SIMPLE HARMONIC MOTION

S.H.M.

F = -kx

General equation of S.H.M. is $x = A \sin (\omega t + \phi)$; $(\omega t + \phi)$ is phase of the motion and ϕ is initial phase of the motion.

Angular Frequency (ω) :	$\omega = \frac{2\pi}{T} = 2\pi f$
Time period (T) :	$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$
m	
Speed :	$v = \omega \sqrt{A^2 - x^2}$
Acceleration :	$a = -\omega^2 x$
Kinetic Energy (KE) :	$\frac{1}{2} mv^2 = \frac{1}{2} m\omega^2 (A^2 - x^2) = \frac{1}{2} k (A^2 - x^2)$
Potential Energy (PE) :	$\frac{1}{2}$ Kx ²
Total Mechanical Energy (TME)	
= K.E. + P.E. = $\frac{1}{2}$ k (A ² - x)	$^{2}) + \frac{1}{2} Kx^{2} = \frac{1}{2} KA^{2}$ (which is constant)
SPRING-MASS SYSTEM	
(1)	$\Rightarrow \qquad \qquad$
(2) m, 000000000	
$T = 2\pi \sqrt{\frac{\mu}{K}}$, where $\mu = \frac{m}{(m_1)}$	$(m_1 m_2 + m_2)$ known as reduced mass

COMBINATION OF SPRINGS Series Combination : Parallel combination :

$$1/k_{eq} = 1/k_1 + 1/k_2$$

 $k_{eq} = k_1 + k_2$

SIMPLE PENDULUM $T = 2\pi \sqrt{\frac{\ell}{g}} = 2\pi \sqrt{\frac{\ell}{g_{eff.}}}$ (in accelerating Refer-

ence Frame); $\mathbf{g}_{_{\text{eff}}}$ is net acceleration due to pseudo force and gravitational force.

COMPOUND PENDULUM / PHYSICAL PENDULUM

Time period (T) : $T = 2\pi \sqrt{\frac{I}{mg\ell}}$

where, I = $I_{_{CM}}$ + $m\ell^2$; ℓ is distance between point of suspension and centre of mass.

TORSIONAL PENDULUM

Time period (T) : T =

$$=2\pi\sqrt{\frac{I}{C}}$$

where, C = Torsional constant

Superposition of SHM's along the same direction $x_1 = A_1 \sin \omega t & x_2 = A_2 \sin (\omega t + \theta)$

$$A_2$$

 A
 A
 A

If equation of resultant SHM is taken as $x = A \sin (\omega t + \phi)$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\theta} \qquad \qquad \& \qquad \tan\phi = \frac{A_2\sin\theta}{A_1 + A_2\cos\theta}$$

1. Damped Oscillation • Damping force

 $\vec{F} = -b\vec{v}$

equation of motion is

$$\frac{mdv}{dt} = -kx - bv$$

• $b^2 - 4mK > 0$ over damping

- b² 4mK = 0 critical damping
- b² 4mK < 0 under damping
- For small damping the solution is of the form.

$$\mathbf{x} = (\mathbf{A}_0 \mathbf{e}^{-bt/2m}) \sin [\omega^1 t + \delta], \text{ where } \omega' = \sqrt{\left(\frac{k}{m}\right) - \left(\frac{b}{2m}\right)^2}$$

For small b

• angular frequency $\omega' \approx \sqrt{k/m}$, = ω_0

• Amplitude
$$A = A_0 e^{\frac{-bt}{2m}}$$

• Energy E (t) =
$$\frac{1}{2}$$
 KA² e^{-bt/m}

• Quality factor or Q value , Q = $2\pi \frac{E}{|\Delta E|} = \frac{\omega'}{2\omega_Y}$

where ,
$$\omega' = \sqrt{\frac{k}{m} \cdot \frac{b^2}{4m^2}}$$
 , $\omega_Y = \frac{b}{2m}$

2. Forced Oscillations And Resonance External Force $F(t) = F_0 \cos \omega_d t$ $x(t) = A \cos (\omega_d t + \phi)$

$$A = \frac{F_0}{\sqrt{\left(m^2 \left(\omega^2 - \omega_d^2 \ \right)^2 + \omega_d^2 \ b^2\right)}} \text{ and } \tan \phi = \frac{-v_0}{\omega_d x_0}$$

(a) Small Damping
$$A = \frac{F_0}{m(\omega^2 - \omega_d^2)}$$

(b) Driving Frequency Close to Natural Frequency $A = \frac{F_0}{\omega_d b}$