Sample Question Paper - 10 Mathematics (041) Class- XII, Session: 2021-22 TERM II

Time Allowed: 2 hours

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 6 short answer type (SA1) questions of 2 marks each.
- 3. Section B has 4 short answer type (SA2) questions of 3 marks each.
- 4. Section C has 4 long answer-type questions (LA) of 4 marks each.
- 5. There is an internal choice in some of the questions.
- 6. Q 14 is a case-based problem having 2 sub-parts of 2 marks each.

Section A

1. Prove that:
$$\int_{0}^{\pi/2} \frac{\cos^{1/4} x}{\left(\sin^{1/4} x + \cos^{1/4} x\right)} dx = \frac{\pi}{4}$$
 [2]

OR

Evaluate: $\int x^3 e^x dx$

10

2. Write the order and degree of the differential equation
$$y = x \frac{dy}{dx} + a \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
. [2]

- 3. For what value of '**a** the vectors $2\hat{i}-3\hat{j}+4\hat{k}$ and $a\hat{i}+6\hat{j}-8\hat{k}$ are collinear?
- 4. Find the cartesian and vector equations of the planes through the line of intersection of the [2] planes $\vec{r} \cdot (\hat{i} \hat{j}) + 6 = 0$ and $\vec{r} \cdot (3\hat{i} + 3\hat{j} 4\hat{k}) = 0$ which are at a unit distance from the origin.
- 5. A can solve 90% of the problems given in a book and B can solve 70%. What is the probability [2] that at least one of them will solve the problem, selected at random from the book?
- 6. An electronic assembly consists of two sub-systems say A and B. From previous testing [2] procedures, the following probabilities are assumed to be known:

P (A fails) = 0.2

P (B fails alone) = 0.15

P (A and B fail) = 0.15

Evaluate the following probabilities.

(1) $P\left(\overline{A}|\overline{B}\right)$

(2)P(A fails alone).

Section **B**

7. Evaluate: $\int \frac{(x^2+1)}{(x-1)^2(x+3)} dx$.

8. Solve the following differential equation $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$, given that y = 1, when x = [3]

Maximum Marks: 40

[2]

[3]

Show that the family of curves for which the slope of the tangent at any point (x, y) on it is $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$, is given by x² - y² = cx.

- 9. Find the value of λ so that the four points A, B, C and D with position vectors [3] $4\hat{i} + 5\hat{j} + \hat{k}, -\hat{j} - \hat{k}, 3\hat{i} + \lambda\hat{j} + 4\hat{k}$ and $-4\hat{i} + 4\hat{j} + 4\hat{k}$, respectively are coplanar.
- 10. Find the foot of perpendicular from the point (2, 3, -8) to the line $\frac{4-x}{2} = \frac{y}{6} = \frac{1-z}{3}$. Also, find [3] the perpendicular distance from the given point to the line.

OR

Find the distance of the point (-1, -5, -10) from the point of intersection of the line $\vec{r} = 2\hat{i} - \hat{j} + \hat{2}k + \lambda \left(3\hat{i} + 4\hat{j} + 2\hat{k}\right)$ and the plane $\vec{r} \cdot \left(\hat{i} - \hat{j} + \hat{k}\right) = 5$

Section C

11. Evaluate:
$$\int \frac{(3\sin x - 2)\cos x}{5 - \cos^2 x - 4\sin x} dx$$

12. Find the area common to the circle $x^2 + y^2 = 16$ and the parabola $y^2 = 6$ ax. [4]

OR

[4]

Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12

13. By computing the shortest distance determine whether the pairs of lines intersect or not: [4] $\vec{r} = (\hat{i} - \hat{j}) + \lambda(2\hat{i} + \hat{k})$ and $\vec{r} = (2\hat{i} - \hat{j}) + \mu(\hat{i} + \hat{j} - \hat{k})$

CASE-BASED/DATA-BASED

14. The probability that a certain person will buy a shirt is 0.2, the probability that he will buy a [4] trouser is 0.3, and the probability that he will buy a shirt given that he buys a trouser is 0.4.

- i. Find the probability that he will buy both a shirt and a trouser.
- ii. Find also the probability that he will buy a trouser given that he buys a shirt.

Solution

MATHEMATICS 041

Class 12 - Mathematics

Section A

1. Let
$$y = \int_{0}^{\pi/2} \frac{\cos^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x + \cos^{\frac{1}{4}x}}} dx \dots$$
 (i)
Use King theorem of definite integral
 $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$
 $y = \int_{0}^{\pi/2} \frac{\cos^{\frac{1}{4}}(\frac{\pi}{2} - x)}{\sin^{\frac{1}{4}}(\frac{\pi}{2} - x) + \cos^{\frac{1}{4}}(\frac{\pi}{2} - x)} dx$
 $y = \int_{0}^{\pi/2} \frac{\sin^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x + \cos^{\frac{1}{4}x}}} dx \dots$ (ii)
Adding eq.(i) and eq.(ii), we get
 $2y = \int_{0}^{\pi/2} \frac{\cos^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x + \cos^{\frac{1}{4}x}}} dx + \int_{0}^{\pi/2} \frac{\sin^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x + \cos^{\frac{1}{4}x}}} dx$
 $2y = \int_{0}^{\pi/2} \frac{\cos^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x + \cos^{\frac{1}{4}x}}} dx$
 $2y = \int_{0}^{\pi/2} \frac{\cos^{\frac{1}{4}x + \sin^{\frac{1}{4}x}}}{\sin^{\frac{1}{4}x + \cos^{\frac{1}{4}x}}} dx$
 $2y = \int_{0}^{\pi/2} \frac{1}{\cos^{\frac{1}{4}x + \sin^{\frac{1}{4}x}}}{\sin^{\frac{1}{4}x + \cos^{\frac{1}{4}x}}} dx$
 $2y = \int_{0}^{\pi/2} 1 dx$
 $2y = (x)_{0}^{\frac{\pi}{2}}$
 $y = \frac{\pi}{4}$
OR
Let I = $\int x^{3} e^{x} dx$, then we have
 $I = x^{3} e^{x} - \int 3x^{2} e^{x} dx = x^{3} e^{x} - 3 \int x^{3} e^{x} dx$
 $\Rightarrow I = x^{3} e^{x} - 3 \{x^{2} e^{x} - f(2x) e^{x} dx\} = x^{3} e^{x} - 3 \{x^{2} e^{x} - 2f(x) e^{x} dx\}$

 $\Rightarrow I = x^3 e^x - 3 \{x^2 e^x - \int 2x e^x dx\} = x^3 e^x - 3 \{x^2 e^x - 2 \int x e^x dx\}$ \Rightarrow $I = x^3 e^x$ - 3 $[x^2 e^x$ - 2 {x e^x - $\int 1 \cdot e^x dx$ }] \Rightarrow $I = x^3 e^x$ - 3 $x^2 e^x$ + 6x e^x - 6 e^x + C \Rightarrow I = (x³ - 3x² + 6x - 6) e^x + C

2. We have

$$y = x \frac{dy}{dx} + a \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
$$\left(y - x \frac{dy}{dx}\right) = a \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

Squaring both the sides, 2^{2}

$$y^2 - x^2 \left(rac{dy}{dx}
ight)^2 - 2xy \left(rac{dy}{dx}
ight) = a^2 \left(1 + \left(rac{dy}{dx}
ight)^2
ight)$$

 $x^2 \left(rac{dy}{dx}
ight)^2 - a^2 \left(rac{dy}{dx}
ight)^2 - 2xy \left(rac{dy}{dx}
ight) + y^2 - a^2 = 0$
 $\left(rac{dy}{dx}
ight)^2 (x^2 - a^2) - 2xy \left(rac{dy}{dx}
ight) + y^2 - a^2 = 0$

The highest order differential coefficient is 2 so, Order of differential equation is 1 Degree of differential equation is 2

3. Here, it is given that two vectors, let $\vec{p} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\vec{q} = a\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear Since the given vectors are collinear, we have, $\vec{p} = \lambda \vec{q}$ $\Rightarrow 2\hat{i}-3\hat{j}+4\hat{k}=\lambda(a\hat{i}+6\hat{j}-8\hat{k})$

 $i \Rightarrow 2\hat{i} - 3\hat{i} + 4\hat{k} = a\lambda\hat{i} + 6\lambda\hat{i} - 8\lambda\hat{k}$ $\Rightarrow \lambda a = 2, 6\lambda = -3$ and $-8\lambda = 4$ $\Rightarrow \lambda = -\frac{1}{2}$ and a = -44. Given, equat of plane are $(x\hat{i}+y\hat{y}+z\hat{k})\cdot(\hat{i}-\hat{j})+6=0$ and $(x\hat{i}+y\hat{j}+z\hat{k})\cdot(3\hat{i}+3\hat{j}-4\hat{k})=0$ \Rightarrow x - y + 6 = 0 and 3x + 3y - 4z = 0 Any plane through their intersection is $(x - y + 6) + \lambda(3x + 3y - 4z) = 0$ $\Rightarrow (1+3\lambda)x+(3\lambda-1)y+4\lambda x+6-0$ $\therefore rac{6}{\sqrt{(1+3\lambda)^2+(3\lambda-1)^2+(-4\lambda)^2}}=1$ $\Rightarrow 34\lambda^2 + 2 = 36$ $\Rightarrow \lambda^2 = 1 \Rightarrow \lambda = \pm 1$ Therefore, the required planes are 2x + y - 2z + 3 = 0 and x + 2y - 2z - 3 = 0 In vector form they are $ec{r} \cdot (2\hat{i} + \hat{j} - 2\hat{k}) + 3 = 0$ and $ec{r} \cdot (\hat{i} + 2\hat{j} - 2\hat{k}) - 3 = 0.$ 5. Let E and F be the events defined as follows: E = A solves the problem, F = B solves the problem. Clearly, E and F are independent events such that P(E) = $\frac{90}{100} = \frac{9}{10}$ and P(F) = $\frac{70}{100} = \frac{7}{10}$ Problem will be solved if atleast one of them solves it Therefore, required probability = $P(E \cup F)$ = P(E) + P(F) - P($E \cap F$) = P(E) + P(F) - P(E)P(F) [as E and F are independent] = P(E) + P(F) [1 - P(E)] $= \frac{9}{10} + \frac{7}{10} \left[1 - \frac{9}{10} \right]$ = $\frac{9}{10} + \frac{7}{10} \times \frac{1}{10} = \frac{97}{100} = 0.97$ Which is the required solution. 6. Event A fails and B fails denoted by A and B respectively. $\therefore P\left(\overline{A}
ight)=0.2$ and P (A and B fails) = 0.15 $\Rightarrow P(A \cap B) = 0.15$ \therefore P(\overline{B} above) = $P\left(\overline{B}\right) - P(A \cap B)$ $\Rightarrow 0.15 = P\left(\overline{B}
ight) - 0.15$ $\Rightarrow P\left(\overline{B}\right) = 0.30$

i.
$$P\left(\overline{A}|\overline{B}\right) = \frac{P(A \cap B)}{P(\overline{B})} = \frac{0.15}{0.30} = \frac{1}{2} = 0.5$$

ii. P (A fails alone) = P (\overline{A} alone) = $P\left(\overline{A}\right) - P\left(\overline{A} \cap \overline{B}\right)$ = 0.20 - 0.15 = 0.05

Section B

7. Let the given integral be, $I = \int \frac{x^2 + 1}{(x+3)(x-1)^2} dx$ Now using partial fractions by putting, $\frac{x^2 + 1}{(x+3)(x-1)^2} = \frac{A}{(x+3)} + \frac{B}{(x-1)} + \frac{C}{(x-1)^2} \dots$ (1) $A(x - 1)^2 + B(x + 3)(x - 1) + C(x + 3) = x^2 + 1$ Now put x - 1 = 0Therefore, x = 1 A(0) + B(0) + C(4) = 2 $c = \frac{1}{2}$ Now put x + 3 = 0Therefore, x = -3 $A(-3 - 1)^2 + B(0) + C(0) = 9 + 1 = 10$ $A = \frac{5}{8}$

By equating the coefficient of x^2 , we get, A + B = 1 $\frac{\frac{5}{8}}{\frac{1}{8}} + B = 1$ $B = 1 - \frac{5}{8} = \frac{3}{8}$ From equation (1), we get, $\frac{x^{2}+1}{(x+3)(x-2)^{2}} = \frac{5}{8} \times \frac{1}{(x+3)} + \frac{3}{8} \times \frac{1}{(x-2)} + \frac{1}{(x-2)^{2}}$ $\int \frac{x^{2}+1}{(x+3)(x-2)^{2}} dx = \frac{5}{8} \int \frac{1}{(x+3)} dx + \frac{3}{8} \int \frac{1}{(x-2)} dx + \int \frac{1}{(x-2)^{2}} dx$ $= \frac{5}{8} \log|x+3| + \frac{3}{8} \log|x-1| - \frac{1}{2(x-1)} + c$

8. According to the question,

Given differential equation is,

$$egin{array}{lll} rac{dy}{dx} &= 1 + x^2 + y^2 + x^2 y^2 \ \Rightarrow & rac{dy}{dx} &= 1 \left(1 + x^2
ight) + y^2 \left(1 + x^2
ight) \ \Rightarrow & rac{dy}{dx} &= \left(1 + x^2
ight) \left(1 + y^2
ight) \ \Rightarrow & rac{dy}{1 + y^2} &= \left(1 + x^2
ight) dx \end{array}$$

On integrating both sides, we get

$$\int \frac{dy}{1+y^2} = \int (1+x^2) dx$$

$$\Rightarrow \quad \tan^{-1} y = x + \frac{x^3}{3} + C \dots (i)$$

Given that y = 1, when x = 0.
On putting x = 0 and y = 1 in Eq. (i), we get

$$\tan^{-1}1 = C$$

$$\Rightarrow \quad \tan^{-1}(\tan \pi/4) = C \quad [\because \tan \frac{\pi}{4} = 1]$$

$$\Rightarrow \quad C = \frac{\pi}{4}$$

On putting the value of C in Eq. (i), we get

$$\tan^{-1} y = x + \frac{x^3}{3} + \frac{\pi}{4}$$

$$\therefore \quad y = \tan\left(x + \frac{x^3}{3} + \frac{\pi}{4}\right)$$

which is the required solution of differential equation.

OR

We have, $rac{dy}{dx}=rac{x^2+y^2}{2xy}$

Clearly, each of the function $x^2 + y^2$ and 2xy is a homogeneous function of degree 2, so the given equation is homogeneous.

Put y = vx and
$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

The given equation becomes
 $v + x \frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2vx^2}$
 $\Rightarrow v + x \frac{dv}{dx} = \frac{v^2 + 1}{2v}$
 $\Rightarrow x \frac{dv}{dx} = \left(\frac{v^2 + 1}{2v} - v\right)$
 $\Rightarrow x \frac{dv}{dx} = \frac{v^2 + 1 - 2v^2}{2v} = \frac{1 - v^2}{2v}$
 $\Rightarrow x \frac{dv}{dx} = \frac{-(v^2 - 1)}{2v} \Rightarrow -\frac{2v}{v^2 - 1} dv = \frac{dx}{x}$ [using variable separable form]
On integrating both sides, we get

$$egin{aligned} -\log |v^2 \cdot 1| &= \log \mathrm{x} \cdot \log \mathrm{C}_1 \ \Rightarrow &- \log |v^2 - 1| - \log x = -\log C_1 \ \Rightarrow &\log |x \left(v^2 - 1
ight)| = \log C_1 \Rightarrow x \left(v^2 - 1
ight) = C_1 \ \Rightarrow &x \left(rac{y^2}{x^2} - 1
ight) = C_1 \Rightarrow x \left(rac{y^2 - x^2}{x^2}
ight) = C_1 \end{aligned}$$

 $egin{array}{lll} \Rightarrow & rac{y^2-x^2}{x} = C_1 \Rightarrow x^2-y^2 = -C_1 x \ \Rightarrow & x^2-y^2 = Cx \ [\because C = -C_1] \end{array}$ 9. According to the question, Given, $OA = 4\hat{i} + 5\hat{j} + \hat{k}$, $\overrightarrow{OB} = -\hat{i} - \hat{k}.$ $\vec{OC} = 3\hat{i} + \lambda\hat{j} + 4\hat{k}$ and $\stackrel{
ightarrow}{OD}=-4\hat{i}+4\hat{j}+4\hat{k}.$ Now, $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = -\hat{j} - \hat{k} - (4\hat{i} + 5\hat{j} + \hat{k})$ $=-4\hat{i}-6\hat{j}-2\hat{k}$ $\stackrel{-}{\stackrel{\rightarrow}{\rightarrow}} \stackrel{-}{\stackrel{\rightarrow}{\rightarrow}} \stackrel{-}{\stackrel{\rightarrow}{\rightarrow}} \stackrel{-}{3\hat{i}} + \lambda\hat{j} + 4\hat{k} - (4\hat{i} + 5\hat{j} + \hat{k})$ $=-\hat{i}+(\lambda-5)\hat{j}+3\hat{k}$ and $\stackrel{
ightarrow}{AD}=\stackrel{
ightarrow}{OD}-\stackrel{
ightarrow}{OA}$ $\hat{k} = -4\hat{i} + 4\hat{j} + 4\hat{k} - (4\hat{i} + 5\hat{j} + \hat{k})$ $\hat{i}=-8\hat{i}-\hat{j}+3\hat{k}$ Since, vectors $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$ and \overrightarrow{OD} are coplanar. $\therefore \quad [\stackrel{\rightarrow}{AB} \stackrel{\rightarrow}{AC} \stackrel{\rightarrow}{AD}] = 0$ $\begin{vmatrix} -4 & -6 & -2 \\ -1 & (\lambda - 5) & 3 \end{vmatrix} = 0$ -8 -1 $-4(3\lambda - 15 + 3) + 6(-3 + 24) - 2(1 + 8\lambda - 40) = 0$ $\Rightarrow -4(3\lambda - 12) + 6(21) - 2(8\lambda - 39) = 0$ \Rightarrow $-12\lambda + 48 + 126 - 16\lambda + 78 = 0$ $\Rightarrow -28\lambda + 252 = 0$ $\Rightarrow \lambda = 9$ 10. We have equation of line is $\frac{4-x}{2} = \frac{y}{6} = \frac{1-z}{3}$ $r \Rightarrow rac{x-4}{-2} = rac{y}{6} = rac{z-1}{-3} = \lambda$ $\Rightarrow x = -2\lambda + 4, y = 6\lambda$ and $z = -3\lambda + 1$ Let the coordinates of L be $(4 - 2\lambda, 6\lambda, 1 - 3\lambda)$, then, direction ratios of PL are proportional to $(4 - 2\lambda - 2, 6\lambda - 3, 1 - 3\lambda + 8)$ i.e., $(2 - 2\lambda, 6\lambda - 3, 9 - 3\lambda)$. Also, direction ratios are proportional to -2, 6, -3. Since, PL is perpendicular to give line. $\therefore -2(2-2\lambda)+6(6\lambda-3)-3(9-3\lambda)=0$ $\Rightarrow -4 + 4\lambda + 36\lambda - 18 - 27 + 9\lambda = 0$ $\Rightarrow 49\lambda = 49 \Rightarrow \lambda = 1$ So, the coordinates of L are $(4-2\lambda,6\lambda,1-3\lambda)$ i.e., (2, 6, -2). P(2, 3, -8) $\frac{4-x}{2} = \frac{y}{4} = \frac{1-z}{2}$ Also, length of PL $= \sqrt{(2-2)^2 + (6-3)^2 + (-2+8)^2}$ $s=\sqrt{0+9+36}=3\sqrt{5}units$ OR Given: A point P (say) (-1, -5, -10)

and equation of the line $\vec{r} = 2\hat{i} - \hat{j} + 2\hat{k} + \lambda \left(3\hat{i} + 4\hat{j} + 2\hat{k}\right)...(i)$ equation of the plane is $\vec{r} \cdot \left(\hat{i} - \hat{j} + \hat{k}\right) = 5$ Putting the value of \vec{r} from eq. (i) in eq. (ii), $\left[\left(2\hat{i} - \hat{j} + 2\hat{k}\right) + \lambda \left(3\hat{i} + 4\hat{j} + 2\hat{k}\right)\right] \cdot \left(\hat{i} - \hat{j} + \hat{k}\right) = 5$ $\Rightarrow \left(2\hat{i} - \hat{j} + 2\hat{k}\right) \cdot \left(\hat{i} - \hat{j} + \hat{k}\right) + \lambda \left(3\hat{i} + 4\hat{j} + 2\hat{k}\right) \cdot \left(\hat{i} - \hat{j} + \hat{k}\right) = 5$ $\Rightarrow 2 + 1 + 2 + \lambda(3 - 4 + 2) = 5$ $\Rightarrow 5 + \lambda = 5$ $\Rightarrow \lambda = 0$ Putting $\lambda = 0$ in eq. (i), $\vec{r} = 2\hat{i} - \hat{j} + 2\hat{k} + 0 \left(3\hat{i} + 4\hat{j} + 2\hat{k}\right)$ $\Rightarrow \vec{r} = 2\hat{i} - \hat{j} + 2\hat{k}$ Therefore, Point of intersection is (-2, 1, 2) \therefore Distance of the given point P(-1, -5, -10) from the point of intersection is $\sqrt{(2 + 1)^2 + (-1 + 5)^2 + (2 + 10)^2}$ $= \sqrt{9 + 16 + 144}$ $= \sqrt{169} = 13$ units

Section C

11. Let the given integral be

$$I = \int \frac{(3 \sin x - 2) \cos x}{5 - \cos^2 x - 4 \sin x} dx$$

$$\therefore I = \int \frac{(3 \sin x - 2) \cos x}{5 - (1 - \sin^2 x) - 4 \sin x} dx$$

$$\Rightarrow 1 = \int \frac{(3 \sin x - 2) \cos x}{5 - 1 + \sin^2 x - 4 \sin x} dx$$

Substitute sin x = t
=> cos x dx = dt
Thus,

$$I = \int \frac{(3t - 2)}{4 + t^2 - 4t} dt$$

$$\Rightarrow I = \int \frac{(3t - 2)}{t^2 - 4t + 4} dt$$

$$\Rightarrow I = \int \frac{(3t - 2)}{(t - 2)^2} dt$$

Now let us separate the integrand into the simplest form using partial fractions.

 $\frac{(3t-2)}{(t-2)^2} = \frac{A}{(t-2)} + \frac{B}{(t-2)^2}$ $= \frac{A(t-2)+B}{(t-2)^2}$ $= \frac{At-2A+B}{(t-2)^2}$ = 3t - 2 = At - 2A + BComparing the coefficients, we have, A = 3 and -2A + B = -2
Substituting the value of A = 3 in the above equation, we have, $\Rightarrow -2 \times 3 + B = -2$ $\Rightarrow -6 + B = -2$ $\Rightarrow B = 6 -2$ $\Rightarrow B = 6$ Therefore we have, $I = \int \frac{(3t-2)}{(t-2)^2} dt$ becomes $I = \int \frac{3}{(t-2)} dt + \int \frac{4}{(t-2)^2} dt$ $= 3 \log |t-2| - 4(\frac{1}{t-2}) + C$ $= 3 \log |2-t| + 4(\frac{1}{2-t}) + C$ Now substituting t = sin x, we have,

I = 3 log |2 - sin x| +4 $\left(\frac{1}{2-\sin x}\right) + C$

12. To find: Area enclosed by

 $x^2 + y^2 = 16 \dots (i)$

and $y^2 = 6ax$...(ii)

Equation (i) represents a circle with centre (0, 0) and meets X-axis $(\pm 4a, 0)$.

Equation (ii) represents a parabola with vertex (0, 0) and axis as x-axis, Points of intersection of circle and parabola are $(2a, 2\sqrt{3}a), (2a, -2\sqrt{3}a)$.

A rough sketch of curves is given as:-

Required ODCO is sliced into rectangles of area $y_1 \triangle x$ and it slides from x = 0 to x = 2a. Region BCDB is sliced into rectangle of area $y_2 \triangle x$ it slides from x = 2a to x = 4a. So, Required area = 2 [Region ODCO + Region BCDB]

$$= 2 \left[\int_{0}^{2a} y_{1} dx + \int_{2}^{4a} y_{2} dx \right]$$

$$= 2 \left[\int_{0}^{2a} \sqrt{6ax} dx + \int_{2a}^{4a} \sqrt{16a^{2} - x^{2}} dx \right]$$

$$= 2 \left[\sqrt{6a} \left(\frac{2}{3} x \sqrt{x} \right) \right]_{0}^{2a} + \left[\frac{x}{2} \sqrt{16a^{2} - x^{2}} + \frac{16a^{2}}{2} \sin^{-1} \left(\frac{x}{4a} \right) \right]_{2a}^{4a}$$

$$= \frac{2\sqrt{2}}{\sqrt{3}} a. 2a \cdot \sqrt{2a} + aa^{2} \cdot \sin^{-1}(1) - \frac{2a}{2} \cdot \sqrt{12a^{2}} - 8a^{2} \cdot \sin^{-1}(\frac{1}{2})$$

$$= 2 \left[\left(\sqrt{6a} \cdot \frac{2}{3} 2a \sqrt{2a} \right) + \left[\left(0 + 8a^{2} \cdot \frac{\pi}{2} \right) - \left(a \sqrt{12a^{2}} + 8a^{2} \cdot \frac{\pi}{6} \right) \right] \right]$$

$$= 2 \left[\frac{8\sqrt{3a^{2}}}{3} + 4a^{2}\pi - 2\sqrt{3}a^{2} - \frac{4}{3}a^{2}\pi \right]$$

$$= 2 \left[\frac{2\sqrt{3}a^{2}}{3} + \frac{8a^{2}\pi}{3} \right]$$

$$A = \frac{4a^{2}}{3} (4\pi + \sqrt{3}) \text{ sq. units.}$$

OR

Equation of the parabola is $4y = 3x^2 \dots (i)$

Equation of the line is 2y = 3x + 12 ...(ii) $\Rightarrow y = \frac{3x+12}{2} = \frac{3x}{2} + 6$ In the graph, points of intersection are B (4, 12) and C (-2, 3). Now, Area ABCD $= \left| \int\limits_{-2}^{4} \left(rac{3}{2} x + 6
ight) dx
ight|$ $=\left[rac{3}{4}x^2+6x
ight]_{-1}^4$ =(12 + 24) - (3 - 12)= 45 sq units Again, Area CDO + Area OAB $= \left| \int\limits_{-2}^{4} \left(rac{3}{4} x^2
ight) dx
ight|$ $= \left[\frac{3}{4} \cdot \frac{x^3}{3}\right]_{-2}^4$ $=\frac{1}{4}[64-(-8)]=18$ sq. units : Required area = Area ABCD - (Area CDO + Area OAB) = 45 - 18 = 27 sq. units 13. Equation of line in vector form Line I: $ec{\mathbf{r}} = (\hat{\imath} - \hat{\jmath} + 0\hat{k}) + \lambda(2\,\hat{\imath} + 0\hat{\jmath} + \hat{k})$ Line II: $\vec{r} = (2\hat{f} - \hat{j}) + \mu(\hat{i} + \hat{j} - \hat{k})$ Here, $ec{a_1} = \hat{\imath} - \hat{\jmath} + 0 \hat{k} \ ec{a_2} = 2 \, \hat{\imath} - \hat{\jmath} \ ec{b_1} = 2 \, \hat{\imath} + 0 \hat{j} + \hat{k}$ $\vec{\mathbf{b}_2} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ We know that the shortest distance between lines is We know that the shortest distance between In $d = \frac{|(\vec{a}_2 - \vec{a}_1)(\vec{b}_1 \times \vec{b}_2)|}{|\vec{b}_1 \times \vec{b}_2|}$ $(\vec{a}_2 - \vec{a}_1) = (2\hat{\imath} - \hat{\jmath}) - (\hat{\imath} - \hat{\jmath} + 0\hat{k})$ $(\vec{a}_2 - \vec{a}_1) = \hat{\imath} + 0\hat{\jmath} + 0\hat{k}$ $\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{1} & \hat{\jmath} & \hat{k} \\ 2 & 0 & 1 \\ 1 & 1 & -1 \end{vmatrix}$ $\vec{b}_1 \times \vec{b}_2 = (0 - 1)\hat{i} - (-2 - 1)\hat{j} + (2 - 0)\hat{k}$ $\Rightarrow \vec{b}_1 \times \vec{b}_2 = -\hat{1} + 3\hat{j} + 2\hat{k}$ $|\vec{b}_1 \times \vec{b}_2| = \sqrt{(-1)^2 + 3^2 + 2^2}$ $\Rightarrow |\vec{b}_1 \times \vec{b}_2| = \sqrt{14}$ $|(\vec{a}_2 - \vec{a}_1)(\vec{b}_1 \times \vec{b}_2)| = |(\hat{\imath} + 0\hat{\jmath} + 0\hat{k})(-\hat{\imath} + 3\hat{\jmath} + 2\hat{k})|$ $\Rightarrow |(\vec{a}_2 - \vec{a}_1)(\vec{b}_1 \times \vec{b}_2)| = 1$ Substituting these values in the expression, $d = \frac{|(\vec{a}_2 - \vec{a}_1)(\vec{b}_1 \times \vec{b}_2)|}{|\vec{b}_1 \times \vec{b}_2|}$ $d = \frac{1}{\sqrt{14}}$ d = $\frac{1}{\sqrt{14}}$ units Shortest distance d between the lines is not 0. Hence the given lines are not intersecting.

CASE-BASED/DATA-BASED

14. Let S = Shirt, T = Trouser P(S) = 0.2, P(T) = 0.3 and $P\left(\frac{S}{T}\right) = 0.4$ We need to find P(S \cap T) and P $\left(\frac{T}{S}\right)$ We know, $P\left(\frac{S}{T}\right) = \frac{P(S \cap T)}{P(T)}$ From given data, 0.4 = P (S \cap T) / 0.3 P (S \cap T) = 0.4 × 0.3 = 0.12 Also,we have, $P\left(\frac{T}{S}\right) = \frac{P(T \cap S)}{P(S)} = \frac{0.12}{0.2} = \frac{12}{20} = \frac{6}{10} = \frac{3}{5} = 0.6$