)	None of these

The vertices of a triangle *OBC* are (0,0), (-3,-1) and (-1,-3) respectively. Then the equation of line parallel to *BC* which is at $\frac{1}{2}$

The intercept of a line between the coordinate axes is divided by the point (-5, 4) in the ratio 1:2. The equation of the line will be

(c) $2x - 2y + \sqrt{2} = 0$

(c) $\frac{x}{x_1} + \frac{y}{y_1} = 1$

(c) 2x - 5y + 30 = 0

(c) 3x + 2y = 0

[IIT 1976]

[IIT 1986]

[IIT 1973]

(d) None of these

(d) None of these

(d) None of these

(d) None of these

Angle between two Straight lines

[MP PET 1995]

(d) 90°

(d) $2\alpha_2$

(d) 45°

(d) None of these

[Rajasthan PET 1981, 85, 86; MP PET 1984]

	(c) $y(\sin \alpha + \cos \alpha) - x(\sin \alpha - \cos \alpha) = a$	(d)	$y(\sin\alpha + \cos\alpha) + x(\sin\alpha)$	$(-\cos\alpha) = a$	
78.	Straight lines $3x + 4y = 5$ and $4x - 3y = 15$ intersect a	at the point A.	Points B and C are chose	en on these lines such that AB =	=AC.
	Determine the possible equations of the line BC passing	ng through the	point (1, 2)	ָרוו <u>ן</u>	T 1990]
	(a) $x-7y+13=0$ and $7x+y=9$	(b)	x + 7y + 13 = 0 and $6x - 6x - 6x = 0$	-y=9	
	(c) $x-7y+12=0$ and $4x+3y=9$	(d)	x - 6y + 11 = 0 and $7x - 6y + 11 = 0$	-y=9	
79.	The base BC of a triangle ABC is bisected at the point	(<i>p, q</i>) and the	equations to the sides A	B and AC are respectively	
	px + qy = 1 and $qx + py = 1$. Then the equation to the	e median throu	gh <i>A</i> is		
	(a) $(2pq-1)(px+qy-1) = (p^2+q^2-1)(qx+py-1)$	(b)	$(p^2 + q^2 - 1)(px + qy - 1)$	=(2p-1)(qx + py - 1)	
	(c) $(pq-1)(px+qy-1) = (p^2+q^2-1)(qx+py-1)$	(d)	None of these		
80.	If a variable line drawn through the point of intersection	on of straight li	nes $\frac{x}{\alpha} + \frac{y}{\beta} = 1$ and $\frac{x}{\beta} + \frac{y}{\alpha}$	$\frac{y}{\alpha} = 1$ meets the coordinate axes	in A
	and \emph{B} , then the locus of the mid-point of \emph{AB} is				
	(a) $\alpha\beta(x+y) = xy(\alpha+\beta)$ (b) $\alpha\beta(x+y) = 2xy(\alpha+\beta)$	β) (c)	$(\alpha + \beta)(x + y) = 2\alpha\beta xy$	(d) None of these	
81.	Equation of the hour hand at 4 O' clock is				
	(a) $x - \sqrt{3}y = 0$ (b) $\sqrt{3}x - y = 0$	(c)	$x + \sqrt{3}y = 0$	$(d) \qquad \sqrt{3}x + y = 0$	
82.	The points (1, 3) and (5, 1) are two opposite vertices of	a rectangle. T	ne other two vertices lie	on the line $y = 2x + c$, then the	other
	vertices and care				
	(a) $(1.1) (2.3)$ and $c = 4$ (b) $(4.4) (2.0)$ and $c = 4$	_4 (c)	(0, 0) (5, 4) and $c = 3$	(d) None of these	

Basic Level

(c) 90°

The angle between the lines $y = (2 - \sqrt{3})x + 5$ and $y = (2 + \sqrt{3})x - 7$ is

(b) 60°

(b) $(\alpha_1 \sim \alpha_2)$

Angle between the lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{a} - \frac{y}{b} = 1$ is

The angle between the two lines y - 2x = 9 and x + 2y = -7, is

(b) 30°

The angle between the lines $x \cos \alpha_1 + y \sin \alpha_1 = p_1$ and $x \cos \alpha_2 + y \sin \alpha_2 = p_2$ is

(b) $\tan^{-1} \frac{2ab}{a^2 + b^2}$ (c) $\tan^{-1} \frac{a^2 - b^2}{a^2 + b^2}$

One side of a square of length a is inclined to the x-axis at an angle α with one of the vertices of the square at the origin. The

(b) $y(\cos \alpha + \sin \alpha) = x(\cos \alpha - \sin \alpha)$

77.

83.

84.

85.

86.

(a) 30°

(a) $(\alpha_1 + \alpha_2)$

(a) $2 \tan^{-1} \frac{b}{a}$

(a) 60°

equation of a diagonal of the square is (a) $y(\cos \alpha - \sin \alpha) = x(\cos \alpha + \sin \alpha)$

88. 89.	(a) 120^{o} The acute angle between the	(b) 135°	(6		_		
	The acute angle between the		(C)	150°	(d)	160°
89.		e lines $y = 3$	3 and $y = \sqrt{3}x + 9$ is				[Rajasthan PET 1984, 87, 8
89.	(a) 30°	(b) 60°	(0	c)	45°	(d)	90°
	Angle between $x = 2$ and $x = 2$	-3y = 6 is					[MNR 198
	(a) ∞	(b) tan ⁻¹	(3)	c)	$\tan^{-1}\left(\frac{1}{3}\right)$	(d)	None of these
90.	The angle between the lines	$a_1x + b_1y +$	$c_1 = 0$ and $a_2 x + b_2 y + c_2$	=0	is		[MP PET 199
	(a) $\tan^{-1} \frac{a_1 b_2 + a_2 b_1}{a_1 a_2 - b_2 b_1}$	(b) cot ⁻¹	$\frac{a_1 a_2 + b_1 b_2}{a_1 b_2 - a_2 b_1} \tag{6}$	c)	$\cot^{-1} \frac{a_1 b_1 - a_2 b_2}{a_1 a_2 + b_1 b_2}$	(d)	$\tan^{-1}\frac{a_1b_1 - a_2b_2}{a_1a_2 + b_1b_2}$
91.	If the lines $2x + 3ay - 1 = 0$ as	nd 3x + 4y	r+1=0 are mutually perpendicular	endi	cular, then the value of '	<i>a</i> wil	l be [MNR 197
	(a) $\frac{1}{2}$	(b) 2	(0	c)	$-\frac{1}{2}$	(d)	None of these
92.	The lines $a_1x + b_1y + c_1 = 0$ are	and $a_2 x + b_2 x$	$y + c_2 = 0$ are perpendicular	ar to	each other if		[MP PET 199
	(a) $a_1b_2 - b_1a_2 = 0$	(b) $a_1 a_2$	$+b_1b_2=0 (0$	c)	$a_1^2 b_2 + b_1^2 a_2 = 0$	(d)	$a_1 b_1 + a_2 b_2 = 0$
93.	The angle between the strain	ght lines x	$-y\sqrt{3} = 5 \text{ and } \sqrt{3}x + y = 0$	7 is			
	(a) 90°	(b) 60°	((c)	75 °	(d)	30°
94.	The angle between the lines	2x - y + 3 =	= 0 and $x + 2y + 3 = 0$ is				[Kerala (Engg.) 200
	(a) 90°	(b) 60°	(0	c)	45°	(d)	30°
95.	The lines $y = 2x$ and $x = -2y$	y are					[MP PET 199
	(a) Parallel	(b) Perpe	endicular (d	C)	Equally inclined to axes	(d)	Coincident
96.	The line which is parallel to x	-axis and c	crosses the curve $y = \sqrt{x}$ a	nt ar	angle of 45° is		[Roorkee 199
	(a) $x = 1/4$	(b) $y = 1$	/4 (0	c)	y = 1/2	(d)	y = 1
97.	The angle between the lines	whose inte	ercepts on the axes are $a,-$	- <i>b</i> a	nd $b,-a$ respectively, is		
	(a) $\tan^{-1} \frac{a^2 - b^2}{ab}$	(b) tan^{-1}	$\frac{b^2 - a^2}{2} \tag{6}$	c)	$\tan^{-1}\frac{b^2-a^2}{2ab}$	(d)	None of these
98.	The line $3x + 2y = 9$ intersec	ts the axes	in A and B . If O is the ori	igin,	then ∠OAB equals		
	(a) $\tan^{-1}(1/3)$	(b) 45°			$\tan^{-1}(2/3)$	(d)	$\tan^{-1}(3/2)$
99.	The angle between two lines	is $\frac{\pi}{4}$. If th	e slope of one of them be	$=\frac{1}{2}$, then the slope of the ot	her li	ne is
	(a) $1, -\frac{1}{3}$	(b) $-1, \frac{1}{2}$	(0	c)	$-\frac{1}{3}$,3	(d)	None of these

Advance Level

(d) None of these

(d) $\tan^{-1}\left(\frac{1}{2}\right)$

[IIT	197	'5]

[IIT 1986]

	$\frac{\sqrt{6}}{3}$	from the given point					[IIT 196	6; MNR 1987]
	(a)	30°	(b) 45°	(c)	60°	(d)	75°	
103.	The	e line passing through the	e points (3,-4) and (-2,6) and a line	e pas	sing through (-3,6) and (9,–18	3), are	[AMU 1974]
	(a)	Perpendicular		(b)	Parallel			
	(c)	Makes an angle 60° with	h each other	(d)	None of these			
104.	Equ	ation of the two straight lin	nes passing through the point (3, 2) a	and n	naking an angle of 45^{o} wit	h the	line $x - 2y = 3$, are	[AMU 1978]
	(a)	3x + y + 7 = 0 and $x + 3$	y + 9 = 0	(b)	3x - y - 7 = 0 and $x + 3y$	-9=	= 0	
	(c)	x + 3y - 7 = 0 and $x + 3$	y - 9 = 0	(d)	None of these			
105.	The	e diagonals of the parallel	ogram whose sides are $lx + my + n$	= 0,	lx + my + n' = 0 , mx + ly +	n = 0	0, mx + ly + n' = 0 incl	ude an
	ang	gle						
							-	AMCET 1994]
	(a)	$\frac{\pi}{3}$	(b) $\frac{\pi}{2}$	(c)	$\tan^{-1}\left(\frac{l^2-m^2}{l^2+m^2}\right)$	(d)	$\tan^{-1}\left(\frac{2lm}{l^2+m^2}\right)$	
106.	The	e sides AB, BC, CD and D	DA of a quadrilateral are $x + 2y = 3$, x =	$1, x - 3y = 4, \ 5x + y + 12 =$	0 res	spectively. The angle	between
	dia	gonals <i>AC</i> and <i>BD</i> is					[R	loorkee 1993]
	(a)	45 °	(b) 60°	(c)	90°	(d)	30°	
107.	One	e diagonal of a square is	along the line $8x - 15y = 0$ and on	e of	ts vertex is (1, 2). Then the	equ	ation of the sides of t	the square
	pas	sing through this vertex,	are					[IIT 1962]
	(a)	23x + 7y = 9, 7x + 23y =	= 53	(b)	23x - 7y + 9 = 0 , 7x + 2	3y + 3	53 = 0	
	(c)	23x - 7y - 9 = 0 , 7x + 2	23y - 53 = 0	(d)	None of these			
108.	The	e parallelism condition f	for two straight lines one of wh	ich i	s specified by the equa	tion	ax + by + c = 0 the c	other being
	rep	resented parametrically b	by $x = \alpha t + \beta$, $y = \gamma t + \delta$ is given by	ру				
	(a)	$a\gamma - b\alpha = 0, \beta = \delta = c =$	0 (b) $a\alpha - b\gamma = 0$, $\beta = \delta = 0$	(c)	$a\alpha + b\gamma = 0$	(d)	$a\gamma = b\alpha = 0$	
109.			0 and $x \cos \alpha + y \sin \alpha - p = 0$ incl			n and	d meet the straight lir	ne
	x s	$\sin \alpha - y \cos \alpha = 0 \text{ in the sa}$	me point, then the value of $a^2 + b$	² is	equal to			
	(a)	1	(b) 2	(c)	3	(d)	4	
110.	The	e ends of the base of an is	sosceles triangle are at (2 <i>a</i> , 0) and	(0, a)	. The equation of one side	e is a	x = 2a. The equation of	of the other
	side	e is						
	(a)	y + 2y - a = 0	(b) $x + 2y - 2a$	(c)	3x + 4y - 4a = 0	(d)	3r - 4v + 4a - 0	

(b) $y-3=(2-\sqrt{3})(x-2)$ (c) $y-3=(\sqrt{3}-1)(x-2)$

(c) $\tan^{-1}(2)$

In what direction a line be drawn through the point (1, 2) so that its point of intersection with the line x + y = 4 is at a distance

Coordinates of the vertices of a quadrilateral are (2, -1), (0, 2), (2, 3) and (4, 0). The angle between its diagonals will be

(a) y-3=2(x-2)

(b) 0°

(a) 90°

101.

102.

- If a,b,c are in harmonic progression, then straight line $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$ always passes through a fixed point, that point is **[MP PET**] 111.
 - (a) (-1, -2)
- (b) (-1, 2)

- (c) (1,-2)
- (d) (1, -1/2)
- Angles made with the x-axis by two lines drawn through the point (1, 2) and cutting the line x + y = 4 at a distance $\frac{1}{2}\sqrt{6}$ from 112. the point (1, 2) are [DCE 1995]
 - (a) $\frac{\pi}{6}$ and $\frac{\pi}{2}$
- (b) $\frac{\pi}{8}$ and $\frac{3\pi}{8}$
- (c) $\frac{\pi}{12}$ and $\frac{5\pi}{12}$
- (d) None of these

Bisectors of Angle between two Lines

Basic Level

- The equation of the line which bisects the obtuse angle between the lines x 2y + 4 = 0 and 4x 3y + 2 = 0 is 113. [IIT 1979]
 - (a) $(4 \sqrt{5})x (3 2\sqrt{5})y + (2 4\sqrt{5}) = 0$
- (b) $(4+\sqrt{5})x-(3+2\sqrt{5})y+(2+4\sqrt{5})=0$
- (c) $(4 + \sqrt{5})x + (3 + 2\sqrt{5})y + (2 + 4\sqrt{5}) = 0$
- (d) None of these
- Equation of angle bisectors between x and y-axes are 114.

[MP PET 1984]

- (a) $y = \pm x$
- (b) $y = \pm 2x$
- (c) $y = \pm \frac{1}{\sqrt{2}} x$ (d) $y = \pm 3x$
- 115. Equation of angle bisector between the lines 3x + 4y - 7 = 0 and 12x + 5y + 17 = 0 are

[Rajasthan PET 1995]

(a) $\frac{3x+4y-7}{\sqrt{25}} = \pm \frac{12x+5y+17}{\sqrt{169}}$

(b) $\frac{3x+4y+7}{\sqrt{25}} = \frac{12x+5y+17}{\sqrt{169}}$

(c) $\frac{3x+4y+7}{\sqrt{25}} = \pm \frac{12x+5y+17}{\sqrt{169}}$

- (d) None of these
- The equation of the bisector of the acute angle between the lines 2x y + 4 = 0 and x 2y = 1 is 116.
 - (a) x + y + 5 = 0
- (b) x y + 1 = 0
- (c) x y = 5
- (d) None of these
- 117. The vertices of a triangle are A(-1,-7), B(5,1) and C(1,4). The equation of the internal bisector of the angle $\angle ABC$ is
 - (a) 3x 7y 8 = 0
- (b) x 7y + 2 = 0
- (c) 3x 3y 7 = 0
- (d) None of these
- The equation (s) of the bisector (s) of that angle between the lines x + 2y 11 = 0, 3x 6y 5 = 0, which contains the point (1, -3) is 118.
 - (a) 3x = 19
- (b) 3y = 7

- (c) 3x = 19 and 3y = 7 (d) None of these

Advance Level

- The equations of two equal sides of an isosceles triangle are 7x y + 3 = 0 and x + y 3 = 0 and the third side passes through 119. the point (1, -10). The equation of the third side is [IIT 1984]
 - (a) x-3y-31=0 but not 3x+y+7=0
- (b) 3x + y + 7 = 0 but not x 3y 31 = 0

(c) 3x + y + 7 = 0 or x - 3y - 31 = 0

(d) Neither 3x + y + 7 = 0 nor x - 3y - 31 = 0

(d) x + 5 = 0

[Roorkee 1994]

[MP PET 1997]

121.	The equation of bisectors	The equation of bisectors of the angles between the lines $ x \neq y$ are						
	(a) $y = \pm x$ and $x = 0$	(b) $x = \frac{1}{2} \text{ and } y = \frac{1}{2}$	(c) $y = 0 \text{ and } x = 0$	(d) None of these				
			Distance between two line	es, Perpendicular length on the Lind	ϵ			
		B	asic Level					
122.	The distance between the	lines $3x + 4y = 9$ and $6x + 8y =$	15 is [MNR 19	982; Rajasthan PET 1995; MP PET 2002]				
	(a) 3/2	(b) 3/10	(c) 6	(d) None of these				
123.	The perpendicular distanc	te of the straight line $12x + 5y =$	7 from the origin is given by	[MP PET 19	93]			
	(a) $\frac{7}{13}$	(b) $\frac{12}{13}$	(c) $\frac{5}{13}$	(d) $\frac{1}{13}$				
124.	The length of perpendicul	lar from (3, 1) on line $4x + 3y + 2$	20 = 0, is	[Rajasthan PET 1989; MP PET 1984]				
	(a) 6	(b) 7	(c) 5	(d) 8				
125.	The distance between two	parallel lines $3x + 4y - 8 = 0$ ar	and $3x + 4y - 3 = 0$, is given by	[MP PET 19	84]			
	(a) 4	(b) 5	(c) 3	(d) 1				
126.	The equations of two lines	s through (0, a) which are at a di	stance 'a' from the point (2a, 2a	a) are				
	(a) $y - a = 0$ and $4x - 3$	y - 3a = 0	(b) $y - a = 0$ and $3x - 4$	4y + 3a = 0				
	(c) $y - a = 0$ and $4x - 3y$	y + 3a = 0	(d) None of these					
127.	The vertices of a triangle a	are (2, 1), (5, 2) and (4, 4). The ler	ngths of the perpendiculars fron	n these vertices on the opposite sides a	are			
				[IIT 19	62]			
	(a) $\frac{7}{\sqrt{5}}$, $\frac{7}{\sqrt{13}}$, $\frac{7}{\sqrt{6}}$	(b) $\frac{7}{\sqrt{6}}, \frac{7}{\sqrt{8}}, \frac{7}{\sqrt{10}}$	(c) $\frac{7}{\sqrt{5}}, \frac{7}{\sqrt{8}}, \frac{7}{\sqrt{15}}$	(d) $\frac{7}{\sqrt{5}}, \frac{7}{\sqrt{13}}, \frac{7}{\sqrt{10}}$				
128.	A point moves such that i	ts distance from the point (4, 0) i	s half that of its distance from t	he line $x = 16$. The locus of this point	is			
				[AMU 19	80]			
	(a) $3x^2 + 4y^2 = 192$	(b) $4x^2 + 3y^2 = 192$	(c) $x^2 + y^2 = 192$	(d) None of these				
129.	The locus of a point so the	at sum of its distance from two g	given perpendicular lines is equa	al to 2 units, is [Bihar CEE 19	194]			
	(a) $x + y + 2 = 0$	(b) $x + y = 2$	(c) $x - y = 2$	(d) None of these				
130.	Distance between the two	parallel lines $y = 2x + 7$ and $y = 2x + 7$	=2x+5 is					
	(a) $\frac{\sqrt{5}}{2}$	(b) $\frac{2}{5}$	(c) $\frac{2}{\sqrt{\varepsilon}}$	(d) $\frac{1}{\sqrt{\varepsilon}}$				

The length of the perpendicular drawn from origin upon the straight line $\frac{x}{3} - \frac{y}{4} = 1$ is

Given vertices A(1,1); B(4,-2) and C(5,5) of a triangle, then the equation of the perpendicular dropped from C to the interior

(c) y + 5 = 0

120.

131.

bisector of the angle A is

(b) x - 5 = 0

(a) y - 5 = 0

	(a)	$2\frac{2}{5}$	(b) $3\frac{1}{5}$	(c)	$4\frac{2}{5}$	(d)	$3\frac{2}{5}$
132.	Dist	ance between the paralle	el lines $3x + 4y + 7 = 0$ and $3x + 4$	y – 9	= 0 is		[Rajasthan PET 2003]
	(a)	$\frac{2}{5}$	(b) $\frac{12}{5}$	(c)	<u>5</u> 12	(d)	$\frac{3}{5}$
133.	The	equation of the line joini	ing the point (3, 5)to the point of i	nters	ection of the lines $4x + y$	-1=	0 and $7x - 3y - 35 = 0$ is
	equ	idistant from the points ((0,0) and (8,34)				[Roorkee 1984]
	(a)	True	(b) False	(c)	Nothing can be said	(d)	None of these
134.	Dist	ance between the lines 5	5x + 3y - 7 = 0 and $15x + 9y + 14$	= 0 i	S		[Kerala (Engg.) 2002]
	(a)	$\frac{35}{\sqrt{34}}$	(b) $\frac{1}{3\sqrt{34}}$	(c)	$\frac{35}{3\sqrt{34}}$	(d)	$\frac{35}{2\sqrt{34}}$
135.	The	distance between the lin	es $3x - 2y = 1$ and $6x + 9 = 4y$ is				[MP PET 1998]
	(a)	$\frac{1}{\sqrt{52}}$	(b) $\frac{11}{\sqrt{52}}$	(c)	$\frac{4}{\sqrt{13}}$	(d)	$\frac{6}{\sqrt{13}}$
136.	The	distance of the line $2x -$	-3y = 4 from the point (1, 1) measu	ured p	parallel to the line $x + y =$	= 1 is	[Orissa JEE 2002]
	(a)	$\sqrt{2}$	(b) $\frac{5}{\sqrt{2}}$	(c)	$\frac{1}{\sqrt{2}}$	(d)	6
137.	The	distance between the pa	arallel lines $y = 2x + 4$ and $6x = 3$	y + 5	is		
	(a)	$17 / \sqrt{3}$	(b) 1	(c)	$3/\sqrt{5}$	(d)	$7\sqrt{5} / 15$
138.	The	position of the point (8,-	-9) with respect to the lines $2x + 3$	3y - 4	4 = 0 and $6x + 9y + 8 = 0$	is	
	(a)	Point lies on the same si	de of the lines	(b)	Point lies on the differer	nt side	es of the line
	(c)	Point lies on one of the l	lines	(d)	None of these		
139.	Con	sider the lines $2x + 3y =$	7, $2x + 3y = 12$ and point $A(3,-5)$). The	n		
	(a)	Point 'A' lies between the	e lines		(b)	Sum	n of perpendicular distance from
A to t	he lin	$nes = 5 / \sqrt{13}$					
	(c)	Distance between lines is	$ 19 / \sqrt{13} $	(d)	None of these		
			Advano	ce Le	vel		
140	٨ ٥	oint moves so that square	a of its distance from the point (2)	2) i	numorically oqual to its	dictor	oco from the line 5 × 12 × 12
140.		equation of the locus of	e of its distance from the point (3, the point is	-Z) IS	s numerically equal to its	uistdí	[Roorkee 1974]
		$13x^2 + 13y^2 - 83x + 64$	•	(h)	$x^2 + y^2 - 11x + 16y + 2$	6 – O	[100] [1974]
		$x^2 + y^2 - 11x + 16y = 0$		(d)	x + y - 11x + 16y + 2 None of these	0 = 0	
141		,	= 4 which lie at a unit distance fro	()			[IIT 1976]

(c) (-3,1),(-7,11)

A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from (2, 0),(0, 2) and (1, 1) on the line

(c) (2, 1)

(d) (1,3),(-7,11)

(d) (2, 2)

[IIT 1991]

(b) (3,1),(7,11)

(b) (1, 1)

(a) (3,1),(-7,11)

(a) (1, -1)

is zero, then the coordinates of the P are

142.

54 Straight Line

[Rajasthan PET 1991]

	(a) $\frac{15}{8}$	(b) $\frac{25}{4}$	(c) $\frac{25}{8}$	(d) $\frac{25}{16}$
144.	Equation of a straight lir	ne on which length of perp	oendicular from the origin is four u	nits and the line makes an angle of 120° with
	the <i>x</i> -axis, is			[MNR 1986]
	(a) $x\sqrt{3} + y + 8 = 0$	(b) $x\sqrt{3} - y = 8$	$(c) x\sqrt{3} - y = 8$	(d) $x - \sqrt{3}y + 8 = 0$
145.	Locus of the points which	h are at equal distance fro	om $3x + 4y - 11 = 0$ and $12x + 5y - 1$	+2=0 and which is near the origin is
				[MNR 1987]
	(a) $21x - 77y + 153 = 0$	(b) $99x + 77y - 133$	3 = 0 (c) 7x - 11y = 19	(d) None of these
146.	The equation of the bas	e of an equilateral triangle	e is $x + y = 2$ and the vertex is (2, –	1). The length of the side of the triangle is
			[IIT 1973, 1983;	MP PET 1995; Rajasthan PET 1999, 2000]
	(a) $\sqrt{3/2}$	(b) $\sqrt{2}$	(c) $\sqrt{2/3}$	(d) None of these
147.	If the straight line through	gh the point $P(3,4)$ makes	s an angle $\frac{\pi}{6}$ with the <i>x</i> -axis and m	eets the line $12x + 5y + 10 = 0$ at Q , then the
	length <i>PQ</i> is			
	(a) $\frac{132}{12\sqrt{3}+5}$	(b) $\frac{132}{12\sqrt{3}-5}$	(c) $\frac{132}{5\sqrt{3} + 12}$	(d) $\frac{132}{5\sqrt{3}-12}$
148.	The equations of the line	es through the point of in	tersection of the lines $x - y + 1 = 0$	and $2x - 3y + 5 = 0$ and whose distance from
	the point (3, 2) is $\frac{7}{5}$, is			[IIT 1963]
	(a) $3x - 4y - 6 = 0$ and	4x + 3y + 1 = 0	(b) $3x - 4y + 6 = 0$	and $4x - 3y - 1 = 0$
	(c) $3x - 4y + 6 = 0$ and	4x - 3y + 1 = 0	(d) None of these	
149.	A point equidistant from	the lines $4x + 3y + 10 =$	0, 5x - 12y + 26 = 0 and 7x + 24y	y - 50 = 0 is [EAMCET 1994]
	(a) (1, -1)	(b) (1, 1)	(c) (0, 0)	(d) (0, 1)
150.	A line through $A(-5, -5)$	-4) meets the lines x	+3y+2=0, $2x+y+4=0$ and	x - y - 5 = 0 at B, C and D respectively. If
	$\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AL}\right)^2$	$\left(\frac{1}{2}\right)^2$, then the equation of	the line is	[IIT 1993]
	(a) $2x + 3y + 22 = 0$	(b) $5x - 4y + 7 = 0$	(c) $3x - 2y + 3 = 0$	(d) None of these
151.	If the equation of the lo	cus of a point equidistant	from the points (a_1,b_1) and (a_2,b_2)) is $(a_1 - a_2)x + (b_1 - b_2)y + c = 0$, then the
	value of 'c' is			[IIT Screening 2003]
	(a) $\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_2^2)$	(b) $a_1^2 - a_2^2 + b_1^2 -$	b_2^2 (c) $\frac{1}{2}(a_1^2 + a_2^2 + b_1^2)$	$+b_2^2$) (d) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$
152.	If p_1, p_2 and p_3 be	the perpendiculars from	n the points $(m^2,2m),(mm',m+m)$	n^{\prime}) and $(m^{\prime 2},2m^{\prime})$ respectively on the line
	$x\cos\alpha + y\sin\alpha + \frac{\sin^2\alpha}{\cos\alpha}$	$\frac{p_1^2}{p_2^2} = 0$, then p_1, p_2 and p_3	₃ are in	
	(a) A.P.	(b) G.P.	(c) H.P	(d) None of these

A line L passes through the points (1, 1) and (2, 0) and another line L' passes through $\left(\frac{1}{2},0\right)$ and perpendicular to L. Then the area

143.

of the triangle formed by the lines L, L' and y-axis, is

	$x\cos\theta - y\sin\theta = a\cos 2\theta$	respectively, then the value of the	e expression $4p^2 + p'^2$ is		
	(a) a^2	(b) $3a^2$	(c) $2a^2$	(d)	$4a^2$
154.	A family of lines is given b	by $(1+2\lambda)x + (1-\lambda)y + \lambda = 0, \lambda$ be	eing the parameter. The line b	elonging	g to this family at the maximum
	distance from the point (1,	. 4) is			
	(a) $4x - y + 1 = 0$	(b) $33x + 12y + 7 = 0$	(c) $12x + 33y = 7$	(d)	None of these
155.	If the point (a, a) falls betw	ween the lines $ x+y =2$, then			
	(a) $ a = 2$	(b) $ a = 1$	(c) $ a < 1$	(d)	$ a =\frac{1}{2}$
					Concurrency of Three lines
		Bas	sic Level		
156.	The value of k for which the	ne lines $7x - 8y + 5 = 0$, $3x - 4y + 6$	+5 = 0 and $4x + 5y + k = 0$ are	e concur	rent is given by [MP PET 1993]
	(a) - 45	(b) 44	(c) 54	(d)	-54
157.	For what value of 'a' the li	nes $x = 3, y = 4$ and $4x - 3y + a =$	= 0 are concurrent		[Rajasthan PET 1984]
	(a) 0	(b) -1	(c) 2	(d)	3
158.	The lines $15x - 18y + 1 = 0$	0.12x + 10y - 3 = 0 and $6x + 66y + 66y = 0.000$	-11 = 0 are		[AMU 1978]
	(a) Parallel	(b) Perpendicular	(c) Concurrent	(d)	None of these
159.	The lines $2x + y - 1 = 0$,	ax + 3y - 3 = 0 and $3x + 2y - 2 = 0$	0 are concurrent for		[EAMCET 1994]
	(a) All a	(b) $a = 4$ only	(c) $-1 \le a \le 3$	(d)	a > 0 only
160.	The value of λ for which	the lines $3x + 4y = 5, 5x + 4y = 4$	and $\lambda x + 4y = 6$ meet at a poi	int is	
	(a) 2	(b) 1	(c) 4	(d)	3
161.	Three lines $3x - y = 2,5x$	+ay = 3 and $2x + y = 3$ are concu	urrent, then <i>a</i> =		[MP PET 1996]
	(a) 2	(b) 3	(c) -1	(d)	-2
162.	If the lines $x + q = 0, y - 2$	= 0 and $3x + 2y + 5 = 0$ are conc	urrent, then the value of q will	l be	[DCE 2002]
	(a) 1	(b) 2	(c) 3	(d)	5
163.		vith gradient −3/2 which is concu			
	(a) $3x + 2y - 2 = 0$	(b) $3x + 2y - 63 = 0$	(c) $2y - 3x - 2 = 0$		None of these
			* * *	` '	
164.	If lines $y = mx$, $x + 2y - 1$	= 0 and $2x - y + 3 = 0$ are concur	rent, then value of <i>m</i> is		[Rajasthan PET 1994]

Advance Level

153. If p and p' be perpendiculars from the origin upon the straight lines $x \sec \theta + y \csc \theta = a$ and

[Rajasthan PET 1990]

(d) (3/4,1/2)

(d) None of these

[IIT 1982]

	$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$			
	(a) 0	(b) 1	(c) $\frac{1}{a+b+c}$	(d) None of these
169.	The three straight lines ax +	by = c, bx + cy = a and cx + ay = b	are collinear, if	[MP PET 2004]
	(a) $a+b+c=0$	(b) $b + c = a$	(c) $c+a=b$	(d) $a+b=c$
170.	The three lines $3x + 4y + 6$	$= 0; \sqrt{2}x + \sqrt{3}y + 2\sqrt{2} = 0 \text{ and } 4x$	+7y + 8 = 0 are	[Rajasthan PET 1992]
	(a) Sides of a triangle	(b) Concurrent	(c) Parallel	(d) None of these
				Missallanaous problems
				Miscellaneous problems
		Basic	: Level	
171.	The coordinate of the foot of	of perpendicular from the point (2,	3) on the line $x + y - 11 = 0$ a	re
	(a) (- 6, 5)	(b) (5, 6)	(c) (-5, 6)	(d) (6, 5)
172.	The coordinate of the foot of	of the perpendicular from the point	t (2,3) on the line $y = 3x + 4$	re given by [MP PET 1984]
	(a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$	(b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$	(c) $\left(\frac{10}{37}, -10\right)$	(d) $\left(\frac{2}{3}, \frac{-1}{3}\right)$
	(10 10)	(10 10)	(-,)	
173.		ddle point of the portion of a line i	intercepted between coordina	te axes (3, 2), then the equation of the
	line will be			[Rajasthan PET 1985; MP PET 1984]
	(a) $2x + 3y = 12$	(b) $3x + 2y = 12$	(c) $4x - 3y = 6$	(d) $5x - 2y = 10$
174.	Coordinates of the foot of t	he perpendicular drawn from (0, 0)) to the line joining $(a\cos\alpha, a\sin\beta)$	$\sin lpha$) and $(a\cos eta, a\sin eta)$, are [IIT 1982]
	(a) $\left(\frac{a}{2}, \frac{b}{2}\right)$		(b) $\left[\frac{a}{2}(\cos\alpha + \cos\beta), \frac{a}{2}(\sin\alpha\right]$	$\alpha + \sin \beta$
	(c) $\left(\cos\frac{\alpha+\beta}{2},\sin\frac{\alpha+\beta}{2}\right)$		(d) None of these	

(c) $\left(-\frac{3}{5}, -\frac{4}{5}\right)$ (d) $\left(\frac{30}{17}, \frac{19}{17}\right)$

The equations (b-c)x + (c-a)y + (a-b) = 0 and $(b^3 - c^3)x + (c^3 - a^3)y + a^3 - b^3 = 0$ will represent the same line, if

If the lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent, then a, b, c are in

The pedal points of a perpendicular drawn from origin on the line 3x + 4y - 5 = 0, is

(b) $\left(\frac{3}{5}, \frac{4}{5}\right)$

(c) a = b

If the lines ax + y + 1 = 0, x + by + 1 = 0 and x + y + c = 0 (a, b, c being distinct and different from 1) are concurrent, then

The lines ax + by + c = 0, where 3a + 2b + 4c = 0 are concurrent at the point

(b) c = a

165.

166.

167.

168.

175.

(a) $\left(\frac{3}{5},2\right)$

(a) (1/2, 3/4)

187.

through

176.	The coordinates of the fo	bot of the perpendicular from (x)	(x_1, y_1) to the line $ax + by + c = 0$ ar	e [Dhanbad Engg. 1973]
	(a) $\left(\frac{b^2x_1 - aby_1 - ac}{a^2 + b^2}, \frac{a^2 + b^2}{a^2 + b^2}\right)$	$\frac{a^2y_1 - abx_1 - bc}{a^2 + b^2}$	(b) $\left(\frac{b^2x_1 + aby_1 + ac}{a^2 + b^2}, \frac{a^2}{a^2 + b^2}\right)$	$\frac{^2y_1 + abx_1 + bc}{a^2 + b^2}$
	(c) $\left(\frac{ax_1 + by_1 + ab}{a + b}, \frac{ax_1}{a + b}\right)$	$\frac{1 - by_1 - ab}{a + b}$	(d) None of these	
177.	The area of the triangle b	bounded by the straight line ax -	$+by+c=0$, $(a,b,c\neq 0)$ and the c	oordinate axes is [AMU 2000]
	(a) $\frac{1}{2} \frac{a^2}{ bc }$	$(b) \frac{1}{2} \frac{c^2}{ ab }$	(c) $\frac{1}{2} \frac{b^2}{ ac }$	(d) 0
178.	The image of the point (4	4, -3) with respect to the line $y =$	x is	[Rajasthan PET 2002]
	(a) $(-4, -3)$	(b) (3,4)	(c) $(-4,3)$	(d) $(-3,4)$
179.	The triangle formed by the	ne lines $x + y = 0$, $3x + y = 4$, $x + y = 4$	-3y = 4 is	[Rajasthan PET 2002]
	(a) Isosceles	(b) Equilateral	(c) Right -angled	(d) None of these
180.	The diagonals of a parall	elogram <i>PQRS</i> are along the lin	nes $x + 3y = 4$ and $6x - 2y = 7$.	Then <i>PQRS</i> must be a [IIT 1998]
	(a) Rectangle	(b) Square	(c) Cyclic quadrilateral	(d) Rhombus
181.	Two points A and B hav	re coordinates (1, 1) and (3, -2)	respectively. The coordinates of	a point distant $\sqrt{85}$ from B on the line
	through <i>B</i> perpendicular	to <i>AB</i> are		[AMU 2000]
	(a) (4, 7)	(b) (7, 4)	(c) (5, 7)	(d) (–5, –3)
182.	The line $3x + 2y = 24$ me	eets <i>y</i> -axis at A and x -axis at B .	The perpendicular bisector of <i>AB</i>	meets the line through $(0, -1)$ parallel to
	x-axis at C. The area of the	ne triangle <i>ABC</i> is		
	(a) 182 <i>sq</i> .units	(b) 91 <i>sq.</i> units	(c) 48 <i>sq.</i> units	(d) None of these
183.	The area of a parallelogra	am formed by the lines $ax \pm by =$	$\pm c = 0$, is	[IIT 1973]
	(a) $\frac{c^2}{ab}$	(b) $\frac{2c^2}{ab}$	(c) $\frac{c^2}{2ab}$	(d) None of these
184.	The area of triangle form	ed by the lines $x = 0, y = 0$ and	$\frac{x}{a} + \frac{y}{b} = 1$, is	[Rajasthan PET 1984]
	(a) <i>ab</i>	(b) <i>ab</i> /2	(c) 2 <i>ab</i>	(d) <i>ab</i> /3
185.	A line L is perpendicular	to the line $5x - y = 1$ and the are	ea of the triangle formed by the li	ne L and coordinate axes is 5. The
	equation of the line \mathcal{L} is			[IIT 1980;Rajasthan PET 1997]
	(a) $x + 5y = 5$	(b) $x + 5y = \pm 5\sqrt{2}$	(c) $x - 5y = 5$	(d) $x - 5y = 5\sqrt{2}$
186.	The point (4, 1) undergoe	es the following two successive to	ransformations	
	(i) Reflection about the li	The $y = x$	(ii) Translation through a c	listance 2 units along the positive x-axis
	Then the final coordinate	s of the point are		[MNR 1987; UPSEAT 2000]
	(a) (4, 3)	(b) (3, 4)	(c) (1, 4)	(d) $\left(\frac{7}{2}, \frac{7}{2}\right)$
		Ad	vance Level	

A straight line moves so that the sum of the reciprocals of its intercepts on two perpendicular lines is constant, then the line passes

[IIT 1977]

[IIT 1976]

[IIT 1986]

(d) None of these

(d) None of these

(d) Parabola

	the same line L has intercep	ots p and q , then		[IIT 1990; Kurukshetra CEE 1998]											
	(a) $a^2 + b^2 = p^2 + q^2$	(b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$	(c) $a^2 + p^2 = b^2 + q^2$	(d) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$											
191.	One side of a rectangle lies	along the line $4x + 7y + 5 = 0$. Tw	o of its vertices are (–3, 1) and	(1, 1). Then the equations of other											
	sides are														
	(a) $7x - 4y + 25 = 0.4x + 7$	7y = 11 and $7x - 4y - 3 = 0$	(b) $7x + 4y + 25 = 0.7y + 4$	x - 11 = 0 and $7x - 4y - 3 = 0$											
	(c) $4x - 7y + 25 = 0.7x + 4$	4y - 11 = 0 and $4x - 7y - 3 = 0$	(d) None of these												
192.	Two consecutive sides of a	parallelogram are $4x + 5y = 0$ and	7x + 2y = 0 . If the equation t	o one diagonal is $11x + 7y = 9$, then											
	the equation of the other di	iagonal is													
	(a) $x + 2y = 0$	(b) $2x + y = 0$	(c) x - y = 0	(d) None of these											
193.	If the sum of the distances of	of a point from two perpendicular I	ines in a plane is 1, then its loc	us is											
	[IIT 1992; Karnataka CET 1999; DCE 2000, 01]														
	(a) Square	(b) Circle	(c) Straight line	(d) Two intersecting lines											
194.	A pair of straight lines draw	n through the origin form with the	line $2x + 3y = 6$ an isosceles r	right angled triangle, then the lines											
	and the area of the triangle														
	(a) $x - 5y = 0, 5x + y = 0, \Delta$	$a = \frac{36}{13}$	(b) $3x - y = 0, x + 3y = 0, \Delta$	$=\frac{12}{17}$											
	(c) $5x - y = 0, x + 5y = 0, \Delta$	$\Lambda = \frac{13}{5}$	(d) None of these	.,											
105	Die e maint an either of the	tualinas 21 1 2 at a diatam	an of Funcito france thesis majests	of interpolation. The accordinates of the											
195.				of intersection. The coordinates of the											
		om <i>P</i> on the bisector of the angle b		[Roorkee 1992]											
	(a) $\left(0, \frac{4+5\sqrt{3}}{2}\right)$ or $\left(0, \frac{4+5\sqrt{3}}{2}\right)$	$\left(\frac{-5\sqrt{3}}{2}\right)$ depending on which the positive	oint <i>P</i> is taken	(b) $\left(0, \frac{4+5\sqrt{3}}{2}\right)$											
	$(c) \left(0, \frac{4-5\sqrt{3}}{2}\right)$			(d) $\left(\frac{5}{2}, \frac{5\sqrt{2}}{2}\right)$											
196.	A ray of light passing throu	igh the point (1, 2) is reflected on t	he <i>x</i> -axis at a point <i>P</i> and pas	sses through the point (5, 3). Then the											
	abscissa of the point P is			[Orissa JEE 2003]											
	(a) -3	(b) 13/3	(c) 13/5	(d) 13/4											

(c) Origin

(c) $\frac{23}{3}$ sq. units

(c) Pair of straight lines

The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis, y-axis and

Line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle keeping the origin fixed,

The locus of a point P which divides the line joining (1, 0) and $(2\cos\theta, 2\sin\theta)$ internally in the ratio 2:3 for all θ , is a

(a) A fixed point

(a) 23 sq. units

(a) Straight line

188.

189.

190.

(b) A variable point

(b) $\frac{23}{2}$ sq.units

(b) Circle

the AB at C, D and E respectively. If O is the origin of coordinates, then the area of OCEB is

197.	The point moves such that t point is	he area of the triangle formed by it	t with the points (1, 5) and (3, \cdot	–7) is 21 <i>sq</i> . unit. The locus of the									
	(a) $6x + y - 32 = 0$	(b) $6x - y + 32 = 0$	(c) $x + 6y - 32 = 0$	(d) $6x - y - 32 = 0$									
198.	If for a variable line $\frac{x}{a} + \frac{y}{b} =$	= 1 the condition $a^{-2} + b^{-2} = c^{-2}$ (<i>c</i>	is a constant) is satisfied, ther	n locus of foot of perpendicular drawr									
	from origin to the straight lin			[Rajasthan PET 1999									
	(a) $x^2 + y^2 = c^2 / 2$	(b) $x^2 + y^2 = 2c^2$	(c) $x^2 + y^2 = c^2$	(d) $x^2 - y^2 = c^2$									
199.	Let \angle be the line $2x + y = 2$.	. If the axes are rotated by 45^o , the	en the intercepts made by the	e line L on the new axes are									
	respectively												
	(a) $\sqrt{2}$ and 1	(b) 1 and $\sqrt{2}$	(c) $2\sqrt{2}$ and $2\sqrt{2}/3$	[Roorkee 1998 (d) $2\sqrt{2}/3$ and $2\sqrt{2}$									
200.	The graph of the function of			[IIT 1997 Re-Exam									
	- '	hrough $(0, -\sin^2 1)$ with slope 2		•									
	(b) A straight line passing t	-											
	(c) A parabola with vertex	<u> </u>											
		hrough the point $\left(\frac{\pi}{2}, -\sin^2 1\right)$ and	narallal to the vavis										
	(a) A straight line passing t	Through the point $\left(\frac{1}{2}, -\sin^{-1}\right)$ and	paramer to the x axis										
201.		1 (3, 4), each of which makes angle	of 45° with the line $x - y = 2$	2, then area of the triangle formed by									
	these lines is			[Rajasthan PET 2000									
	(a) 9	(b) 9/2	(c) 2	(d) 2/9									
202.	A point starts moving from (locus is	(1, 2) and its projections on x and y-	-axes are moving with velociti	es of 3 <i>m</i> /s and 2 <i>m/s</i> respectively. Its [Roorkee 1999									
	(a) $2x - 3y + 4 = 0$	(b) $3x - 2y + 1 = 0$	(c) $3y - 2x + 4 = 0$	(d) $2y - 3x + 1 = 0$									
203.	If (-2, 6) is the image of the	point (4, 2) with respect to line $L=0$	0, then $L=$	[EAMCET 2002									
	(a) $3x - 2y + 5$	(b) $3x - 2y + 10$	(c) $2x + 3y - 5$	(d) $6x - 4y - 7$									
204.	The area of the parallelogram	m formed by the lines $y = mx, y = mx$	mx + 1, y = nx and $y = nx + 1$	equals									
	(a) $\frac{ m+n }{(m-n)^2}$	(b) $\frac{2}{\mid m+n\mid}$	(c) $\frac{1}{\mid m+n\mid}$	(d) $\frac{1}{ m-n }$									
205.	A line <i>AB</i> makes zero interce	ept on <i>x</i> -axis and <i>y</i> -axis and it is pe	rpendicular to another line <i>CL</i>	D, $3x + 4y + 6 = 0$. The equation of									
	line AB is			[Karnataka CET 2001									
	(a) $y = 4$	(b) $4x - 3y + 8 = 0$	(c) 4x - 3y = 0	(d) $4x - 3y + 6 = 0$									
206.	Area of the parallelogram whose sides are $x \cos \alpha + y \sin \alpha = p$, $x \cos \alpha + y \sin \alpha = q$, $x \cos \beta + y \sin \beta = r$ and												
	$x\cos\beta + y\sin\beta = s \text{ is}$												
	(a) $\pm (p-q)(r-s)\csc(\alpha -$		(b) $(p+q)(r-s)\csc(\alpha+\beta)$										
207	(c) $(p+q)(r+s)\csc(\alpha-\beta)$		(d) None of these	n 1 . 1 . arain									
207.		=1,2,3 cut off equal intercepts on											
	(a) A.P	(b) G.P.	(c) H.P.	(d) None of these									

(d) None of these

208.	If the extremities of the base	e of an isosceles triangle are the po	ints (2 <i>a</i> , 0) and (0, <i>a</i>) and the e	equation of one of the sides is $x=2a$,
	then the area of the triangle	eis		
	(a) $5a^2sq$. units	(b) $\frac{5a^2}{2}$ sq. units	(c) $\frac{25 a^2}{2} sq$. units	(d) None of these
209.	The coordinates of the four	vertices of a quadrilateral are (-2, 4	4), (–1, 2),(1, 2) and (2, 4) taken	in order. The equation of the line
	passing through the vertex	(–1, 2) and dividing the quadrilatera	l in two equal areas is	
	(a) $x+1=0$	(b) $x + y = 1$	(c) $x - y + 3 = 0$	(d) None of these

210. If a ray travelling along the line x = 1 gets reflected from the line x + y = 1, then the equation of the line along which the reflected ray travels is

211. If
$$bx + cy = a$$
, where a , b , c are of the same sign, be a line such that the area enclosed by the line and the axes of reference is $\frac{1}{8}$ unit², then

(c) x = 0

(a) b,a,c are in G.P. (b) b,2a,c are in G.P. (c) $b,\frac{a}{2},c$ are in A.P. (d) b,-2a,c are in G.P.

212. Determine all values of α for which the point (α, α^2) lies inside the triangle formed by the lines 2x + 3y - 1 = 0, x + 2y - 3 = 0,5x - 6y - 1 = 0 [IIT 1992]

- (a) $-3/2 < \alpha < -1$ and $1/2 < \alpha < 1$ (b) $-3/2 < \alpha < 1$ and $-1/2 < \alpha < 1$
- (c) $-3 < \alpha < -1$ and $2 < \alpha < 1$ (d) None of these

(b) x - y = 1

(a) y = 0

- 213. The symmetry in curve $x^3 + y^3 = 3axy$ along

 (a) x-axis

 (b) y-axis

 (c) Line y = x(d) Opposite quadrants
- **214.** If m_1, m_2 are the roots of the equation $x^2 ax a 1 = 0$, then the area of the triangle formed by the three straight lines $y = m_1 x, y = m_2 x$ and $y = a(a \ne -1)$ is
 - (a) $\frac{a^2(a+2)}{2(a+1)}$, if a > -1 (b) $\frac{-a^2(a+2)}{2(a+1)}$, if a < -1
 - (c) $\frac{-a^2(a+2)}{2(a+1)}$, if -2 < a < -1 (d) $\frac{a^2(a+2)}{2(a+1)}$, if a < -2
- 215. A line which makes an acute angle θ with the positive direction of x-axis is drawn through the point P(3,4) to meet the line x = 6 at R and y = 8 at S, then
 - (a) $PR = 3 \sec \theta$ (b) $PS = 4 \csc \theta$ (c) $PR + PS = \frac{2(3 \sin \theta + 4 \cos \theta)}{\sin 2\theta}$ (d) $\frac{9}{(PR)^2} + \frac{16}{(PS)^2} = 1$
- **216.** P(m,n) (where m, n are natural numbers) is any point in the interior of the quadrilateral formed by the pair of lines xy = 0 and the two lines 2x + y 2 = 0 and 4x + 5y = 20. The possible number of positions of the point P is
 - (a) Six (b) Five (c) Four (d) Eleven

Assianment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	С	b	b	d	b	b	а	С	а	а	d	С	а	С	С	b	d	b	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	d	С	а	b	а	b	а	С	b	d	b	d	а	а	а	d	С	b	а
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
С	а	d	b	а	а	b	а	а	С	а	d	С	b	а	b	а	а	b	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	b	а	а	а	а	b	а	а	а	С	а	С	b	а	b	a,c	а	а	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
С	b	b	b	а	С	b	b	b	b	С	b	а	а	b	С	С	d	С	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
С	d	b	b	b	С	С	С	b	d	С	С	а	а	а	b	b	а	С	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	b	а	b	d	С	d	а	b	С	а	b	а	С	b	а	d	а	d	а
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
а	b	d	а	b	С	а	С	С	а	а	b	а	С	С	а	а	С	а	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
d	С	а	С	d	a,b,c,d	а	b	а	b	b	b	а	b	b	а	b	d	а	d
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200

Indices and Surds **59**

C		b	b	b	b	b	а	С	b	b	а	С	а	а	b	С	а	С	С	d
20)1	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216				
k)	а	а	d	С	а	С	b	С	а	b,d	а	С	a,c,d	abçd	а				