

Contents							
2.1	Definition						
2.2	Slope (gradient) of a line						
2.3	Equations of straight line in different forms						
2.4	Equation of parallel and perpendicular lines to a given line						
2.5	General equation of a straight line and its transformation in standard forms						
2.6	Selection of co-ordinates of a point on a straight line						
2.7	Point of intersection of two lines						
2.8	General equation of lines through the intersection of two given lines						
2.9	Angle between two non-parallel lines						
2.10	Equation of straight line through a given point making a given angle with a given line						
2.11	A line equally inclined with two lines						
2.12	Equations of the bisectors of the angles between two straight lines						
2.13	Length of perpendicular						
2.14	Position of a point with respect to a line						
2.15	Position of two points with respect to a line						
2.16	Concurrent lines						
2.17	Reflection on the surface						
2.18	Image of point in different cases						
2.19	Some important results						
A	ssignment (Basic and Advance Level)						
	Answer Sheet of Assignment						

A straight line is the simplest geometric curve. Monge (1781 A.D.) gave the modern 'Point Slope' form of equation of a line as y - y' = m(x - x') and condition of perpendicularity of two lines as mm' + 1 = 0S.f. Lacroix (1765-1843 A.D.) was a prolific text

book writer; but his contributions to analytic geometry are found scattered. He gave the 'two point' form of equation of a line as $y - \beta = \frac{\beta' - \beta}{\alpha' - \alpha} (x - \alpha)$. He also gave the formula

for finding angles between two lines.

2.1 Definition

The straight line is a curve such that every point on the line segment joining any two points on it lies on it. The simplest locus of a point in a plane is a straight line. A line is determined uniquely by any one of the following:

(1) Two different points (because we know the axiom that one and only one straight line passes through two given points)

(2) A point and a given direction.

Thus, to determine a line uniquely, two geometrical conditions are required.

2.2 Slope (Gradient) of a Line

The trigonometrical tangent of the angle that a line makes with the positive direction of the *x*-axis in anticlockwise sense is called the slope or gradient of the line.

The slope of a line is generally denoted by *m*. Thus, $m = \tan \theta$

- (1) Slope of line parallel to x axis is $m = \tan 0^{\circ} = 0$.
- (2) Slope of line parallel to y axis is $m = \tan 90^{\circ} = \infty$.
- (3) Slope of the line equally inclined with the axes is 1 or -1.
- (4) Slope of the line through the points $A(x_1, y_1)$ and $B(x_2, y_2)$ is $\frac{y_2 y_1}{x_1 x_2}$

(5) Slope of the line
$$ax + by + c = 0, b \neq 0$$
 is $-\frac{a}{b}$.

- (6) Slope of two parallel lines are equal.
- (7) If m_1 and m_2 be the slopes of two perpendicular lines, then $m_1 \cdot m_2 = -1$.

Note: $\Box m$ can be defined as $\tan \theta$ for $0 < \theta \le \pi$ and $\theta \ne \frac{\pi}{2}$

□ If three points *A*, *B*, *C* are collinear, then

Slope of AB = Slope of BC = Slope of AC

Example: 1 The gradient of the line joining the points on the curve $y = x^2 + 2x$, whose abscissae are 1 and 3, is

$$\frac{y_2 - y_1}{x_2 - x_1}$$
 taken in the same order.

[MP PET 1997]

	(a) 6	(b) 5	(c) 4	(d) 3	
Solution: (a)	The points are $(1, 3)$	and (3, 15)			
	Hence gradient is =	$\frac{y_2 - y_1}{x_2 - x_1} = \frac{12}{2} = 6$			
Example: 2	Slope of a line which	h cuts intercepts of equal lengtl	ns on the axes is		[MP PET 1986]
	(a) – 1	(b) 0	(c) 2	(d) $\sqrt{3}$	
Solution: (a)	Equation of line is $\frac{2}{6}$	$\frac{x}{a} + \frac{y}{a} = 1$			

 \Rightarrow $x + y = a \Rightarrow y = -x + a$. Hence slope of the line is -1.

2.3 Equations of Straight line in Different forms

(1) **Slope form :** Equation of a line through the origin and having slope *m* is y = mx.

(2) One point form or Point slope form : Equation of a line through the point (x_1, y_1) and having slope *m* is $y - y_1 = m(x - x_1)$.

(3) Slope intercept form : Equation of a line (non-vertical) with slope m and cutting off an intercept c on the y-axis is y = mx + c.

The equation of a line with slope *m* and the *x*-intercept *d* is y = m(x - d)

(4) **Intercept form :** If a straight line cuts *x*-axis at *A* and the *y*-axis at *B* then *OA* and *OB* are known as the intercepts of the line on *x*-axis and *y*-axis respectively.

The intercepts are positive or negative according as the line meets with positive or negative directions of the coordinate axes.

In the figure, OA = x-intercept, OB = y-intercept.

Equation of a straight line cutting off intercepts a and b on x-axis and y-axis respectively is $\frac{x}{a} + \frac{y}{b} = 1$.

Wole : \Box If given line is parallel to *X* axis, then *X*-intercept is undefined.

 \Box If given line is parallel to *Y* axis, then *Y*-intercept is undefined.

(5)**Two point form:** Equation of the line through the points $A(x_1, y_1)$ and $B(x_2, y_2)$ is $(y - y_1) = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$. In

the determinant form it is gives as:

 $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$ is the equation of line.

(6) Normal or perpendicular form : The equation of the straight line upon which the length of the perpendicular from the origin is p and this perpendicular makes an angle α with x-axis is $x \cos \alpha + y \sin \alpha = p$.

(7) Symmetrical or parametric or distance form of the line : Equation of a line passing through (x_1, y_1) and making an angle θ with the positive direction of x-

axis is
$$\frac{x - x_1}{\cos \theta} = \frac{y - y_1}{\sin \theta} = r$$
,

where *r* is the distance between the point *P* (*x*, *y*) and *A*(x_1, y_1).

The coordinates of any point on this line may be taken as $(x_1 + r \cos \theta, y_1 + r \sin \theta)$, known as parametric co-ordinates, 'r' is called the parameter.

Note: \Box Equation of *x*-axis $\Rightarrow y = 0$

Equation a line parallel to *x*-axis (or perpendicular to *y*-axis) at a distance 'b' from it $\Rightarrow y = b$

Equation of a line parallel to y-axis (or perpendicular to x-axis) at a distance 'a' from it $\Rightarrow x = a$

Example: 3 Equation to the straight line cutting off an intercept 2 from the negative direction of the axis of y and inclined at 30° to the positive direction of x, is [MP PET 2003] (a) $y + x - \sqrt{3} = 0$ (b) y - x + 2 = 0 (c) $y - \sqrt{3}x - 2 = 0$ (d) $\sqrt{3}y - x + 2\sqrt{3} = 0$

(a)
$$y + x - \sqrt{3} = 0$$
 (b) $y - x + 2 = 0$ (c) $y - \sqrt{3}x - 2 = 0$ (d) $\sqrt{3}y - x + 2\sqrt{3} = 0$
Solution: (d) Let the equation of the straight line is $y = mx + c$.
Here $m = \tan 30^\circ = \frac{1}{\sqrt{3}}$ and $c = -2$
Hence, the required equation is $y = \frac{1}{\sqrt{2}}x - 2 \Rightarrow \sqrt{3}y - x + 2\sqrt{3} = 0$.

Example: 4 The equation of a straight line passing through (- 3, 2) and cutting an intercept equal in magnitude but opposite in sign from the axes is given by [Rajasthan PET 1984; MP PET 1993]

(a)
$$x - y + 5 = 0$$
 (b) $x + y - 5 = 0$ (c) $x - y - 5 = 0$ (d) $x + y + 5 = 0$
Solution: (a) I at the equation be $\frac{x}{a} + \frac{y}{a} = 1 - 7 - x - y = a$
But it passes through (-3, 2), hence $a = -3 - 2 = -5$. Hence the equation of straight line is $x - y + 5 = 0$.
Example: 5 In the equation of the straight line passing through the point (4, 3) and making interapt on the co-ordinate are swholes sum is - 1, is **INTEREDUCT**
(a) $\frac{x}{2} - \frac{y}{2} = -1$ and $\frac{x}{2} + \frac{y}{1} = 1$ (b) $\frac{x}{2} - \frac{y}{2} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
(c) $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{2} + \frac{y}{1} = 1$ (d) $\frac{x}{2} + \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
(e) $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{2} + \frac{y}{1} = 1$.
Solution: (d) I at the equation of the is $\frac{x}{a} + \frac{y}{-1 - a} = 1$, which passes through (4, 3). Then $\frac{4}{a} + \frac{3}{-1 - a} = 1 - 3 = \pm 2$.
Hence equation is $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1} = 1$.
Example: 6 Let *R* be the median of the triangle with vertices *P*(2,2), *Q*(5, -1) and *R*(7, 3). The equation of the line passing through (1, -1) and parallel to *R* is **(IIT Screening 2000)**
(a) $2x - 9y - 7 = 0$ (b) $2x - 9y - 11 = 0$ (c) $2x + 9y - 11 = 0$ (d) $2x + 9y + 7 = 0$
Solution: (a) $S = \min d point of $QR = \left(\frac{6+7}{2}, \frac{-1+3}{2}\right) = \left(\frac{13}{2}, 1\right)$
 \therefore Stope (*m*) of $PS = \frac{2-1}{2-\frac{13}{2}} = \frac{-2}{2}$ \therefore The required equation is $y + 1 = \frac{-2}{9}(x - 1) = 2x + 9y + 7 = 0$
2.4 Equation of Parallel and Perpendicular lines to a given Line
(1) Equation of a line which is parallel to $\alpha + by + c = 0$ is $\alpha + by + \lambda = 0$
(2) Equation of a line which is parallel to $\alpha + by + c = 0$ is $\alpha + by + \lambda = 0$
The value of λ in both cases is obtained with the help of additional information given in the problem.
Example: 7 The equation of meline passes through (*a*, *b*) and parallel to be line $\frac{x}{a} + \frac{y}{b} = 1$, is **(Bajasthun PET 1986, 1995)**
(a) $\frac{x}{a} + \frac{y}{b} = 3$ (b) $\frac{x}{a} + \frac{y}{b} = 2$.
This line passes through point (*a*, *b*) $\frac{x}{a} + \frac{y}{b} = 2$$

(a)
$$2 = \sqrt{3} r \cos \theta - 2r \sin \theta$$

(b) $5 = -2\sqrt{3} r \sin \theta + 4r \cos \theta$
(c) $2 = \sqrt{3} r \cos \theta + 2r \sin \theta$
(d) $5 = 2\sqrt{3} r \sin \theta + 4r \cos \theta$
Solution: (a) Equation of a line, perpendicular to $\sqrt{3} \sin \theta + 2 \cos \theta = \frac{4}{r}$ is $\sqrt{3} \sin \left(\frac{\pi}{2} + \theta\right) + 2 \cos\left(\frac{\pi}{2} + \theta\right) = \frac{k}{r}$
It is passing through $\left(-1, \frac{\pi}{2}\right)$. Hence, $\sqrt{3} \sin \pi + 2 \cos \pi = k/-1 \Rightarrow k = 2$
 $\therefore \sqrt{3} \cos \theta - 2 \sin \theta = \frac{2}{r} \Rightarrow 2 = \sqrt{3} r \cos \theta - 2r \sin \theta$.
Example: 10 The equation of the line bisecting perpendicularly the segment joining the points (-4, 6) and (8, 8) is [Karnataka CET 2003]
(a) $6x + y - 19 = 0$ (b) $y = 7$ (c) $6x + 2y - 19 = 0$ (d) $x + 2y - 7 = 0$
Solution: (a) Equation of the line passing through (-4, 6) and (8, 8) is
 $y - 6 = \frac{8 - 6}{8 + 4}(x + 4) \Rightarrow y - 6 = \frac{2}{12}(x + 4) \Rightarrow 6y - x = 40$ (i)
Now equation of any line \bot to it is $6x + y + \lambda = 0$ (ii)
This line passes through the midpoint of (-4, 6) and (8, 8) *i.e.*, (2, 7)
 \therefore From (ii) $12 + 7 + \lambda = 0 \Rightarrow \lambda = -19$, \therefore Equation of line is $6x + y - 19 = 0$

2.5 General equation of a Straight line and its Transformation in Standard forms

General form of equation of a line is ax + by + c = 0, its

(1) Slope intercept form:
$$y = -\frac{a}{b}x - \frac{c}{b}$$
, slope $m = -\frac{a}{b}$ and intercept on y-axis is, $C = -\frac{c}{b}$

(2) Intercept form :
$$\frac{x}{-c/a} + \frac{y}{-c/b} = 1$$
, x intercept is $= \left(-\frac{c}{a}\right)$ and y intercept is $= \left(-\frac{c}{b}\right)$

(3) Normal form : To change the general form of a line into normal form, first take *c* to right hand side and make it positive, then divide the whole equation by $\sqrt{a^2 + b^2}$ like

$$-\frac{ax}{\sqrt{a^2+b^2}} - \frac{by}{\sqrt{a^2+b^2}} = \frac{c}{\sqrt{a^2+b^2}}, \text{ where } \cos \alpha = -\frac{a}{\sqrt{a^2+b^2}}, \sin \alpha = -\frac{b}{\sqrt{a^2+b^2}} \text{ and } p = \frac{c}{\sqrt{a^2+b^2}}$$

2.6 Selection of Co-ordinate of a Point on a Straight line

(1) If the equation of the straight line be ax + by + c = 0, in order to select a point on it, take the *x* co-ordinate according to your sweet will. Let $x = \lambda$; then $a\lambda + by + c = 0$ or $y = -\frac{a\lambda + c}{b}$;

$$\therefore \left(\lambda, -\frac{a\lambda+c}{b}\right) \text{ is a point on the line for any real value of } \lambda \text{ . If } \lambda = 0 \text{ is taken then the point will be } \left(0, -\frac{c}{b}\right)$$

Similarly a suitable point can be taken as $\left(-\frac{c}{a},0\right)$.

(2) If the equation of the line be x = c then a point on it can be taken as (c, λ) where λ has any real value.

In particular (c, 0) is a convenient point on it when $\lambda = 0$.

(3) If the equation of the line be y = c then a point on it can be taken as (λ, c) where λ has any real value.

In particular (0, c) is a convenient point on it when $\lambda = 0$.

Example: 11 If we reduce 3x + 3y + 7 = 0 to the form $x \cos \alpha + y \sin \alpha = p$, then the value of p is

[MP PET 2001]

(a)
$$\frac{7}{2\sqrt{3}}$$
 (b) $\frac{7}{3}$ (c) $\frac{3\sqrt{7}}{2}$ (d) $\frac{7}{3\sqrt{2}}$

Solution: (d)

Given equation is
$$3x + 3y + 7 = 0$$
, Dividing both sides by $\sqrt{3^2 + 3^2}$

$$\Rightarrow \frac{3x}{\sqrt{3^2 + 3^2}} + \frac{3y}{\sqrt{3^2 + 3^2}} + \frac{7}{\sqrt{3^2 + 3^2}} = 0 \Rightarrow \frac{3}{3\sqrt{2}}x + \frac{3}{3\sqrt{2}}y = \frac{-7}{3\sqrt{2}}, \quad \therefore \quad p = \left|\frac{-7}{3\sqrt{2}}\right| = \frac{7}{3\sqrt{2}}.$$

2.7 Point of Intersection of Two lines

Let $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ be two non-parallel lines. If (x', y') be the co-ordinates of their point of intersection, then $a_1x' + b_1y' + c_1 = 0$ and $a_2x' + b_2y' + c_2 = 0$

Solving these equation, we get
$$(x', y') = \left(\frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}, \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}\right) = \left(\frac{\begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}, \frac{\begin{vmatrix} c_1 & c_2 \\ a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}\right)$$

Note : \Box Here lines are not parallel, they have unequal slopes, then $a_1b_2 - a_2b_1 \neq 0$.

□ In solving numerical questions, we should not remember the co-ordinates (x', y') given above, but we solve the equations directly.

2.8 General equation of Lines through the Intersection of Two given Lines

If equation of two lines $P = a_1x + b_1y + c_1 = 0$ and $Q = a_2x + b_2y + c_2 = 0$, then the equation of the lines passing through the point of intersection of these lines is $P + \lambda Q = 0$ or $a_1x + b_1y + c + \lambda(a_2x + b_2y + c_2) = 0$; Value of λ is obtained with the help of the additional information given in the problem.

Equation of a line passing through the point of intersection of lines 2x - 3y + 4 = 0, 3x + 4y - 5 = 0 and perpendicular to Example: 12 [Rajasthan PET 2000] 6x - 7y + 3 = 0, then its equation is (a) 119x + 102y + 125 = 0(b) 119x + 102y = 125 (c) 119x - 102y = 125(d) None of these The point of intersection of the lines 2x - 3y + 4 = 0 and 3x + 4y - 5 = 0 is $\left(\frac{-1}{17}, \frac{22}{17}\right)$ Solution: (b) The slope of required line $=\frac{-7}{\epsilon}$. Hence, Equation of required line is, $y - \frac{22}{7} = \frac{-7}{6} \left(x + \frac{2}{34} \right) \Rightarrow 119 x + 102 y = 125$. Example: 13 The equation of straight line passing through point of intersection of the straight lines 3x - y + 2 = 0 and 5x - 2y + 7 = 0 and having infinite slope is [UPSEAT 2001] (a) x = 2(b) x + y = 3(c) x = 3(d) x = 4Required line should be, $(3x - y + 2) + \lambda(5x - 2y + 7) = 0$ Solution: (c)(i) $\Rightarrow (3+5\lambda)x - (2\lambda+1)y + (2+7\lambda) = 0 \Rightarrow y = \left(\frac{3+5\lambda}{2\lambda+1}\right)x + \frac{2+7\lambda}{2\lambda+1}$(ii) As the equation (ii) has infinite slope, $2\lambda + 1 = 0 \implies \lambda = \frac{-1}{2}$ Putting $\lambda = \frac{-1}{2}$ in equation (i), We have $(3x - y + 2) + \left(\frac{-1}{2}\right)(5x - 2y + 7) = 0 \implies x = 3$

2.9 Angle between Two non-parallel Lines

Let θ be the angle between the lines $y = m_1 x + c_1$ and $y = m_2 x + c_2$.

and intersecting at A.

where, $m_1 = \tan \alpha$ and $m_2 = \tan \beta$

$$\therefore \qquad \alpha = \theta + \beta \implies \theta = \alpha - \beta$$

$$\Rightarrow \qquad \tan \theta = \left| \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} \right|$$

:
$$\theta = \tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|.$$

(1) Angle between two straight lines when their equations are given : The angle θ between the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ is given by, $\tan \theta = \left| \frac{a_2b_1 - a_1b_2}{a_1a_2 + b_1b_2} \right|$.

(i) Condition for the lines to be parallel : If the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are parallel then,

$$m_1 = m_2 \Rightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} \Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2}.$$

(ii) Condition for the lines to be perpendicular : If the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are perpendicular then, $m_1m_2 = -1 \Rightarrow \frac{a_1}{b_1} \times \frac{a_2}{b_2} = -1 \Rightarrow a_1a_2 + b_1b_2 = 0$.

(iii) Conditions for two lines to be coincident, parallel, perpendicular and intersecting : Two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are,

(a) Coincident, if
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 (b) Parallel, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ (c) Intersecting, if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

(d) Perpendicular, if $a_1a_2 + b_1b_2 = 0$

Example: 14	Angle between the lines $2x - y$	[Rajasthan PET 2003]				
	(a) 90°	(b) 45°	(c) 180°	(d)	60°	
Solution: (b)	$\tan \theta = \left \frac{a_2 b_1 - a_1 b_2}{a_1 a_2 + b_1 b_2} \right = \left \frac{(3)(-1)}{(3)(2)} \right $	$\left \frac{(-2)(1)}{(-1)(1)} \right \Rightarrow \tan \theta = \left \frac{-3-2}{6-1} \right $	$\left =\left \frac{-5}{5}\right = -1 \right $			
	$\theta = \tan^{-1} -1 = \tan^{-1} 1 = 4$	45°.				
Example: 15	To which of the following types the	ne straight lines represented by 2	4x + 3y - 7 = 0 and $2x + 3y - 5$	5 = 0	belongs	[MP PET 1982]
	(a) Parallel to each other		(b) Perpendicular to each oth	ier		
	(c) Inclined at 45° to each other	r	(d) Coincident pair of straigh	nt lines	8	
Solution: (a)	Here, $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}; \frac{2}{3} = \frac{2}{3}$	$\neq \frac{7}{5}$. Hence, lines are paralle	el to each other.			

2.10 Equation of Straight line through a given point making a given Angle with a given Line

Since straight line *L* makes an angle $(\theta + \alpha)$ with *x*-axis, then equation of line *L* is $y - y_1 = \tan(\theta + \alpha)(x - x_1)$ and straight line *L'* makes an angle $(\theta - \alpha)$ with *x*-axis, then equation of line *L'* is

 $\Rightarrow \qquad y - y_1 = \tan(\theta - \alpha)(x - x_1)$ where $m = \tan \theta$

Hence, the equation of the straight lines which pass through a given point (x_1, y_1) and make a given angle α with given straight line y = mx + c are

$$y - y_1 = \frac{m \pm \tan \alpha}{1 \mp m \tan \alpha} (x - x_1)$$

C = mx + c C =

Example: 16 The equation of the lines which passes through the point (3, -2) and are inclined at 60° to the line $\sqrt{3}x + y = 1$

[IIT 1974; MP PET 1996]

(a) y + 2 = 0, $\sqrt{3}x - y - 2 - 3\sqrt{3} = 0$ (b) x - 2 = 0, $\sqrt{3}x - y + 2 + 3\sqrt{3} = 0$ (c) $\sqrt{3}x - y - 2 - 3\sqrt{3} = 0$ (d) None of these

Solution: (a) The equation of lines passing through (3, -2) is (y+2) = m(x-3)(i)

The slope of the given line is $-\sqrt{3}$.

So,
$$\tan 60^\circ = \pm \frac{m - (-\sqrt{3})}{1 + m(-\sqrt{3})}$$
. On solving, we get $m = 0$ or $\sqrt{3}$

Putting the values of *m* in (i), the required equation is y + 2 = 0 and $\sqrt{3}x - y - 2 - 3\sqrt{3} = 0$.

Example: 17 In an isosceles triangle *ABC*, the coordinates of the point *B* and *C* on the base *BC* are respectively (1, 2) and (2, 1). If the equation of the line *AB* is y = 2x, then the equation of the line *AC* is **[Roorkee 2000]**

(a) $y = \frac{1}{2}(x-1)$ (b) $y = \frac{x}{2}$ (c) y = x-1 (d) 2y = x+3Slope of $BC = \frac{1-2}{2-1} = -1$

Solution: (b)

$$\therefore AB = AC, \therefore \angle ABC = \angle ACB$$

$$\Rightarrow \left| \frac{2+1}{1+2(-1)} \right| = \frac{m+1}{1+m(-1)} \Rightarrow \frac{m+1}{1-m} = |-3| \Rightarrow \frac{m+1}{1-m} = \pm 3 \Rightarrow m = 2, \frac{1}{2}.$$

But slope of *AB* is 2; $\therefore m = \frac{1}{2}$ (Here *m* is the gradient of the line *AC*)
Equation of the line *AC* is $y - 1 = \frac{1}{2}(x - 2) \Rightarrow x - 2y = 0$ or $y = \frac{x}{2}$.

2.11 A Line equally inclined with Two lines

Let the two lines with slopes m_1 and m_2 be equally inclined to a line with slope m

then,
$$\left(\frac{m_1 - m}{1 + m_1 m}\right) = -\left(\frac{m_2 - m}{1 + m_2 m}\right)$$

Note : \Box Sign of *m* in both brackets is same.

Example: 18 If the lines y = 3x + 1 and 2y = x + 3 are equally inclined to the line y = mx + 4, then

(a)
$$\frac{1+3\sqrt{2}}{7}$$
 (b) $\frac{1-3\sqrt{2}}{7}$ (c) $\frac{1+3\sqrt{2}}{7}$ (d) $\frac{1\pm 5\sqrt{2}}{7}$

Solution: (d) If line y = mx + 4 are equally inclined to lines with slope $m_1 = 3$ and $m_2 = \frac{1}{2}$, then $\left(\frac{3-m}{1+3m}\right) = -\left(\frac{\frac{2}{2}-3}{1+\frac{1}{2}m}\right) \Rightarrow m = \frac{1\pm 5\sqrt{2}}{7}$

2.12 Equations of the bisectors of the Angles between two Straight lines

The equation of the bisectors of the angles between the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are given

.....(i)

by, $\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$

Algorithm to find the bisector of the angle containing the origin :

Let the equations of the two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$. To find the bisector of the angle containing the origin, we proceed as follows:

Step I: See whether the constant terms c_1 and c_2 in the equations of two lines positive or not. If not, then multiply both the sides of the equation by -1 to make the constant term positive.

Step II : Now obtain the bisector corresponding to the positive sign *i.e.*, $\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$.

This is the required bisector of the angle containing the origin.

Vote : The bisector of the angle containing the origin means the bisector of the angle between the lines which contains the origin within it.

(1) To find the acute and obtuse angle bisectors

Let θ be the angle between one of the lines and one of the bisectors given by (i). Find $\tan \theta$. If $|\tan \theta| < 1$, then this bisector is the bisector of acute angle and the other one is the bisector of the obtuse angle.

If $|\tan \theta| > 1$, then this bisector is the bisector of obtuse angle and other one is the bisector of the acute angle.

(2) Method to find acute angle bisector and obtuse angle bisector

(i) Make the constant term positive, if not. (ii) Now determine the sign of the expression $a_1a_2 + b_1b_2$.

(iii) If $a_1a_2 + b_1b_2 > 0$, then the bisector corresponding to "+" sign gives the obtuse angle bisector and the bisector corresponding to "-" sign is the bisector of acute angle between the lines.

(iv) If $a_1a_2 + b_1b_2 < 0$, then the bisector corresponding to "+" and "-" sign given the acute and obtuse angle bisectors respectively.

Note : D Bisectors are perpendicular to each other.

[Orissa JEE 2002]

Example: 19 The equation of the bisectors of the angles between the lines $|x| \neq y|$ are

(a) $y = \pm x$ and x = 0 (b) $x = \frac{1}{2}$ and $y = \frac{1}{2}$ (c) y = 0 and x = 0

Solution: (c) The equation of lines are x + y = 0 and x - y = 0.

 \therefore The equation of bisectors of the angles between these lines are $\frac{x+y}{\sqrt{1+1}} = \pm \frac{x-y}{\sqrt{1+1}} \Rightarrow x+y = \pm (x-y)$

Taking +ve sign, we get y = 0; Taking -ve sign, we get x = 0. Hence, the equation of bisectors are x = 0, y = 0.

Example: 20 The equation of the bisector of the acute angle between the lines 3x - 4y + 7 = 0 and 12x + 5y - 2 = 0 is

[IIT 1975, 1983; Rajasthan PET 2003]

(a)
$$21x + 77y - 101 = 0$$
 (b) $11x - 3y + 9 = 0$ (c) $31x + 77y + 101 = 0$ (d) $11x - 3y - 9 = 0$
Solution: (b) Bisector of the angles is given by $\frac{3x - 4y + 7}{5} = \pm \frac{12x + 5y - 2}{13}$
 $\Rightarrow 11x - 3y + 9 = 0$ (i) and $21x + 77y - 101 = 0$ (ii)
Let the angle between the line $3x - 4y + 7 = 0$ and (i) is α , then $\tan \alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{3}{4} - \frac{11}{3}}{1 + \frac{3}{4} \times \frac{11}{3}} \right| = \frac{35}{45} < 1 \Rightarrow \alpha < 45^{\circ}$

Hence 11x - 3y + 9 = 0 is the bisector of the acute angle between the given lines.

2.13 Length of Perpendicular

(1) Distance of a point from a line : The length p of the perpendicular from the point (x_1, y_1) to the line ax + by + c = 0 is given by $p = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

Note: \Box Length of perpendicular from origin to the line ax + by + c = 0 is $\frac{c}{\sqrt{a^2 + b^2}}$.

□ Length of perpendicular from the point (x_1, y_1) to the line $x \cos \alpha + y \sin \alpha = p$ is $x_1 \cos \alpha + y_1 \sin \alpha - p$.

(2) Distance between two parallel lines : Let the two parallel lines be $ax + by + c_1 = 0$ and $ax + by + c_2 = 0$.

First Method : The distance between the lines is $d = \frac{|c_1 - c_2|}{\sqrt{(a^2 + b^2)}}$.

 $ax + by + c_1 = 0$

 $ax + by + c_2 = 0$

Second Method : The distance between the lines is $d = \frac{\lambda}{\sqrt{a^2 + b^2}}$, where

(i) $\lambda = c_1 - c_2$ if they be on the same side of origin.

(ii) $\lambda = c_1 |+| c_2 |$ if the origin O lies between them.

Third method : Find the coordinates of any point on one of the given line, preferably putting x = 0 or y = 0. Then the perpendicular distance of this point from the other line is the required distance $\frac{ax + by + c_1 = 0}{ax + by + c_1 = 0}$

Note: Distance between two parallel lines
$$ax + by + c_1 = 0$$
 and
 $kax + kby + c_2 = 0$ is $\frac{\left|c_1 - \frac{c_2}{k}\right|}{\sqrt{a^2 + b^2}}$

Distance between two non parallel lines is always zero.

2.14 Position of a Point with respect to a Line

Let the given line be ax + by + c = 0 and observing point is (x_1, y_1) , then

.0(0,0)

(i) If the same sign is found by putting in equation of line $x = x_1, y = y_1$ and x = 0, y = 0 then the point (x_1, y_1) is situated on the side of origin.

(ii) If the opposite sign is found by putting in equation of line $x = x_1$, $y = y_1$ and x = 0, y = 0 then the point (x_1, y_1) is situated opposite side to origin.

2.15 Position of Two points with respect to a Line

Two points (x_1, y_1) and (x_2, y_2) are on the same side or on the opposite side of the straight line ax + by + c = 0 according as the values of $ax_1 + by_1 + c$ and $ax_2 + by_2 + c$ are of the same sign or opposite sign.

Example: 21 The distance of the point (-2, 3) from the line
$$x - y = 5$$
 is [MP PET 2001]
(a) $5\sqrt{2}$ (b) $2\sqrt{5}$ (c) $3\sqrt{5}$ (d) $5\sqrt{3}$
Solution: (a) $p = \left|\frac{x_1 - y_1 - 5}{\sqrt{1^2 + 1^2}}\right| = \left|\frac{-2.3 - 5}{\sqrt{1^2 + 1^2}}\right| = \left|\frac{-10}{\sqrt{2}}\right| = 5\sqrt{2}$
Example: 22 The distance between the lines $4x + 3y = 11$ and $8x + 6y = 15$ is [AMU 1979; MNR 1987; UPSEAT 2000; DCE 1999]
(a) $\frac{7}{2}$ (b) 4 (c) $\frac{7}{10}$ (d) None of these
Solution: (c) Given lines $4x + 3y = 11$ and $8x + 6y = 15$, distance from the origin to both the lines are $\left|\frac{-11}{\sqrt{25}}\right|$ and $\left|\frac{-15}{\sqrt{100}}\right| \Rightarrow \frac{11}{5} \cdot \frac{15}{10}$
Clearly both lines are on the same side of the origin.
Hence, distance between both the lines are, $\frac{11}{5} - \frac{15}{10} = \frac{7}{10}$.
Example: 23 If the length of the perpendicular drawn from origin to the line whose intercepts on the axes are *a* and *b* be *p*, then
(Karnataka CET 2003]
(a) $a^2 + b^2 = p^2$ (b) $a^2 + b^2 = \frac{1}{p^2}$ (c) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{2}{p^2}$ (d) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}$
Solution: (d) Equation of line is $\frac{x}{a} + \frac{y}{b} = 1 \Rightarrow bx + ay - ab = 0$
Perpendicular distance from origin to given line is $p = \left|\frac{-ab}{\sqrt{a^2 + b^2}}\right| \Rightarrow \frac{\sqrt{a^2 + b^2}}{ab} = \frac{1}{p} \Rightarrow \frac{a^2 + b^2}{a^2 b^2} = \frac{1}{a^2} \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}$
Example: 24 The point on the *x*-axis whose perpendicular from the line $\frac{x}{a} + \frac{y}{b} = 1$ is a , is[Rajasthan PET 2003]
(a) $\left[\frac{a}{b}(b + \sqrt{a^2 + b^2}), 0\right]$ (b) $\left[\frac{b}{a}(b + \sqrt{a^2 + b^2}), 0\right]$ (c) $\left[\frac{a}{b}(a + \sqrt{a^2 + b^2}), 0\right]$ (d) None of these
Solution: (a) Let the point be $(h,0)$ then $a = \pm \frac{bh + 0 - ab}{\sqrt{a^2 + b^2}} \Rightarrow bh = \pm a\sqrt{a^2 + b^2} + ab \Rightarrow h = \frac{a}{b}(b \pm \sqrt{a^2 + b^2})$
Hence the point is $\left[\frac{a}{b}(b \pm \sqrt{a^2 + b^2}), 0\right]$
Example: 25 The vertex of an equilateral triangle is (2, -1) and the equation of its hase is $x + 2y = 1$. The length of its ides is (DPSEAT 2003]
(a) $\frac{4}{\sqrt{15}}$

 $\overset{\frown}{B}(h,k)$

(c)
$$\frac{4}{3\sqrt{3}}$$

 $|AD| = \left| \frac{2 - 2 - 1}{\sqrt{1^2 + 2^2}} \right| = \frac{1}{\sqrt{5}}$

(d) None of these

Solution: (b)

$$\therefore \quad \tan 60^{\circ} = \frac{AD}{BD} \Rightarrow \sqrt{3} = \frac{1/\sqrt{5}}{BD} \Rightarrow BD = \frac{1}{\sqrt{15}} \Rightarrow BC = 2BD = \frac{2}{\sqrt{15}}$$

2.16 Concurrent Lines

Three or more lines are said to be concurrent lines if they meet at a point.

First method : Find the point of intersection of any two lines by solving them simultaneously. If the point satisfies the third equation also, then the given lines are concurrent.

Second method : The three lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ and $a_3x + b_3y + c_3 = 0$ are concurrent if,

 $b_1 \quad c_1$ a_1 $b_2 c_2 = 0$ a_2 a_3 $b_3 c_3$

Third method : The condition for the lines P = 0, Q = 0 and R = 0 to be concurrent is that three constants a, b, c (not all zero at the same time) can be obtained such that aP + bQ + cR = 0.

Example: 26	If the lines $ax + by + c = 0$, $bx + cy + a = 0$ and $cx + ay + b = 0$ be concurrent, then	[IIT 1985; DCE 2002]
Solution: (c)	(a) $a^3 + b^3 + c^3 + 3abc = 0$ (b) $a^3 + b^3 + c^3 - abc = 0$ (c) $a^3 + b^3 + c^3 - 3abc = 0$ Here the given lines are, $ax + by + c = 0$, $bx + cy + a = 0$, $cx + ay + b = 0$) (d) None of these
	The lines will be concurrent, iff $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0 \implies a^3 + b^3 + c^3 - 3abc = 0$	
Example: 27	If the lines $4x + 3y = 1$, $y = x + 5$ and $5y + bx = 3$ are concurrent, then <i>b</i> equals	
	[Kajasthan P] (a) 1 (b) 3 (c) 6	(d) 0
Solution: (c)	If these lines are concurrent then the intersection point of the lines $4x + 3y = 1$ and $y = x + 5$, is	(-2, 3), which lies on the third line.
Example: 28	Hence, $\Rightarrow 5 \times 3 - 2b = 3 \Rightarrow 15 - 2b = 3 \Rightarrow 2b = 12 \Rightarrow b = 6$ The straight lines $4ax + 3by + c = 0$ where $a + b + c = 0$, will be concurrent, if point is	[Rajasthan PET 2002]
	(a) (4, 3) (b) $\left(\frac{1}{4}, \frac{1}{3}\right)$ (c) $\left(\frac{1}{2}, \frac{1}{3}\right)$	(d) None of these
Solution: (b)	The set of lines is $4ax + 3by + c = 0$, where $a + b + c = 0$ Eliminating c, we get $4ax + 3by - (a + b) = 0 \implies a(4x - 1) + b(3y - 1) = 0$	
	They pass through the intersection of the lines $4x - 1 = 0$ and $3y - 1 = 0$ <i>i.e.</i> , $x = \frac{1}{4}$, $y = \frac{1}{4}$	$\frac{1}{3}$ <i>i.e.</i> , $\left(\frac{1}{4}, \frac{1}{3}\right)$
2.17 Reflect	tion on the Surface	
Here	IP = Incident Ray $PN = Normal to the surface$ $PR = Reflected Ray$ $/IPN = /NPR$	
	Angle of incidence = Angle of reflection Incidence	dent ray θ θ α α Tangent
2.18 Image	of a Point in Different cases	P Surface
(1) The	image of a point with respect to the line mirror : The image of	
$A(x_1, y_1)$ with	respect to the line mirror $ax + by + c = 0$ be $B(h, k)$ is given by,	$A(x_1, y_1)$ $ax+by+c = 0$

$$\frac{h-x_1}{a} = \frac{k-y_1}{b} = \frac{-2(ax_1+by_1+c)}{a^2+b^2}$$

(2) The image of a point with respect to x-axis : Let P(x,y) be any point and P'(x',y') its image after reflection in the x-axis, then

(3) The image of a point with respect to y-axis : Let P(x,y) be any point and P'(x',y') its image after reflection in the y-axis

then

$$x' = -x$$
 (:: O' is the mid point of P and P')
 $y' = y$

Y

P'(x',y')

P(x, y)

N X

(4) The image of a point with respect to the origin : Let P(x,y) be any point and P'(x',y') be its image after reflection through the origin, then

$$x' = -x$$
 (:: O' is the mid point of P and P')
 $y' = -y$

$$x' = y$$
 (:: O' is the mid point of P and P')
 $y' = x$

(6) The image of a point with respect to the line $y = x \tan \theta$: Let P(x,y) be any point and P'(x',y') be its image after reflection in the line $y = x \tan \theta$ then $x' = x \cos 2\theta + y \sin 2\theta$ ($\because O'$ is the mid point of P and P')

 $y' = x\sin 2\theta - y\cos 2\theta$

Example: 29 The reflection of the point (4, -13) in the line
$$5x + y + 6 = 0$$
 is [EAMCET 1994]
(a) $(-1, -14)$ (b) $(3, 4)$ (c) $(1, 2)$ (d) $(-4, 13)$
Solution: (a) Let $Q(a,b)$ be the reflection of $P(4, -13)$ in the line $5x + y + 6 = 0$. Then the point $R\left(\frac{a+4}{2}, \frac{b-13}{2}\right)$ lies on $5x + y + 6 = 0$
 $\therefore 5\left(\frac{a+4}{2}\right) + \left(\frac{b-13}{2}\right) + 6 = 0 \Rightarrow 5a + b + 19 = 0$ (i)
Also PQ is perpendicular to $5x + y + 6 = 0$. Therefore $\left(\frac{b+13}{a-4}\right) \times \left(\frac{-5}{1}\right) \Rightarrow a - 5b - 69 = 0$ (ii)
Solving (i) and (ii), we get $a = -1, b = -14$.
Example: 30 The image of a point $A(3,8)$ in the line $x + 3y - 7 = 0$, is [Rajasthan PET 1991]
(a) $(-1, -4)$ (b) $(-3, -8)$ (c) $(1, -4)$ (d) $(3, 8)$
Solution: (a) Equation of the line passing through (3, 8) and perpendicular to $x + 3y - 7 = 0$ is $3x - y - 1 = 0$. The intersection point of both the lines is $(1, 2)$. Now let the image of $A(3, 8)$ be $A'(x_1, y_1)$.
The point $(1, 2)$ will be the midpoint of AA' . $\frac{x_1 + 3}{2} = 1 \Rightarrow x_1 = -1$ and $\frac{y_1 + 8}{2} = 2 \Rightarrow y_1 = 4$. Hence the image is $(-1, -4)$.

2.19 Some Important Results

(1) Area of the triangle formed by the lines $y = m_1 x + c_1$, $y = m_2 x + c_2$, $y = m_3 x + c_3$ is $\frac{1}{2} \left| \sum \frac{(c_1 - c_2)^2}{m_1 - m_2} \right|$.

(2) Area of the triangle made by the line ax + by + c = 0 with the co-ordinate axes is $\frac{c^2}{2|ab|}$.

(3) Area of the rhombus formed by the lines $ax \pm by \pm c = 0$ is $\left|\frac{2c^2}{ab}\right|$

(4) Area of the parallelogram formed by the lines $a_1x + b_1y + c_1 = 0$; $a_2x + b_2y + c_2 = 0$, $a_1x + b_1y + d_1$ and

$$a_2x + b_2y + d_2 = 0$$
 is $\left| \frac{(d_1 - c_1)(d_2 - c_2)}{a_1b_2 - a_2b_1} \right|$.

(5) The foot of the perpendicular (h,k) from (x_1,y_1) to the line ax + by + c = 0 is given by $\frac{h-x_1}{a} = \frac{k-y_1}{b} = \frac{-(ax_1 + by_1 + c)}{a^2 + b^2}.$ Hence, the coordinates of the foot of perpendicular is $\left(\frac{b^2x_1 - aby_1 - ac}{a^2 + b^2}, \frac{a^2y_1 - abx_1 - bc}{a^2 + b^2}\right)$

(6) Area of parallelogram $A = \frac{p_1 p_2}{\sin \theta}$, where p_1 and p_2 are the distances between parallel sides and θ is the angle between two adjacent sides.

(7) The equation of a line whose mid-point is (x_1, y_1) in between the axes is $\frac{x}{x_1} + \frac{y}{y_1} = 2$

(8) The equation of a straight line which makes a triangle with the axes of centroid (x_1, y_1) is $\frac{x}{3x_1} + \frac{y}{3y_1} = 1$.

Example: 31	The coordinates of the foot of j	perpendicular drawn from (2, 4	4) to the line $x + y = 1$ is	[.	Roorkee 1995]
	(a) $\left(\frac{1}{3}, \frac{3}{2}\right)$	(b) $\left(-\frac{1}{2},\frac{3}{2}\right)$	(c) $\left(\frac{4}{3},\frac{1}{2}\right)$	(d) $\left(\frac{3}{4}, \frac{-1}{2}\right)$	
Solution: (b)	Applying the formula, the requ	hired co-ordinates is $\left(\frac{1^2 \times 2 - 1^2}{1^2}\right)$	$\frac{1 \times 1 \times 4 + 1}{+1^2}, \frac{1^2 \times 4 - 1 \times 1}{1^2 + 1^2}$	$\frac{\times 2+1}{2} = \left(\frac{-1}{2}, \frac{3}{2}\right)$	
Example: 32	The area enclosed within the cu	urve $ x + y = 1$ is	[Rajasthan PE	T 1990, 97; IIT 1981; UPSEAT	2003]
Solution: (d)	(a) $\sqrt{2}$ The given lines are $\pm x \pm y =$ vertices are $A(-1,0)$, $B(0,-)$	(b) 1 1 <i>i.e.</i> , $x + y = 1$, $x - y = 1$, 1), $C(1,0)$ and $D(0,1)$. Ob	(c) $\sqrt{3}$ x + y = -1 and $x - y = -1viously ABCD is a square$	(d) 2. These lines form a quadrie. Length of each side of t	lateral whose his square is
Example: 33	$\sqrt{1^2 + 1^2} = \sqrt{2}$. Hence, area If x_1, x_2, x_3 and y_1, y_2, y_3 are	of square is $\sqrt{2} \times \sqrt{2} = 2$ sq. te both in G.P. with the same co	units. (a) L is on a sirely	t (x_1, y_1) , (x_2, y_2) and (x_3, y_1)	y ₃) [AIEEE 2003]
Solution: (a)	Taking co-ordinates as $\left(\frac{x}{r}, \frac{y}{r}\right)$	(b) Let on an empse), (x, y) and (x_r, y_r) . Above co	o-ordinates satisfy the rela	tion $y = mx$, \therefore the three point	ints lie on a
Example: 34	straight line. A square of side a lies above th $\alpha \left(0 < \alpha < \frac{\pi}{4} \right)$ with the position	ne x-axis and has one vertex at ve direction of x-axis. The equ	the origin. The side passir ation of its diagonal not pa	g through the origin makes as	n angle
	(4)				[AIEEE 2003]
	(a) $y(\cos\alpha - \sin\alpha) - x(\sin\alpha - \alpha)$	$\cos \alpha = a$	(b) $y(\cos \alpha + \sin \alpha) - x$	$(\sin \alpha - \cos \alpha) = a$	
	(c) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha + \sin \alpha)$	$+\cos\alpha)=a$	(d) $y(\cos \alpha + \sin \alpha) + x$	$(\sin \alpha - \cos \alpha) = a$	
Solution: (b)	Co-ordinates of $A = (a \cos \alpha, a)$ $\therefore CA \perp$ to OB ; \therefore slope of	$a\sin \alpha$; Equation of $OB y = 0$ $CA = -\cot\left(\frac{\pi}{4} + \alpha\right)$	$\tan\left(\frac{\pi}{4} + \alpha\right) x$		
	Equation of <i>CA</i> , $y - a \sin \alpha =$	$-\cot\left(\frac{\pi}{4}+\alpha\right)(x-a\cos\alpha)$		$\pi/4$	
	$\Rightarrow y(\sin\alpha + \cos\alpha) + x(\cos\alpha)$	$-\sin \alpha$) = a.		Ŏ	→ X
Example: 35	The number of integral points with vertices $(0, 0)$, $(0, 21)$ and (a) 133	(integral point means both the (21, 0) is (b) 190	c coordinates should be int	eger) exactly in the interior of [IIT So (d) 105	of the triangle creening 2003]
Solution: (b)	x + y = 21	(-, -, -, -, -, -, -, -, -, -, -, -, -, -	(-,	(0, 21)	
	The number of integral solution	n to the equation $x + y < 21$ <i>i</i> .	<i>e.</i> , $x < 21 - y$	B	
	Number of integral co-ordinate	$es = 19 + 18 + \dots + 1 = \frac{19}{100}$	$\frac{\times 20}{2} = 190 .$		

►<u>A</u> (21, 0)

 $\begin{array}{c} O^{\ }\\ (0,0) \end{array}$

Equation in Different forms and Slope of Line

1.	The equation of the straight	line which passes through the poir	nt $(1,-2)$ and cuts off equal inte	ercepts from axes, is [MNR 1978]
	(a) $x + y = 1$	(b) $x - y = 1$	(c) $x + y + 1 = 0$	(d) $x - y - 2 = 0$
2.	Equation of the straight line	making equal intercepts on the axe	es and passing through the po	bint (2, 4) is [Karnataka CET 2004]
	(a) $4x - y - 4 = 0$	(b) $2x + y - 8 = 0$	(c) $x + y - 6 = 0$	(d) $x + 2y - 10 = 0$
3.	In the equation $y - y_1 = m(x)$	$(-x_1)$ if <i>m</i> and x_1 are fixed and diff	erent lines are drawn for diffe	rent values of y_1 , then [MP PET 1986]
	(a) The lines will pass throu	gh a single point	(b) There will be a set of pa	rallel lines
	(c) There will be one line or	nly	(d) None of these	
4.	The equation of the straight	line passing through the point (3, 2	2) and perpendicular to the lir	ie y = x is [MNR 1979; MP PET 2002]
	(a) $x - y = 5$	(b) $x + y = 5$	(c) $x + y = 1$	(d) $x - y = 1$
5.	The equation of the line perpe	endicular to the line $\frac{x}{a} - \frac{y}{b} = 1$ and p	bassing through the point at whi	ch it cuts <i>x</i> -axis, is [Rajasthan PET 1996]
	(a) $\frac{x}{a} + \frac{y}{b} + \frac{a}{b} = 0$	(b) $\frac{x}{b} + \frac{y}{a} = \frac{b}{a}$	(c) $\frac{x}{b} + \frac{y}{a} = 0$	(d) $\frac{x}{b} + \frac{y}{a} = \frac{a}{b}$
6.	The equation of the line pass	sing through the point (1, 2) and pe	erpendicular to the line $x + y + y$	-1 = 0 is [MNR 1981]
	(a) $y - x + 1 = 0$	(b) $y - x - 1 = 0$	(c) $y - x + 2 = 0$	(d) $y - x - 2 = 0$
7.	If the equations $y = mx + ca$	nd $x \cos \alpha + y \sin \alpha = p$ represent t	he same straight line, then	
	(a) $p = c \sqrt{1 + m^2}$	(b) $c = p \sqrt{1 + m^2}$	(c) $cp = \sqrt{1 + m^2}$	(d) $p^2 + c^2 + m^2 = 1$
8.	A line passes through the po	bint of intersection of $2x + y = 5$ and	d $x + 3y + 8 = 0$ and parallel to	the line $3x + 4y = 7$ is
				[Rajasthan PET 1984; MP PET 1991]
	(a) $3x + 4y + 3 = 0$	(b) $3x + 4y = 0$	(c) $4x - 3y + 3 = 0$	(d) $4x - 3y = 3$
9.	The equation of straight line	passing through the intersection c	of the lines $x - 2y = 1$ and $x + 2y = 1$	3y = 2 and parallel to $3x + 4y = 0$ is
				[MP PET 2000]
	(a) $3x + 4y + 5 = 0$	(b) $3x + 4y - 10 = 0$	(c) $3x + 4y - 5 = 0$	(d) $3x + 4y + 6 = 0$
10.	The equation of the line join	ing the origin to the point (–4, 5) is	5	[MP PET 1984]

Basic Level

	(a) $5x + 4y = 0$	(b)	3x + 4y = 2	(C)	5x - 4y = 0	(d)	4x - 5y = 0	
11.	The equation of the line wh	nich cu	uts off an intercept 3 units on	<i>OX</i> ar	nd an intercept –2 unit o	n <i>OY,</i>	is	
	$(a) \frac{x}{3} - \frac{y}{2} = 1$	(b)	$\frac{x}{3} + \frac{y}{2} = 1$	(C)	$\frac{x}{2} + \frac{y}{3} = 1$	(d)	$\frac{x}{2} - \frac{y}{3} = 1$	
12.	The equation of a line thro	ugh (3	3, – 4) and perpendicular to th	ie line	3x + 4y = 5 is [Raja	sthan	PET 1981, 84, 86; MP	PET 1984]
	(a) $4x + 3y = 24$	(b)	y - 4 = x + 3	(C)	3y - 4x = 24	(d)	$y+4=\frac{4}{3}(x-3)$	
13.	Equation of the line passing	g thro	ugh (1, 2) and parallel to the li	ne y	= 3x - 1 is			[MP PET 1984]
	(a) $y + 2 = x + 1$	(b)	y + 2 = 3(x + 1)	(C)	y - 2 = 3(x - 1)	(d)	y - 2 = x - 1	
14.	Equation of the line passing	g thro	ugh (–1, 1) and perpendicular	to the	e line $2x + 3y + 4 = 0$ is			[MP PET 1984]
	(a) $2(y-1) = 3(x+1)$	(b)	3(y-1) = -2(x+1)	(C)	y - 1 = 2(x + 1)	(d)	3(y-1) = x+1	
15.	The equation of line passin	ig thro	bugh (<i>c</i> , <i>d</i>) and parallel to $ax + ax + barbor $	+ <i>by</i> +	c=0 is		[Raja	sthan PET 1987]
	(a) $a(x+c)+b(y+d) = 0$	(b)	a(x+c) - b(y+d) = 0	(C)	a(x-c)+b(y-d)=0	(d)	None of these	
16.	The equation of a line thro	ugh	the intersection of lines $x =$	= 0 and	d $y = 0$ and through the	point	(2,2) is	[MP PET 1984]
	(a) $y = x - 1$	(b)	y = -x	(C)	y = x	(d)	y = -x + 2	
17.	Equation of a line through	the or	igin and perpendicular to the	line jo	oining (<i>a</i> , 0) and (– <i>a</i> , 0) i	S		[MP PET 1984]
	(a) $y = 0$	(b)	x = 0	(C)	x = -a	(d)	y = -a	
18.	For what values of <i>a</i> and <i>b</i>	the in	tercepts cut off on the coordi	nate a	axes by the line $ax + by +$	8 = 0	are equal in lengtl	n but
	opposite in signs to those o	cut of	by the line $2x - 3y + 6 = 0$ or	n the a	axes			
	(a) $a = \frac{8}{3}, b = -4$	(b)	$a = -\frac{8}{3}, b = -4$	(C)	$a=\frac{8}{3}, b=4$	(d)	$a = -\frac{8}{3}, b = 4$	
19.	For specifying a straight lin	e how	many geometrical parameter	rs sho	uld be known			[MP PET 1982]
	(a) 1	(b)	2	(C)	4	(d)	3	
20.	The equation of line passin	ig thro	ough point of intersection of li	ne 3 <i>x</i>	x - 2y - 1 = 0 and $x - 4y - 1 = 0$	+ 3 = 0	0 and the point (π ,	0) is
							[Raja	sthan PET 1987]
	(a) $x-y=\pi$	(b)	$x - y = \pi(y + 1)$	(C)	$x-y=\pi(1-y)$	(d)	$x+y=\pi(1-y)$	
21.	A line perpendicular to the	line a	ax + by + c = 0 and passes through the three	ough ((a,b). The equation of th	e line	is	
						[Raja	asthan PET 1988; MP I	PET 1995]
	(a) $bx - ay + (a^2 - b^2) = 0$	(b)	$bx - ay - (a^2 - b^2) = 0$	(C)	bx - ay = 0	(d)	None of these	
22.	If the line passing through	(4, 3)	and (2, k) is perpendicular to	y = 2x	x + 3, then <i>k</i> =	[Raja	asthan PET 1985; MP I	PET 1999]
	(a) –1	(b)	1	(C)	-4	(d)	4	
23.	The line passes through (1,0	0) anc	$(-2,\sqrt{3})$ makes an angle of	with	<i>x</i> -axis		[Raja	sthan PET 1985]
	(a) 60°	(b)	120 <i>°</i>	(C)	150 <i>°</i>	(d)	135 <i>°</i>	
24.	If <i>a</i> and <i>b</i> are two arbitrary	const	ants, then the straight line $(a$	-2b)x	x + (a+3b)y + 3a + 4b = 0	will p	ass through	
							[Raja	sthan PET 1990]
	(a) (-1,-2)	(b)	(1, 2)	(C)	(-2,-3)	(d)	(2, 3)	
25.	The equation of line passin	ig thro	bugh the point of intersection	of the	e lines $4x - 3y - 1 = 0$ and	5x -	-2y-3=0 and particular	rallel to the
	line $2y - 3x + 2 = 0$, is						[Rajasthan P	Pet 1985,86, 88]

	(a) $x - 3y = 1$	(b) $3x - 2y = 1$	$(c) \qquad 2x - 3y = 1$	(d) $2x - y = 1$	
26.	The equation of line passing	ng through (4, –6) and mak	es an angle 45° with positive <i>x</i> -axis, is	[Ra	ajasthan PET 1984]
	(a) $x - y - 10 = 0$	(b) $x - 2y - 16 = 0$	(c) $x - 3y - 22 = 0$	(d) None of these	
27.	The straight line passes th	nrough the point of intersec	tion of the straight lines $x + 2y - 10 = 0$	0 and $2x + y + 5 = 0$, is	[IIT 1983]
	(a) $5x - 4y = 0$	(b) $5x + 4y = 0$	(c) 4x - 5y = 0	(d) $4x + 5y = 0$	
28.	The equation to the straig	ht line passing through the	point $(a\cos^3\theta, a\sin^3\theta)$ and perpendic	cular to the line $x \sec \theta$	$+y \operatorname{cosec} \theta = a$,
	is				
					[AMU 1975]
	(a) $x \cos \theta - y \sin \theta = a \cos \theta$	s 2 <i>θ</i>	(b) $x \cos \theta + y \sin \theta = a \cos \theta$	2θ	
	(c) $x\sin\theta + y\cos\theta = a\cos\theta$	$\cos 2\theta$	(d) None of these		
29.	Equation of the right bised	tor of the line segment joir	hing the points (7, 4) and $(-1, -2)$ is		[AMU 1979]
	(a) $4x - 3y = 15$	(b) $3x + 4y = 15$	(c) $4x + 3y = 15$	(d) None of these	
30.	Equations of lines which p	asses through the points of	intersection of the lines $4x - 3y - 1 = 0$	0 and $2x - 5y + 3 = 0$ as	nd are equally
	inclined to the axes are				[AMU 1981]
	(a) $y \pm x = 0$	(b) $y-1 = \pm 1(x-1)$	(c) $x-1 = \pm 2(y-1)$	(d) None of these	
31.	Equation of line passing th	nrough (1, 2) and perpendic	ular to $3x + 4y + 5 = 0$ is	[Ra	ajasthan PET 1995]
	(a) $3y = 4x - 2$	(b) $3y = 4x + 3$	(c) $3y = 4x + 4$	(d) $3y = 4x + 2$	
32.	The equation of a straight	line passing through the po	oints (–5, –6) and (3, 10) is		[MNR 1974]
	(a) $x - 2y = 4$	(b) $2x - y + 4 = 0$	(c) $2x + y = 4$	(d) None of these	
33.	A straight line through <i>P</i> (1	, 2) is such that its intercept	t between the axes is bisected at <i>P</i> . Its e	equation is	[EAMCET 1994]
	(a) $x + 2y = 5$	(b) $x - y + 1 = 0$	(c) x+y-3=0	(d) $2x + y - 4 = 0$	
34.	The equation to the straig	ht line passing through the	point of intersection of the lines $5x - 6$	6y - 1 = 0 and $3x + 2y + 3y + 3y + 3y + 3y + 3y + 3y + 3y$	+5 = 0 and
	perpendicular to the line 3	3x - 5y + 11 = 0 is			[MP PET 1994]
	(a) $5x + 3y + 8 = 0$	(b) $3x - 5y + 8 = 0$	(c) $5x + 3y + 11 = 0$	(d) $3x - 5y + 11 = 0$)
35.	The opposite vertices of a	square are (1, 2) and (3, 8),	then the equation of a diagonal of the	square passing throug	h the point (1,
	2) is				
					[Roorkee 1981]
	(a) $3x - y - 1 = 0$	(b) $3y - x - 1 = 0$	(c) $3x + y + 1 = 0$	(d) None of these	
36.	If the straight line $ax + by$	+ c = 0 always passes through	gh (1, –2), then <i>a,b,c</i> , are		[AMU 2000]
	(a) In A.P.	(b) In H.P.	(c) In G.P.	(d) None of these	
37.	The equation of the straig	ht line joining the origin to	the point of intersection of $y - x + 7 =$	0 and $y + 2x - 2 = 0$ is	[MP PET 2001]
	(a) 3x + 4y = 0	(b) 3x - 4y = 0	(c) 4x - 3y = 0	(d) 4x + 3y = 0	
38.	A straight line makes an a	ngle of 135° with the x-axis	s and cuts y -axis at a distance –5 from	the origin. The equati	on of the line is
					[MP PET 1998]
	(a) $2x + y + 5 = 0$	(b) $x + 2y + 3 = 0$	(c) $x + y + 5 = 0$	(d) $x + y + 3 = 0$	
39.	It line $y = mx$ meets the li	hes $x + 2y - 1 = 0$ and $2x - 1$	$y + 3 = 0$ at the same point, then $m \neq 0$	uals	

	(a) 1	(b) –1	(c) 2	(d) -2
40.	Equation of a line passing	g through (1, — 2) and perpe	endicular to the line $3x - 5y + 7 = 0$ is	[Rajasthan PET 2003]
	(a) $5x + 3y + 1 = 0$	(b) $3x + 5y + 1 = 0$	(c) $5x - 3y - 1 = 0$	(d) $3x - 5y + 1 = 0$
41.	The line $\frac{x}{a} - \frac{y}{b} = 1$ cuts t	he <i>x</i> -axis at P. The equation	of the line through P perpendicular t	to the given line is [Kerala (Engg.) 2002]
	(a) $x + y = ab$	(b) $x + y = a + b$	(C) $ax + by = a^2$	(d) $bx + ay = b^2$
42.	The equation of line perp	pendicular to $x = c$ is		[Rajasthan PET 2001]
	(a) $y = d$	(b) $x = d$	(c) $x = 0$	(d) None of these
43.	The inclination of the stra	aight line passing through th	he point (–3,6) and the midpoint of th	e line joining the point (4, -5) and (-2,9)
	is			
				[Kerala (Engg.) 2002]
	(a) π / 4	(b) $\pi / 6$	(c) <i>π</i> / 3	(d) $3\pi/4$
44.	If the intercept made by	the line between the axis is	bisected at the point (5, 2), then its ed	quation is
	(a) $5x + 2y = 20$	(b) $2x + 5y = 20$	(c) $5x - 2y = 20$	(d) 2x - 5y = 20
45.	The equation of the line	passing through (1, 1) and p	arallel to the line $2x + 3y - 7 = 0$ is	[Rajasthan PET 1993, 96]
	(a) $2x + 3y - 5 = 0$	(b) $3x + 2y - 5 = 0$	(c) $3x - 2y - 7 = 0$	(d) $2x + 3y + 5 = 0$
46.	The equation of a straigh	it line passing through origi	n and through the point of intersectio	on of lines $x + y - 2 = 0$ and
	2x - y + 1 = 0 is			
				[Rajasthan PET 1993]
	(a) $5x - y = 0$	(b) $5x + y = 0$	$(c) \qquad x+5y=0$	(d) x - 5y = 0
47.	The equations $(b-c)x + (b-c)x + (b-c)$	$(c-a)y + a - b = 0$ and $(b^3 - b) = 0$	$(-c^{3})x + (c^{3} - a^{3})y + a^{3} - b^{3} = 0$ will repr	esent the same line, if
	(a) $b + c = 0$		(b) $b = c$ and $c = a$ and	a=b or $a+b+c=0$
	(c) $a+b=0$		(d) $a+b+c \neq 0$	
48.	The straight line passing	through the point of interse	ection of the straight lines $x - 3y + 1 =$	0 and $2x + 5y - 9 = 0$ and having infinite
	slope and at a distance o	f 2 units from the origin, ha	as the equation	
	(a) $x = 2$	(b) $3x + y - 1 = 0$	(c) $y = 1$	(d) None of these
49.	The equation of the line	whose slope is 3 and which	cuts off an intercept 3 from the positi	ive <i>x</i> -axis is
	(a) $y = 3x - 9$	(b) $y = 3x + 3$	(c) $y = 3x + 9$	(d) None of these
50.	The equations of the line	s which cuts off an intercep	t –1 from <i>y</i> -axis and are equally incline	ed to the axes are
	(a) $x - y + 1 = 0, x + y + 1$	1 = 0	(b) $x - y - 1 = 0, x + y - 1$	= 0
	(c) $x - y - 1 = 0, x + y + $	1 = 0	(d) None of these	
51.	If the line segment joining	g (2,3) and (–1, 2) is divided	internally in the ratio 3:4 by the line	x + 2y = k, then k is
	(a) $\frac{41}{7}$	(b) $\frac{5}{7}$	(c) $\frac{36}{7}$	(d) $\frac{31}{7}$
52.	If $A(1,1), B(\sqrt{3}+1,2)$ and	$C(\sqrt{3},\sqrt{3}+2)$ be three vert	, tices of a square, then the diagonal th	, Irough <i>B</i> is
	(a) $y = (\sqrt{3} - 2)x + (3 - \sqrt{3})x + (3 - \sqrt$	$\sqrt{3}$) (b) $y = 0$	(C) $y = x$	(d) None of these
53.	In what ratio the line v –	x + 2 = 0 divides the line ioi	ning the points $(3, -1)$ and $(8, 9)$	[Karnataka CET 2002]
	(a) 1.2	(b) 2.1	(c) 2·3	(d) 3.4
				(G) J. T

Advance Level

54. For the straight lines given by the equation (2+k)x + (1+k)y = 5 + 7k, for different values of k which of the following statements is true [IIT 1971] (b) Lines pass through the point (-2, 9)(a) Lines are parallel (c) Lines pass through the point (2,-9)(d) None of these 55. The line joining two points A(2,0), B(3,1) is rotated about A in anti-clockwise direction through an angle of 15°. The equation of the line in the new position, is (b) $x - \sqrt{3}y - 2 = 0$ (c) $\sqrt{3}x + y - 2\sqrt{3} = 0$ (d) $x + \sqrt{3}y - 2 = 0$ (a) $\sqrt{3}x - y - 2\sqrt{3} = 0$ If the slope of a line passing through the point A(3,2) be 3/4, then the points on the line which are 5 units away from A, are[IIT 1965] 56. (a) (5,5),(-1,-1) (b) (7,5),(-1,-1) (c) (5,7), (-1,-1)(d) (7,5),(1,1) 57. The equation of a line passing through the point of intersection of the lines x + 5y + 7 = 0, 3x + 2y - 5 = 0 and perpendicular to the line 7x + 2y - 5 = 0 is given by [Rajasthan PET 1987; MP PET 1993] (a) 2x - 7y - 20 = 0(b) 2x + 7y - 20 = 0(c) -2x + 7y - 20 = 0 (d) 2x + 7y + 20 = 058. Equations of diagonals of square formed by lines x = 0, y = 0, x = 1 and y = 1 are [MP PET 1984] (b) y = x, x + y = 2 (c) $2y = x, y + x = \frac{1}{3}$ (d) y = 2x, y + 2x = 1(a) y = x, y + x = 159. If the middle points of the sides BC, CA and AB of the triangle ABC be (1, 3), (5, 7) and (-5, 7), then the equation of the side AB is (a) x - y - 2 = 0(b) x - y + 12 = 0(c) x + y - 12 = 0(d) None of these 60. Given the four lines with equations x + 2y = 3, 3x + 4y = 7, 2x + 3y = 4 and 4x + 5y = 6, then these lines are [IIT 1980] (a) Concurrent (b) Perpendicular (c) The sides of a rectangle (d) None of these The equation of straight line passing through (-a, 0) and making the triangle with axes of area 'T', is 61. (a) $2Tx + a^2y + 2aT = 0$ (b) $2Tx - a^2y + 2aT = 0$ (c) $2Tx - a^2y - 2aT = 0$ (d) None of these 62. The points A(1, 3) and C(5, 1) are the opposite vertices of rectangle. The equation of line passing through other two vertices and of gradient 2, is [Rajasthan PET 1991] (a) 2x + y - 8 = 0(b) 2x - y - 4 = 0(C) 2x - y + 4 = 0(d) 2x + y + 7 = 063. The intercept cut off from γ -axis is twice that from x-axis by the line and line is passes through (1, 2) then its equation is [AMU 1972; Rajasthan PET 1985] (b) 2x + y + 4 = 0(a) 2x + y = 4(c) 2x - y = 4(d) 2x - y + 4 = 064. The equation of line, which bisect the line joining two points (2, -19) and (6, 1) and perpendicular to the line joining two points (-1, 3) and (5, -1), is [Rajasthan PET 1987] (a) 3x - 2y = 30(b) 2x - y - 3 = 0(c) 2x + 3y = 20(d) None of these

65.	The vertices of a triangle O	<i>BC</i> are $(0,0)$, $(-3,-1)$ and $(-1,-3)$ re	espectively. Then the equation	n of line parallel to <i>BC</i> which is at $\frac{1}{2}$
	unit distant from origin and	cuts <i>OB</i> and <i>OC</i> , is		[IIT 1976]
	(a) $2x + 2y + \sqrt{2} = 0$	(b) $2x + 2y - \sqrt{2} = 0$	(c) $2x - 2y + \sqrt{2} = 0$	(d) None of these
66.	The equation of line whose	mid point is (x_1, y_1) in between the	e axes, is	
	(a) $\frac{x}{x_1} + \frac{y}{y_1} = 2$	(b) $\frac{x}{x_1} + \frac{y}{y_1} = \frac{1}{2}$	(c) $\frac{x}{x_1} + \frac{y}{y_1} = 1$	(d) None of these
67.	The intercept of a line betw	veen the coordinate axes is divided	by the point (-5, 4) in the rati	o 1:2. The equation of the line will be
				[IIT 1986]
	(a) $5x - 8y + 60 = 0$	(b) $8x - 5y + 60 = 0$	(c) $2x - 5y + 30 = 0$	(d) None of these
68.	The diagonal passing throug	gh origin of a quadrilateral formed	by $x = 0, y = 0, x + y = 1$ and	6x + y = 3, is [IIT 1973]
	(a) 3x - 2y = 0	(b) $2x - 3y = 0$	(c) 3x + 2y = 0	(d) None of these
69.	Equation of one of the sides	s of an isosceles right angled triang	le whose hypotenuse is $3x + 4$	4y = 4 and the opposite vertex of the
	hypotenuse is (2, 2), will be			[MNR 1986]
	(a) $x - 7y + 12 = 0$	(b) $7x + y - 12 = 0$	(c) $x - 7y + 16 = 0$	(d) $7x + y + 16 = 0$
70.	A line $4x + y = 1$ passes through the formula of	bugh the point $A(2,-7)$ meets the li	ine <i>BC</i> whose equation is $3x - 3x = 3x - 3x + 3x - 3x - 3x + 3x + 3x + 3x +$	4y + 1 = 0 at the point <i>B</i> . The
	equation to the line AC so t	hat $AB = AC$, is		[IIT 1971]
	(a) $52x + 89y + 519 = 0$	(b) $52x + 89y - 519 = 0$	(c) $89x + 52y + 519 = 0$	(d) $89x + 52y - 519 = 0$
71.	Equation of the line which p	passes through the point (–4, 3) and	d the portion of the line interce	epted between the axes is divided
	internally in the ratio 5:3 by	this point, is		[AMU 1973; Dhanbad Engg. 1971]
	(a) $9x + 20y + 96 = 0$	(b) $20x + 9y + 96 = 0$	(c) $9x - 20y + 96 = 0$	(d) None of these
72.	A line is such that its segme	nt between the straight lines $5x - \frac{1}{2}$	y - 4 = 0 and $3x + 4y - 4 = 0$ is	s bisected at the point (1, 5), then its
	equation is			[Roorkee 1988]
	(a) $83x - 35y + 92 = 0$	(b) $35x - 83y + 92 = 0$	(c) $35x + 35y + 92 = 0$	(d) None of these
73.	A(-1,1), B(5,3) are opposite	e vertices of a square in <i>xy</i> -plane.	The equation of the other diag	gonal (not passing through A, B) of the
	square is given by			[EAMCET 1993]
	(a) $x - 3y + 4 = 0$	(b) $2x - y + 3 = 0$	(c) $y + 3x - 8 = 0$	(d) $x + 2y - 1 = 0$
74.	The point $P(a, b)$ lies on the	straight line $3x + 2y = 13$ and the	point $Q(b, a)$ lies on the straig	the three $4x - y = 5$, then the equation
	of line PQ is			[MP PET 1999]
	(a) $x - y = 5$	(b) $x + y = 5$	(c) $x + y = -5$	(d) $x - y = -5$
75.	If $P(1 + t / \sqrt{2}, 2 + t / \sqrt{2})$ be	any point on a line then the rang	e of values of <i>t</i> for which the	point P lies between the parallel lines
	x + 2y = 1 and $2x + 4y = 15$	is		
	(a) $-\frac{4\sqrt{2}}{3} < t < \frac{5\sqrt{2}}{6}$	(b) $0 < t < \frac{5\sqrt{2}}{6}$	(c) $-\frac{4\sqrt{2}}{3} < t < 0$	(d) None of these
76.	The equations of the sides	AB, BC and CA of the $\triangle ABC$ are	y - x = 2, $x + 2y = 1$ and $3x + 3x = 1$	y + 5 = 0 respectively. The equation of
	the altitude through B is			
	(a) $x - 3y + 1 = 0$	(b) $x - 3y + 4 = 0$	(c) $3x - y + 2 = 0$	(d) None of these

	One side of a square of le	ngth <i>a</i> is inclined to the <i>x</i> -axis a	, an angle α with one of the vertices of th	e square at the origin. The
	equation of a diagonal of	the square is		
	(a) $y(\cos \alpha - \sin \alpha) = x(\cos \alpha)$	$s \alpha + \sin \alpha$	(b) $y(\cos \alpha + \sin \alpha) = x(\cos \alpha - \sin \alpha)$	χ)
70	(c) $y(\sin \alpha + \cos \alpha) - x(\sin \alpha)$	$n \alpha - \cos \alpha) = a$	(d) $y(\sin \alpha + \cos \alpha) + x(\sin \alpha - \cos \alpha)$	α) = a
78.	Straight lines $3x + 4y = 5$	and $4x - 3y = 15$ intersect at tr	$\frac{1}{2}$ point A. Points <i>B</i> and <i>C</i> are chosen on t	these lines such that $AB = AC$.
	Determine the possible ec	Juations of the line BC passing i	$\frac{1}{2} \frac{1}{2} \frac{1}$	[111 1990]
	(a) $x - 7y + 13 = 0$ and 7	x + y = 9	(b) $x + 7y + 13 = 0$ and $6x - y = 9$	
70	(c) $x - 7y + 12 = 0$ and 2 The base <i>DC</i> of a triangula	Fx + 3y = 9	(d) $x - 6y + 11 = 0$ and $7x - y = 9$	
79.	The base BC of a triangle	ABC is disected at the point (p ,) and the equations to the sides AB and a	AC are respectively
	px + qy = 1 and $qx + py =$	1. Then the equation to the metric $\begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	$\frac{1}{2} \left(\frac{2}{2} + \frac{2}{2} + 1 \right) \left(\frac{1}{2} + \frac{2}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{2}{2} + 1 \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac{2}{2} + \frac{2}{2}$	1)/ 1)
	(a) $(2pq-1)(px+qy-1)$	$= (p^{2} + q^{2} - 1)(qx + py - 1)$	(b) $(p^2 + q^2 - 1)(px + qy - 1) = (2p)$	(-1)(qx + py - 1)
	(C) $(pq-1)(px+qy-1) =$	$(p^2 + q^2 - 1)(qx + py - 1)$	(d) None of these	
80.	If a variable line drawn thr	ough the point of intersection of	f straight lines $\frac{x}{\alpha} + \frac{y}{\beta} = 1$ and $\frac{x}{\beta} + \frac{y}{\alpha} = 1$ n	neets the coordinate axes in A
	and <i>B</i> , then the locus of th	ne mid-point of <i>AB</i> is		
	(a) $\alpha\beta(x+y) = xy(\alpha+\beta)$	(b) $\alpha\beta(x+y) = 2xy(\alpha+\beta)$	(c) $(\alpha + \beta)(x + y) = 2\alpha\beta xy$ (d)	None of these
81.	Equation of the hour hand	d at 4 O' clock is		
	(a) $x - \sqrt{3}y = 0$	(b) $\sqrt{3}x - y = 0$	(c) $x + \sqrt{3}y = 0$ (d)	$\sqrt{3}x + y = 0$
82.	The points (1, 3) and (5, 1)	are two opposite vertices of a r	ectangle. The other two vertices lie on the	line $y = 2x + c$, then the other
	vertices and <i>c</i> are			
	(a) $(1, 1), (2, 3)$ and $c = 4$	(b) $(4, 4), (2, 0)$ and $c = -4$	(c) $(0,0), (5,4)$ and $c = 3$ (d) N	None of these
			Angle	between two Straight lines
		E	asic Level	
83.	The angle between the lin	es $y = (2 - \sqrt{3})x + 5$ and $y = (2 - \sqrt{3})x + 5$	$\sqrt{3}x - 7$ is	
83.	The angle between the lin (a) 30°	es $y = (2 - \sqrt{3})x + 5$ and $y = (2 - \sqrt{3})x + 5$ and $y = (2 - \sqrt{3})x + 5$	$\sqrt{3}x - 7$ is (c) 45° (d) 9	90 <i>°</i>
83. 84	The angle between the lin (a) 30°	es $y = (2 - \sqrt{3})x + 5$ and $y = (2 - \sqrt{3}$	$\sqrt{3}x - 7$ is (c) 45° (d) 9°	90 °
83. 84.	The angle between the lin (a) 30° The angle between the lin	es $y = (2 - \sqrt{3})x + 5$ and $y = (2 - \sqrt{3}$	$\sqrt{3}$)x - 7 is (c) 45° (d) $\frac{1}{2}$ $\cos \alpha_2 + y \sin \alpha_2 = p_2$ is (c) 27; (d) 45°	90 <i>°</i>
83. 84.	The angle between the lin (a) 30° The angle between the lin (a) $(\alpha_1 + \alpha_2)$	es $y = (2 - \sqrt{3})x + 5$ and $y = (2 - \sqrt{3}$	$\sqrt{3} x - 7 \text{ is}$ (c) 45° (d) 45° (c) $2\alpha_1$ (d) 45°	90° 2α ₂
83. 84. 85.	The angle between the line (a) 30° The angle between the line (a) $(\alpha_1 + \alpha_2)$ Angle between the lines $\frac{1}{\alpha_1}$	es $y = (2 - \sqrt{3})x + 5$ and $x = p_1$ and x (b) $(\alpha_1 - \alpha_2) = (1 - \sqrt{3})x + \frac{y}{b} = 1$ and $\frac{x}{a} - \frac{y}{b} = 1$ is	$\sqrt{3} x - 7 \text{ is}$ (c) 45° (d) 45° (c) $2\alpha_1$ (d) 45° (e) 45° (f) 45° (c) $2\alpha_1$ (c) $2\alpha_1$ (c) 45° (c) $2\alpha_1$ (c) 45° (c) 45° (c) 45° (c) $2\alpha_1$ (c) 45° (c) 45	90° 2α ₂ [MP PET 1995]
83. 84. 85.	The angle between the line (a) 30° The angle between the line (a) $(\alpha_1 + \alpha_2)$ Angle between the lines $\frac{2}{\alpha}$ (a) $2 \tan^{-1} \frac{b}{a}$	es $y = (2 - \sqrt{3})x + 5$ and $a^{0} = 0$ es $x \cos \alpha_{1} + y \sin \alpha_{1} = p_{1}$ and x (b) $(\alpha_{1} \sim \alpha_{2})$ $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{a} - \frac{y}{b} = 1$ is (b) $\tan^{-1} \frac{2ab}{a^{2} + b^{2}}$	$\sqrt{3}$)x - 7 is (c) 45° (d) $\frac{1}{2}$ $\cos \alpha_2 + y \sin \alpha_2 = p_2$ is (c) $2\alpha_1$ (d) (d) (c) $\tan^{-1} \frac{a^2 - b^2}{a^2 + b^2}$ (d)	90° 2α ₂ [MP PET 1995] None of these
83. 84. 85. 86.	The angle between the line (a) 30° The angle between the line (a) $(\alpha_1 + \alpha_2)$ Angle between the lines $\frac{2}{a}$ (a) $2 \tan^{-1} \frac{b}{a}$ The angle between the two	es $y = (2 - \sqrt{3})x + 5$ and $a^{-1} + y \sin \alpha_1 = p_1$ and x (b) $(\alpha_1 - \alpha_2)$ (c) $(\alpha_1 - \alpha_2)$	$\sqrt{3})x - 7 \text{ is}$ (c) 45° (d) 7 (c) $2\alpha_1$ (c) $\tan^{-1} \frac{a^2 - b^2}{a^2 + b^2}$	90° 2α ₂ [MP PET 1995] None of these 1981, 85, 86; MP PET 1984]
83. 84. 85. 86.	The angle between the line (a) 30° The angle between the line (a) $(\alpha_1 + \alpha_2)$ Angle between the lines $\frac{1}{\alpha}$ (a) $2 \tan^{-1} \frac{b}{a}$ The angle between the two (a) 60°	es $y = (2 - \sqrt{3})x + 5$ and $x = p_1$ and x (b) $(\alpha_1 \sim \alpha_2)$ (c) $(\alpha_1 \sim $	$\sqrt{3})x - 7 \text{ is}$ (c) 45° (d) (e) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (c) $2\alpha_1$ (d) (e) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (f) $2\alpha_1$ (f) (e) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (f) $2\alpha_1$ (f) (f) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $2\alpha_1$ (f) (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $2\alpha_1$ (f) (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $2\alpha_1$ (f) (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $2\alpha_1$ (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $2\alpha_1$ (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\cos \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\sin \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\sin \alpha_2 + y \sin \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\sin \alpha_2 + y \sin \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\sin \alpha_2 + y \sin \alpha_2 + y \sin \alpha_2 = p_2 \text{ is}$ (g) $\sin \alpha_2 + y \sin \alpha_2$	90° 2α ₂ [MP PET 1995] None of these 7 1981, 85, 86; MP PET 1984] 45°

87.	The	obtuse angle between th	ne lin	es $y = -2$ and $y = x + 2$ is				[Rajas	than PET 1984]
	(a)	120 <i>°</i>	(b)	135 <i>°</i>	(C)	150 <i>°</i>	(d)	160 <i>°</i>	
88.	The	acute angle between the	e line:	5 $y = 3$ and $y = \sqrt{3}x + 9$ is				[Rajasthan Pl	et 1984, 87, 88]
	(a)	30 <i>°</i>	(b)	60 <i>°</i>	(C)	45 <i>°</i>	(d)	90 <i>°</i>	
89.	Ang	le between $x = 2$ and x	-3y	= 6 is					[MNR 1988]
	(a)	∞	(b)	$\tan^{-1}(3)$	(C)	$\tan^{-1}\left(\frac{1}{3}\right)$	(d)	None of these	
90.	The	angle between the lines	a_1x -	$b_1y + c_1 = 0$ and $a_2x + b_2y + c_1$	$c_2 = 0$) is			[MP PET 1994]
	(a)	$\tan^{-1}\frac{a_1b_2 + a_2b_1}{a_1a_2 - b_2b_1}$	(b)	$\cot^{-1} \frac{a_1 a_2 + b_1 b_2}{a_1 b_2 - a_2 b_1}$	(c)	$\cot^{-1} \frac{a_1 b_1 - a_2 b_2}{a_1 a_2 + b_1 b_2}$	(d)	$\tan^{-1}\frac{a_1b_1 - a_2b_2}{a_1a_2 + b_1b_2}$	
91.	If th	e lines $2x + 3ay - 1 = 0$ a	nd 3	x + 4y + 1 = 0 are mutually per	penc	licular, then the value of	a' wi	ll be	[MNR 1975]
	(a)	$\frac{1}{2}$	(b)	2	(C)	$-\frac{1}{2}$	(d)	None of these	
92.	The	lines $a_1x + b_1y + c_1 = 0$ ar	nd a_2	$x + b_2 y + c_2 = 0$ are perpendic	ular 1	o each other if			[MP PET 1996]
	(a)	$a_1b_2 - b_1a_2 = 0$	(b)	$a_1 a_2 + b_1 b_2 = 0$	(C)	$a_1^2 b_2 + b_1^2 a_2 = 0$	(d)	$a_1b_1 + a_2b_2 = 0$	
93.	The	angle between the strai	ght li	nes $x - y\sqrt{3} = 5$ and $\sqrt{3}x + y$	=7 is	5			
	(a)	90 <i>°</i>	(b)	60 <i>°</i>	(C)	75 <i>°</i>	(d)	30 <i>°</i>	
94.	The	angle between the lines	2 <i>x</i> –	y + 3 = 0 and $x + 2y + 3 = 0$ is				[Keral	a (Engg.) 2002]
	(a)	90 <i>°</i>	(b)	60 <i>°</i>	(C)	45 <i>°</i>	(d)	30 <i>°</i>	
95.	The	lines $y = 2x$ and $x = -2y$	v are						[MP PET 1993]
	(a)	Parallel	(b)	Perpendicular	(C)	Equally inclined to axes	(d)	Coincident	
96.	The	line which is parallel to x	-axis	and crosses the curve $y = \sqrt{x}$	at a	n angle of 45° is			[Roorkee 1993]
	(a)	x = 1 / 4	(b)	<i>y</i> = 1 / 4	(C)	<i>y</i> = 1 / 2	(d)	<i>y</i> = 1	
97.	The	angle between the lines	whos	se intercepts on the axes are a	a,–b a	and $b, -a$ respectively, is			
	(a)	$\tan^{-1}\frac{a^2-b^2}{ab}$	(b)	$\tan^{-1}\frac{b^2-a^2}{2}$	(C)	$\tan^{-1}\frac{b^2-a^2}{2ab}$	(d)	None of these	
98.	The	line $3x + 2y = 9$ intersec	ts the	e axes in A and B . If O is the c	origin	, then $\angle OAB$ equals			
	(a)	$\tan^{-1}(1/3)$	(b)	45 <i>°</i>	(C)	$\tan^{-1}(2/3)$	(d)	$\tan^{-1}(3/2)$	
99.	The	angle between two lines	is $\frac{\pi}{4}$. If the slope of one of them	be $\frac{1}{2}$	-, then the slope of the o	ther l	ine is	
	(a)	$1, -\frac{1}{3}$	(b)	$-1, \frac{1}{2}$	(C)	$-\frac{1}{3},3$	(d)	None of these	
	Advance Level								

100. A vertex of equilateral triangle is (2, 3) and equation of opposite side is x + y = 2, then the equation of one side from rest two is

				[11]	1975]
	(a) $y-3 = 2(x-2)$	(b) $y-3 = (2-\sqrt{3})(x-2)$	(c) $y-3 = (\sqrt{3}-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x$	2) (d) None of these	
101.	Coordinates of the vertice	s of a quadrilateral are (2, –1),(0, 2),	(2, 3) and (4, 0) . The angle	between its diagonals will be [IIT	1986]
	(a) 90 <i>°</i>	(b) 0°	(C) $\tan^{-1}(2)$	(d) $\tan^{-1}\left(\frac{1}{2}\right)$	
102.	In what direction a line be	e drawn through the point (1, 2) so	o that its point of intersecti	on with the line $x + y = 4$ is at a dist	tance
	$\frac{\sqrt{6}}{3}$ from the given point			[IIT 1966; MNR	1987]
	(a) 30°	(b) 45°	(C) 60°	(d) 75°	
103.	The line passing through t	the points (3,–4) and (–2,6) and a	ine passing through (-3,6)	and (9,-18), are [AMU	1974]
	(a) Perpendicular		(b) Parallel		
	(c) Makes an angle 60° v	vith each other	(d) None of these		
104.	Equation of the two straigh	t lines passing through the point (3, 2	2) and making an angle of 4	5° with the line $x - 2y = 3$, are [AMU]	1978]
	(a) $3x + y + 7 = 0$ and $x - 3x + y + 7 = 0$	+3y+9=0	(b) $3x - y - 7 = 0$ and	x + 3y - 9 = 0	
	(c) $x + 3y - 7 = 0$ and $x - 3y - 7 = 0$	+3y-9=0	(d) None of these		
105.	The diagonals of the paral	llelogram whose sides are $lx + my + my$	$-n = 0, \ lx + my + n' = 0, \ mx$	+ly+n=0, $mx+ly+n'=0$ include an	۱
	angle				
				[EAMCET	1994]
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{2}$	(c) $\tan^{-1}\left(\frac{l^2 - m^2}{l^2 + m^2}\right)$	(d) $\tan^{-1}\left(\frac{2lm}{l^2+m^2}\right)$	
106.	The sides AB, BC, CD and	DA of a quadrilateral are $x + 2y =$	= 3, x = 1, x - 3y = 4, 5x + y - 3y = 4	+ $12 = 0$ respectively. The angle betwee	en
	diagonals AC and BD is			[Roorkee	1993]
	(a) 45°	(b) 60°	(c) 90°	(d) 30°	
107.	One diagonal of a square	is along the line $8x - 15y = 0$ and $x = 0$	one of its vertex is (1, 2). The	en the equation of the sides of the squ	Jare
	passing through this verte	x, are		[T	1962]
	(a) $23x + 7y = 9$, $7x + 23$	<i>y</i> = 53	(b) $23x - 7y + 9 = 0$, 7	x + 23y + 53 = 0	
	(c) $23x - 7y - 9 = 0$, $7x$	+23y-53=0	(d) None of these		
108.	The parallelism condition	n for two straight lines one of v	which is specified by the	equation $ax + by + c = 0$ the other k	being
	represented parametrically	y by $x = \alpha t + \beta$, $y = \gamma t + \delta$ is given	ו by		
	(a) $a\gamma - b\alpha = 0, \beta = \delta = c$	$a = 0$ (b) $a\alpha - b\gamma = 0, \beta = \delta = 0$	(c) $a\alpha + b\gamma = 0$	(d) $a\gamma = b\alpha = 0$	
109.	If straight lines $ax + by + p$	$x = 0$ and $x \cos \alpha + y \sin \alpha - p = 0$ in	nclude an angle $\frac{\pi}{4}$ between	n them and meet the straight line	
	$x\sin\alpha - y\cos\alpha = 0$ in the	same point, then the value of a^2 -	$+b^2$ is equal to		
	(a) 1	(b) 2	(c) 3	(d) 4	
110.	The ends of the base of an	n isosceles triangle are at (2 <i>a</i> , 0) an	d $(0, a)$. The equation of or	the side is $x = 2a$. The equation of the c	other
	side is				
	(a) x + 2y - a = 0	(b) $x + 2y = 2a$	(c) 3x + 4y - 4a = 0	(d) 3x - 4y + 4a = 0	

111.	If <i>a,b,c</i> are in h	armonic progress	ion, then straigł	nt line $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$	always passes	through a fixed	d point, that point	is [MP PET
	1999]							
	(a) (-1, -2)	(b)	(-1, 2)	(C)	(1,-2)	(d)	(1, -1 / 2)	
112.	Angles made v	with the x-axis by t	two lines drawn	through the point (1	, 2) and cutting	g the line $x + y$	= 4 at a distance	$\frac{1}{3}\sqrt{6}$ from
	the point (1, 2)	are						[DCE 1995]
	(a) $\frac{\pi}{6}$ and $\frac{\pi}{3}$	(b)	$\frac{\pi}{8}$ and $\frac{3\pi}{8}$	(C)	$\frac{\pi}{12}$ and $\frac{5\pi}{12}$	(d)	None of these	
						Bisectors	of Angle betwee	en two Lines
				Basic Level				
113.	The equation of	of the line which b	isects the obtus	e angle between the	lines $x - 2y +$	4 = 0 and $4x -$	-3y + 2 = 0 is	[IIT 1979]
	(a) $(4 - \sqrt{5})x$	$-(3-2\sqrt{5})y+(2-$	$-4\sqrt{5})=0$	(b)	$(4+\sqrt{5})x-(3)x$	$(x + 2\sqrt{5})y + (2 + $	$4\sqrt{5}) = 0$	
	(c) $(4 + \sqrt{5})x$	$+(3+2\sqrt{5})y+(2-$	$(4\sqrt{5}) = 0$	(d)	None of thes	e		
114.	Equation of an	gle bisectors betw	veen <i>x</i> and <i>y</i> -ax	es are				[MP PET 1984]
	(a) $y = \pm x$	(b)	$y = \pm 2x$	(C)	$y = \pm \frac{1}{\sqrt{2}} x$	(d)	$y = \pm 3x$	
115.	Equation of an	gle bisector betwe	een the lines 3x	x + 4y - 7 = 0 and 12	x + 5y + 17 = 0) are	[Raj	asthan PET 1995]
	(a) $\frac{3x + 4y - y}{\sqrt{25}}$	$\pm 12x + 5y + 12x +$	17	(b)	$\frac{3x+4y+7}{\sqrt{25}} =$	$=\frac{12x+5y+17}{\sqrt{169}}$		
	(c) $\frac{3x + 4y + y}{\sqrt{25}}$	$\pm \frac{7}{\sqrt{169}} = \pm \frac{12x + 5y + y}{\sqrt{169}}$	17	(d)	None of thes	е		
116.	The equation of	of the bisector of t	he acute angle:	between the lines 2.	x - y + 4 = 0 ar	nd $x - 2y = 1$ is		
	(a) $x + y + 5 =$	= 0 (b)	x - y + 1 = 0	(C) 3	x - y = 5	(d)	None of these	
117.	The vertices of	a triangle are $A($	-1,-7), <i>B</i> (5,1) a	nd $C(1,4)$. The equation	ation of the in	ternal bisector o	of the angle ∠ABC	C is
	(a) $3x - 7y - $	8 = 0 (b)	x - 7y + 2 = 0) (c)	3x - 3y - 7 =	0 (d)	None of these	
118.	The equation (s	s) of the bisector (s)	of that angle be	etween the lines $x + 2$	y - 11 = 0, 32	x-6y-5=0, N	which contains the	point (1, –3) is
	(a) $3x = 19$	(b)	3y = 7	(C)	3x = 19 and	3y = 7 (d)	None of these	
				Advance Lev	rel			

- **119.** The equations of two equal sides of an isosceles triangle are 7x y + 3 = 0 and x + y 3 = 0 and the third side passes through the point (1, -10). The equation of the third side is [IIT 1984]
 - (a) x 3y 31 = 0 but not 3x + y + 7 = 0

(c) 3x + y + 7 = 0 or x - 3y - 31 = 0

- (b) 3x + y + 7 = 0 but not x 3y 31 = 0
- (d) Neither 3x + y + 7 = 0 nor x 3y 31 = 0

54	Strai	aht Line					
	(a)	$2\frac{2}{5}$	(b) $3\frac{1}{5}$	(C)	$4\frac{2}{5}$	(d)	$3\frac{2}{5}$
132.	Dist	tance between the paralle	el lines $3x + 4y + 7 = 0$ and $3x + 4y + 7 = 0$	y – 9	= 0 is		[Rajasthan PET 2003]
	(a)	$\frac{2}{5}$	(b) $\frac{12}{5}$	(C)	$\frac{5}{12}$	(d)	$\frac{3}{5}$
133.	The	e equation of the line join	ing the point (3, 5)to the point of	inters	ection of the lines $4x + y$	-1 =	0 and $7x - 3y - 35 = 0$ is
	equ	idistant from the points	(0,0) and (8,34)				[Roorkee 1984]
	(a)	True	(b) False	(C)	Nothing can be said	(d)	None of these
134.	Dist	tance between the lines f	5x + 3y - 7 = 0 and $15x + 9y + 14$	= 0 i	S		[Kerala (Engg.) 2002]
	(a)	$\frac{35}{\sqrt{34}}$	(b) $\frac{1}{3\sqrt{34}}$	(c)	$\frac{35}{3\sqrt{34}}$	(d)	$\frac{35}{2\sqrt{34}}$
135.	The	e distance between the lin	thes $3x - 2y = 1$ and $6x + 9 = 4y$ is				[MP PET 1998]
	(a)	$\frac{1}{\sqrt{52}}$	(b) $\frac{11}{\sqrt{52}}$	(C)	$\frac{4}{\sqrt{13}}$	(d)	$\frac{6}{\sqrt{13}}$
136.	The	e distance of the line $2x$ -	-3y = 4 from the point (1, 1) meas	ured p	parallel to the line $x + y =$	= 1 is	[Orissa JEE 2002]
	(a)	$\sqrt{2}$	(b) $\frac{5}{\sqrt{2}}$	(C)	$\frac{1}{\sqrt{2}}$	(d)	6
137.	The	e distance between the pa	arallel lines $y = 2x + 4$ and $6x = 3$	y + 5	is		
	(a)	$17 / \sqrt{3}$	(b) 1	(C)	$3 / \sqrt{5}$	(d)	7\sqrt{5} / 15
138.	The	e position of the point (8,	-9) with respect to the lines $2x + 3$	3y - 4	4 = 0 and $6x + 9y + 8 = 0$	is	
	(a)	Point lies on the same s	ide of the lines	(b)	Point lies on the differen	nt side	es of the line
	(C)	Point lies on one of the	lines	(d)	None of these		
139.	Cor	nsider the lines $2x + 3y =$	7, $2x + 3y = 12$ and point $A(3, -5)$). The	n		
	(a)	Point ' A ' lies between th	e lines		(b)	Sum	n of perpendicular distance from
A to t	he lir	$nes = 5 / \sqrt{13}$					
	(C)	Distance between lines i	s 19 / \ 13	(d)	None of these		
			Advand	ce Le	vel		
140.	A p The (a)	oint moves so that square e equation of the locus of $13x^2 + 13y^2 - 83x + 64$	e of its distance from the point (3, the point is y + 182 = 0	-2) is (b)	s numerically equal to its $x^{2} + y^{2} - 11x + 16y + 2$	distar 6 = 0	from the line $5x - 12y = 13$. [Roorkee 1974]
	(C)	$x^2 + y^2 - 11x + 16y = 0$		(d)	None of these		
141.	The	e points on the line $x + y$	= 4 which lie at a unit distance fro	m the	e line $4x + 3y = 10$, are		[IIT 1976]
	(a)	(3,1),(-7,11)	(b) (3,1),(7,11)	(C)	(-3,1),(-7,11)	(d)	(1,3),(-7,11)
142.	A v	ariable line passes throug	h a fixed point <i>P</i> . The algebraic su	ım of	the perpendiculars draw	n fron	n (2, 0),(0, 2) and (1, 1) on the line
	is ze	ero, then the coordinates	of the <i>P</i> are				[IIT 1991]
	(a)	(1, -1)	(b) (1, 1)	(C)	(2, 1)	(d)	(2, 2)

143.	A lin	ne <i>L</i> passes through the p	oints	(1, 1) and (2, 0) and another li	ine <i>L</i>	passes through $\left(\frac{1}{2},0\right)$ a	nd pe	erpendicular to <i>L</i> . Then the area
	of th	ne triangle formed by the	lines	<i>L, L</i> ' and <i>y</i> -axis, is				[Rajasthan PET 1991]
	(a)	$\frac{15}{8}$	(b)	$\frac{25}{4}$	(C)	$\frac{25}{8}$	(d)	$\frac{25}{16}$
144.	Equa	ation of a straight line on	whic	h length of perpendicular from	m the	e origin is four units and t	he lir	ne makes an angle of 120° with
	the .	<i>x</i> -axis, is						[MNR 1986]
	(a)	$x\sqrt{3} + y + 8 = 0$	(b)	$x\sqrt{3} - y = 8$	(C)	$x\sqrt{3} - y = 8$	(d)	$x - \sqrt{3}y + 8 = 0$
145.	Locu	us of the points which are	e at e	qual distance from $3x + 4y -$	11 =	0 and $12x + 5y + 2 = 0$ as	nd wl	nich is near the origin is
								[MNR 1987]
	(a)	21x - 77y + 153 = 0	(b)	99x + 77y - 133 = 0	(C)	7x - 11y = 19	(d)	None of these
146.	The	equation of the base of a	an ec	uilateral triangle is $x + y = 2a$	and t	he vertex is (2, –1). The le	ngth	of the side of the triangle is
						[IIT 1973, 1983; MP PET 1	995; F	ajasthan PET 1999, 2000]
	(a)	$\sqrt{3/2}$	(b)	$\sqrt{2}$	(C)	$\sqrt{2/3}$	(d)	None of these
147.	If the	e straight line through th	e poi	nt $P(3,4)$ makes an angle $\frac{\pi}{6}$	with	the <i>x</i> -axis and meets the	line 1	12x + 5y + 10 = 0 at <i>Q</i> , then the
	leng	th <i>PQ</i> is						
	(a)	$\frac{132}{12\sqrt{3}+5}$	(b)	$\frac{132}{12\sqrt{3}-5}$	(c)	$\frac{132}{5\sqrt{3}+12}$	(d)	$\frac{132}{5\sqrt{3}-12}$
148.	The	equations of the lines the	rougł	n the point of intersection of t	he lir	thes $x - y + 1 = 0$ and $2x + 1 = 0$	- 3y -	+5 = 0 and whose distance from
	the p	point (3, 2) is $\frac{7}{5}$, is						[IIT 1963]
	(a)	3x - 4y - 6 = 0 and $4x$	+ 3y -	+1 = 0	(b)	3x - 4y + 6 = 0 and $4x - 6 = 0$	- 3y -	-1 = 0
	(C)	3x - 4y + 6 = 0 and $4x - 3x - 4y + 6 = 0$	- 3y +	-1 = 0	(d)	None of these		
149.	A po	pint equidistant from the	lines	$4x + 3y + 10 = 0 , \ 5x - 12y + $	- 26 =	= 0 and 7x + 24y - 50 = 0	is	[EAMCET 1994]
	(a)	(1, -1)	(b)	(1, 1)	(C)	(0, 0)	(d)	(0, 1)
150.	A li	ne through A(-5,-4)	mee	ts the lines $x + 3y + 2 = 0$,	2 <i>x</i> +	y + 4 = 0 and $x - y - 5$	5 = 0	at B,C and D respectively. If
	$\left(\frac{15}{AE}\right)$	$\left(\frac{1}{B}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AD}\right)^2,$	then	the equation of the line is				[IIT 1993]
	(a)	2x + 3y + 22 = 0	(b)	5x - 4y + 7 = 0	(C)	3x - 2y + 3 = 0	(d)	None of these
151.	lf the	e equation of the locus o	fap	pint equidistant from the poin	its (a	(a_1, b_1) and (a_2, b_2) is $(a_1 - b_2)$	a_2)x	$+(b_1 - b_2)y + c = 0$, then the
	valu	e of ' <i>c</i> ' is						[IIT Screening 2003]
	(a)	$\frac{1}{2}(a_2^2+b_2^2-a_1^2-b_1^2)$	(b)	$a_1^2 - a_2^2 + b_1^2 - b_2^2$	(C)	$\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$	(d)	$\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$
152.	lf p	p_1, p_2 and p_3 be the	perp	pendiculars from the points	(m^2)	,2m),(mm',m+m') and	(<i>m</i> ' ²	,2m') respectively on the line
	x co	$\sin \alpha + y \sin \alpha + \frac{\sin^2 \alpha}{\cos \alpha} = 0$, the	n p_1, p_2 and p_3 are in				
	(a)	A.P.	(b)	G.P.	(C)	H.P	(d)	None of these

153.	If <i>p</i> and <i>p</i> ' be perpendicula $x \cos \theta - y \sin \theta = a \cos 2\theta$ for	rs from the origin upon the straigh	t lines $x \sec \theta + y \csc \theta = a$ an	ıd	
	(a) a^2	(b) $3a^2$	(c) $2a^2$	(d)	$4a^2$
154.	A family of lines is given by	$(1+2\lambda)x + (1-\lambda)y + \lambda = 0, \lambda$ bein	g the parameter. The line belo	onging	g to this family at the maximum
	distance from the point (1, 4	4) is			
	(a) $4x - y + 1 = 0$	(b) $33x + 12y + 7 = 0$	(c) $12x + 33y = 7$	(d)	None of these
155.	If the point (<i>a</i> , <i>a</i>) falls betwe	een the lines $ x + y = 2$, then			
	(a) $ a = 2$	(b) $ a = 1$	(C) <i>a</i> <1	(d)	$ a = \frac{1}{2}$
					Concurrency of Three lines
		Basic	Level		
156	The value of k for which the	lines $7r - 8v + 5 = 0$ $3r - 4v + 5$	= 0 and $4x + 5y + k = 0$ are co	าทตาม	ment is given by IMP PET 19931
150.	(a) $= 45$	(b) AA	(c) 54	لەت (م)	_5/
157		(b) $r = 3$ $y = 4$ and $4r = 3y + a = 0$		(u)	JT
157.		4x = 5, y = 4 and 4x - 5y + u = 0		(d)	
150	$(d) \cup$	(0) = 1	(C) 2	(u)	
158.	The lines $15x - 18y + 1 = 0$,	12x + 10y - 3 = 0 and $6x + 66y - 1$	I = 0 are	<	[AMU 1978]
	(a) Parallel	(b) Perpendicular	(c) Concurrent	(d)	None of these
159.	The lines $2x + y - 1 = 0$, as	x + 3y - 3 = 0 and $3x + 2y - 2 = 0$ a	are concurrent for		[EAMCET 1994]
	(a) All a	(b) $a = 4$ only	(c) $-1 \le a \le 3$	(d)	a > 0 only
160.	The value of λ for which the value of λ	the lines $3x + 4y = 5, 5x + 4y = 4$ and	d $\lambda x + 4y = 6$ meet at a point	is	
	(a) 2	(b) 1	(c) 4	(d)	3
161.	Three lines $3x - y = 2, 5x + 3x = 2$	ay = 3 and $2x + y = 3$ are concurrent	ent, then <i>a</i> =		[MP PET 1996]
	(a) 2	(b) 3	(c) –1	(d)	-2
162.	If the lines $x + q = 0, y - 2 =$	= 0 and $3x + 2y + 5 = 0$ are concurr	rent, then the value of q will be	è	[DCE 2002]
	(a) 1	(b) 2	(c) 3	(d)	5
163.	The equation of the line wit	th gradient $-3/2$ which is concurre	ent with the lines $4x + 3y - 7 =$	0 an	d $8x + 5y - 1 = 0$ is [DCE 1999]
	(a) $3x + 2y - 2 = 0$	(b) $3x + 2y - 63 = 0$	(c) $2y - 3x - 2 = 0$	(d)	None of these
164.	If lines $y = mx$, $x + 2y - 1 =$	0 and $2x - y + 3 = 0$ are concurrent	nt, then value of <i>m</i> is		[Rajasthan PET 1994]
	(a) 1	(b) 0	(c) –1	(d)	2
		Advan	ce Level		

165.	The lines $ax + by + c = 0$,	where $3a + 2b + 4c = 0$ as	re concurrent at the point	[IIT 1982]
	(a) (1/2,3/4)	(b) (1,3)	(C) (3,1)	(d) (3/4,1/2)
166.	The equations $(b - c)x + (b - c$	$(c-a)y + (a-b) = 0$ and (b^2)	$(a^{3} - c^{3})x + (c^{3} - a^{3})y + a^{3} - b^{3} = 0$ will	represent the same line, if
	(a) $b = c$	(b) $c = a$	(C) $a = b$	(d) a+b+c=0
167.	If the lines $ax + 2y + 1 = 0$, $bx + 3y + 1 = 0$ and $cx + 3y + 1 = 0$	+4y + 1 = 0 are concurrent, then <i>a</i> , <i>b</i> , <i>c</i>	are in
	(a) A.P	(b) G.P	(c) H.P	(d) None of these
168.	If the lines $ax + y + 1 =$	0, x + by + 1 = 0 and x + by + 1 = 0	+y+c=0 (<i>a</i> , <i>b</i> , <i>c</i> being distinct and	different from 1) are concurrent, then
	$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$			
	(a) 0	(b) 1	(c) $\frac{1}{a+b+c}$	(d) None of these
169.	The three straight lines a	x + by = c, bx + cy = a and	cx + ay = b are collinear, if	[MP PET 2004]
	(a) $a+b+c=0$	(b) $b + c = a$	(c) $c+a=b$	(d) $a + b = c$
170.	The three lines $3x + 4y +$	$6 = 0; \sqrt{2}x + \sqrt{3}y + 2\sqrt{2} =$	0 and $4x + 7y + 8 = 0$ are	[Rajasthan PET 1992]
	(a) Sides of a triangle	(b) Concurrent	(c) Parallel	(d) None of these
				Miscellaneous problems ()
			Basic Level	
171.	The coordinate of the foc	t of perpendicular from th	the point (2, 3) on the line $x + y - 11 = 0$) are
	(a) (- 6, 5)	(b) (5, 6)	(c) (-5, 6)	(d) (6, 5)
172.	The coordinate of the foc	t of the perpendicular fror	m the point (2,3) on the line $y = 3x + 4$	are given by [MP PET 1984]
	(a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$	(b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$	(c) $\left(\frac{10}{37}, -10\right)$	(d) $\left(\frac{2}{3}, \frac{-1}{3}\right)$
173.	If the coordinates of the r	niddle point of the portion	n of a line intercepted between coordi	nate axes (3, 2), then the equation of the
	line will be			[Rajasthan PET 1985; MP PET 1984]
	(a) $2x + 3y = 12$	(b) $3x + 2y = 12$	(c) $4x - 3y = 6$	(d) $5x - 2y = 10$
17/	Coordinates of the foot o	f the perpendicular drawn	from $(0, 0)$ to the line joining $(a \cos \alpha)$	$(\alpha, \beta, \alpha, -\beta) = 0$
17 4.	(a, b)			$\begin{bmatrix} a \sin \alpha \\ 0 \end{bmatrix}$
	(a) $\left(\frac{a}{2}, \frac{b}{2}\right)$		(b) $\left\lfloor \frac{a}{2} (\cos \alpha + \cos \beta), \frac{a}{2} (\cos \alpha + \cos \beta) \right\rfloor$	$(\sin \alpha + \sin \beta)$
	(c) $\left(\cos\frac{\alpha+\beta}{\sin\alpha+\beta}\right)$		(d) None of these	
	(c) $(cos 2, sm 2)$)		
175.	The pedal points of a per	pendicular drawn from ori	gin on the line $3x + 4y - 5 = 0$, is	[Rajasthan PET 1990]
	(a) $\left(\frac{3}{5},2\right)$	(b) $\left(\frac{3}{5},\frac{4}{5}\right)$	(c) $\left(-\frac{3}{5},-\frac{4}{5}\right)$	(d) $\left(\frac{30}{17}, \frac{19}{17}\right)$

176.	The coordinates of the	e foot of the perpendicular from	(x_1, y_1) to the line $ax + by + c = 0$ are	[Dhanbad Engg. 1973]
	(a) $\left(\frac{b^2 x_1 - aby_1 - aby_1}{a^2 + b^2}\right)$	$\left(\frac{a^2y_1 - abx_1 - bc}{a^2 + b^2}\right)$	(b) $\left(\frac{b^2 x_1 + aby_1 + ac}{a^2 + b^2}, \frac{a^2 y}{a^2}\right)$	$\frac{w_1 + abx_1 + bc}{a^2 + b^2} \bigg)$
	(c) $\left(\frac{ax_1 + by_1 + ab}{a + b}, \frac{a}{a + b}\right)$	$\frac{ax_1 - by_1 - ab}{a + b} \bigg)$	(d) None of these	
177.	The area of the triangl	e bounded by the straight line	$ax + by + c = 0$, $(a, b, c \neq 0)$ and the co	ordinate axes is [AMU 2000]
	(a) $\frac{1}{2 bc }$	(b) $\frac{1}{2 ab }$	(c) $\frac{1}{2} \frac{b^2}{ ac }$	(d) 0
178.	The image of the poin	t (4, -3)with respect to the line	y = x is	[Rajasthan PET 2002]
	(a) (-4,-3)	(b) (3,4)	(C) (-4,3)	(d) (-3,4)
179.	The triangle formed by	y the lines $x + y = 0$, $3x + y = 4$, x + 3y = 4 is	[Rajasthan PET 2002]
	(a) Isosceles	(b) Equilateral	(c) Right -angled	(d) None of these
180.	The diagonals of a par	allelogram PQRS are along th	the lines $x + 3y = 4$ and $6x - 2y = 7$. The	ien PQRS must be a [IIT 1998]
	(a) Rectangle	(b) Square	(c) Cyclic quadrilateral	(d) Rhombus
181.	Two points A and B h	nave coordinates (1, 1) and (3,	–2) respectively. The coordinates of a	point distant $\sqrt{85}$ from <i>B</i> on the line
	through <i>B</i> perpendicu	lar to <i>AB</i> are		[AMU 2000]
	(a) (4, 7)	(b) (7, 4)	(c) (5, 7)	(d) (-5, -3)
182.	The line $3x + 2y = 24$	meets <i>y</i> -axis at <i>A</i> and <i>x</i> -axis at	B. The perpendicular bisector of AB m	neets the line through (0, -1) parallel to
	<i>x</i> -axis at <i>C</i> . The area o	f the triangle <i>ABC</i> is		
	(a) 182 <i>sq</i> .units	(b) 91 <i>sq.</i> units	(c) 48 <i>sq.</i> units	(d) None of these
183.	The area of a parallelo	gram formed by the lines $ax \pm$	$by \pm c = 0$, is	[IIT 1973]
	(a) $\frac{c^2}{ab}$	(b) $\frac{2c^2}{ab}$	(c) $\frac{c^2}{2ab}$	(d) None of these
184.	The area of triangle fo	rmed by the lines $x = 0, y = 0$ a	and $\frac{x}{a} + \frac{y}{b} = 1$, is	[Rajasthan PET 1984]
	(a) <i>ab</i>	(b) <i>ab</i> /2	(c) 2 <i>ab</i>	(d) <i>ab</i> /3
185.	A line L is perpendicular	ar to the line $5x - y = 1$ and the	e area of the triangle formed by the line	e L and coordinate axes is 5. The
	equation of the line Li	is		[IIT 1980;Rajasthan PET 1997]
	(a) $x + 5y = 5$	(b) $x + 5y = \pm 5\sqrt{2}$	(c) $x - 5y = 5$	(d) $x - 5y = 5\sqrt{2}$
186.	The point (4, 1) underg	goes the following two successi	ve transformations	
	(i) Reflection about the	e line $y = x$	(ii) Translation through a dis	stance 2 units along the positive <i>x</i> -axis
	Then the final coordin	ates of the point are		[MNR 1987; UPSEAT 2000]
	(a) (4, 3)	(b) (3, 4)	(c) (1, 4)	(d) $\left(\frac{7}{2}, \frac{7}{2}\right)$
			Advance Level	

187. A straight line moves so that the sum of the reciprocals of its intercepts on two perpendicular lines is constant, then the line passes through
 [IIT 1977]

	(a) A fixed point	(b) A variable point	(c) Origin	(d) None of these
188.	The line $2x + 3y = 12$ meet	s the <i>x</i> -axis at <i>A</i> and <i>y</i> -axis at <i>B</i> . Th	e line through (5, 5) perpen	dicular to AB meets the x-axis, y-axis and
	the AB at C, D and E respec	ctively. If \mathcal{O} is the origin of coordina	ates, then the area of OCEB	is [IIT 1976]
	(a) 23 sq. units	(b) $\frac{23}{2}$ sq.units	(c) $\frac{23}{3}$ sq. units	(d) None of these
189.	The locus of a point <i>P</i> which	h divides the line joining (1, 0) and	$(2\cos\theta, 2\sin\theta)$ internally in	the ratio 2 : 3 for all $ heta$, is a
				[IIT 1986]
	(a) Straight line	(b) Circle	(c) Pair of straight lines	(d) Parabola
190.	Line <i>L</i> has intercepts <i>a</i> and	<i>b</i> on the coordinate axes. When th	e axes are rotated through	a given angle keeping the origin fixed,
	the same line L has intercept	ots <i>p</i> and <i>q</i> , then		[IIT 1990; Kurukshetra CEE 1998]
	(a) $a^2 + b^2 = p^2 + q^2$	(b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$	(c) $a^2 + p^2 = b^2 + q^2$	(d) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$
191.	One side of a rectangle lies	along the line $4x + 7y + 5 = 0$. Tw	vo of its vertices are (–3, 1) a	nd (1, 1). Then the equations of other
	sides are			
	(a) $7x - 4y + 25 = 0,4x + 7$	7y = 11 and $7x - 4y - 3 = 0$	(b) $7x + 4y + 25 = 0,7y - 0,$	+4x - 11 = 0 and $7x - 4y - 3 = 0$
	(c) $4x - 7y + 25 = 0,7x + 4$	4y - 11 = 0 and $4x - 7y - 3 = 0$	(d) None of these	
192.	Two consecutive sides of a	parallelogram are $4x + 5y = 0$ and	7x + 2y = 0. If the equation	n to one diagonal is $11x + 7y = 9$, then
	the equation of the other d	iagonal is		
	(a) $x + 2y = 0$	(b) $2x + y = 0$	(C) x - y = 0	(d) None of these
193.	If the sum of the distances of	of a point from two perpendicular	lines in a plane is 1, then its	locus is
			[IIT 1992	2; Karnataka CET 1999; DCE 2000, 01]
	(a) Square	(b) Circle	(c) Straight line	(d) Two intersecting lines
194.	A pair of straight lines draw	n through the origin form with the	e line $2x + 3y = 6$ an isoscele	es right angled triangle, then the lines
	and the area of the triangle	thus formed is		
	(a) $x - 5y = 0, 5x + y = 0, \Delta$	$\Lambda = \frac{36}{13}$	(b) $3x - y = 0, x + 3y = 0$	$0, \Delta = \frac{12}{17}$
	(c) $5x - y = 0, x + 5y = 0, \Delta$	$\Delta = \frac{13}{5}$	(d) None of these	
195.	P is a point on either of the	two lines $y - \sqrt{3} x = 2$ at a distant	nce of 5 units from their poi	nt of intersection. The coordinates of the
	foot of the perpendicular fr	om <i>P</i> on the bisector of the angle	between them are	[Roorkee 1992]
	(a) $\left(0, \frac{4+5\sqrt{3}}{2}\right)$ or $\left(0, \frac{4}{2}\right)$	$\left(\frac{-5\sqrt{3}}{2}\right)$ depending on which the p	ooint <i>P</i> is taken	(b) $\left(0, \frac{4+5\sqrt{3}}{2}\right)$
	(c) $\left(0, \frac{4-5\sqrt{3}}{2}\right)$			(d) $\left(\frac{5}{2}, \frac{5\sqrt{2}}{2}\right)$
196.	A ray of light passing throu	ugh the point (1, 2) is reflected on	the <i>x</i> -axis at a point <i>P</i> and	passes through the point (5, 3). Then the
	abscissa of the point <i>P</i> is			[Orissa JEE 2003]

(a) -3 (b) 13/3 (c) 13/5 (d) 13/4

The point moves such that the area of the triangle formed by it with the points (1, 5) and (3, -7) is 21 sq. unit. The locus of the 197. point is (b) 6x - y + 32 = 0 (c) x + 6y - 32 = 0 (d) 6x - y - 32 = 0(a) 6x + y - 32 = 0If for a variable line $\frac{x}{a} + \frac{y}{b} = 1$ the condition $a^{-2} + b^{-2} = c^{-2}$ (c is a constant) is satisfied, then locus of foot of perpendicular drawn 198. from origin to the straight line is [Raiasthan PET 1999] (a) $x^2 + y^2 = c^2/2$ (b) $x^2 + y^2 = 2c^2$ (c) $x^2 + y^2 = c^2$ (d) $x^2 - y^2 = c^2$ 199. Let L be the line 2x + y = 2. If the axes are rotated by 45° , then the intercepts made by the line L on the new axes are respectively [Roorkee 1998] (c) $2\sqrt{2}$ and $2\sqrt{2}/3$ (d) $2\sqrt{2}/3$ and $2\sqrt{2}$ (a) $\sqrt{2}$ and 1 (b) 1 and $\sqrt{2}$ The graph of the function $\cos x \cos(x+2) - \cos^2(x+1)$ is 200. [IIT 1997 Re-Exam] (a) A straight line passing through $(0, -\sin^2 1)$ with slope 2 (b) A straight line passing through (0,0) (c) A parabola with vertex $(1, -\sin^2 1)$ (d) A straight line passing through the point $\left(\frac{\pi}{2}, -\sin^2 1\right)$ and parallel to the x-axis 201. Two lines are drawn through (3, 4), each of which makes angle of 45° with the line x - y = 2, then area of the triangle formed by these lines is [Rajasthan PET 2000] (b) 9/2 (c) 2 (a) 9 (d) 2/9 202. A point starts moving from (1, 2) and its projections on x and y-axes are moving with velocities of 3 m/s and 2 m/s respectively. Its locus is [Roorkee 1999] (c) 3y - 2x + 4 = 0 (d) 2y - 3x + 1 = 0(a) 2x - 3y + 4 = 0(b) 3x - 2y + 1 = 0**203.** If (-2, 6) is the image of the point (4, 2) with respect to line L = 0, then L =[EAMCET 2002] (a) 3x - 2y + 5(b) 3x - 2y + 10(c) 2x + 3y - 5(d) 6x - 4y - 7204. The area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 equals (c) $\frac{1}{|m+n|}$ (d) $\frac{1}{|m-n|}$ (a) $\frac{\mid m+n\mid}{(m-n)^2}$ (b) $\frac{2}{|m+n|}$ 205. A line AB makes zero intercept on x-axis and y-axis and it is perpendicular to another line CD, 3x + 4y + 6 = 0. The equation of line AB is [Karnataka CET 2001] (a) y = 4(b) 4x - 3y + 8 = 0 (c) 4x - 3y = 0(d) 4x - 3y + 6 = 0206. Area of the parallelogram whose sides are $x \cos \alpha + y \sin \alpha = p$, $x \cos \alpha + y \sin \alpha = q$, $x \cos \beta + y \sin \beta = r$ and $x\cos\beta + y\sin\beta = s$ is (a) $\pm (p-q)(r-s)\operatorname{cosec}(\alpha-\beta)$ (b) $(p+q)(r-s)\operatorname{cosec}(\alpha+\beta)$ (c) $(p+q)(r+s)\operatorname{cosec}(\alpha-\beta)$ (d) None of these If the transversal $y = m_r x$; r = 1, 2, 3 cut off equal intercepts on the transversal x + y = 1, then $1 + m_1, 1 + m_2, 1 + m_3$ are in 207. (b) G.P. (c) H.P. (a) A.P (d) None of these

208.	If the extremities of the base	e of an isosceles triangle are the po	oints (2 <i>a</i> , 0) and (0, <i>a</i>) and the equation of one of the sides is $x=2a$,								
	then the area of the triangle	e is									
	(a) $5a^2sq$. units	(b) $\frac{5a^2}{2}$ sq. units	(C)	$\frac{25 a^2}{2} sq.$ units	(d) None of these						
209.	The coordinates of the four	vertices of a quadrilateral are (-2,	2, 4), (-1, 2),(1, 2) and (2, 4) taken in order. The equation of the line								
	passing through the vertex ((–1, 2) and dividing the quadrilater	eral in two equal areas is								
	(a) $x + 1 = 0$	(b) $x + y = 1$	(C)	(c) $x - y + 3 = 0$ (d) None of these							
210.	If a ray travelling along the line	e $x=1$ gets reflected from the line $x +$	- y = 1	, then the equation of the	line along which the reflected ray travels						
	is										
	(a) $y = 0$	(b) $x - y = 1$	(C)	x = 0	(d) None of these						
211.	If $bx + cy = a$, where a , b , c are	e of the same sign, be a line such tha	at the a	area enclosed by the line ar	nd the axes of reference is $rac{1}{8}$ unit ² , then						
	(a) b, a, c are in G.P.	(b) $b, 2a, c$ are in G.P.	(C)	$b, \frac{a}{2}, c$ are in A.P.	(d) $b,-2a,c$ are in G.P.						
212.	Determine all values of	α for which the point (α, α^2)	lies	inside the triangle fo	rmed by the lines $2x + 3y - 1 = 0$,						
	x + 2y - 3 = 0,5x - 6y - 1 =	0			[IIT 1992]						
	(a) $-3/2 < \alpha < -1$ and $1/2$	$2 < \alpha < 1$	(b)	$-3/2 < \alpha < 1$ and $-1/2$	$\alpha < \alpha < 1$						
		. 1	(-1)	(d) None of these							
	(c) $-3 < \alpha < -1$ and $2 < \alpha$	<1	(a)	None of these							
213.	(c) $-3 < \alpha < -1$ and $2 < \alpha$ The symmetry in curve x^3 +	< 1 - $y^3 = 3axy$ along	(a)	None of these							
213.	(c) $-3 < \alpha < -1$ and $2 < \alpha$ The symmetry in curve x^3 + (a) <i>x</i> -axis	< 1 - $y^3 = 3axy$ along (b) <i>y</i> -axis	(a) (c)	Line $y = x$	(d) Opposite quadrants						
213. 214.	(c) $-3 < \alpha < -1$ and $2 < \alpha$ The symmetry in curve x^3 + (a) <i>x</i> -axis If m_1, m_2 are the roots of	< 1 $y^3 = 3axy$ along (b) <i>y</i> -axis the equation $x^2 - ax - a - 1 = 0$	(a) (c) , ther	Line $y = x$ the area of the triang	(d) Opposite quadrants le formed by the three straight lines						
213. 214.	(c) $-3 < \alpha < -1$ and $2 < \alpha$ The symmetry in curve $x^3 + (a) x$ -axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = \alpha$	< 1 $y^3 = 3axy$ along (b) <i>y</i> -axis the equation $x^2 - ax - a - 1 = 0$ $a(a \neq -1)$ is	(a) (c) , ther	Line $y = x$ the area of the triang	(d) Opposite quadrants le formed by the three straight lines						
213. 214.	(c) $-3 < \alpha < -1$ and $2 < \alpha$ The symmetry in curve $x^3 + (a) x$ -axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = \alpha$ (a) $\frac{a^2(a+2)}{2(a+1)}$, if $a > -1$	< 1 $y^3 = 3axy$ along (b) y-axis the equation $x^2 - ax - a - 1 = 0$ $a(a \neq -1)$ is	(a) (c) , ther (b)	Line $y = x$ the area of the triang $\frac{-a^2(a+2)}{2(a+1)}$, if $a < -1$	(d) Opposite quadrants le formed by the three straight lines						
213. 214.	(c) $-3 < \alpha < -1$ and $2 < \alpha$ The symmetry in curve $x^3 + (a) x$ -axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = \alpha$ (a) $\frac{a^2(a+2)}{2(a+1)}$, if $a > -1$ (c) $\frac{-a^2(a+2)}{2(a+1)}$, if $-2 < a < \alpha$	< 1 $y^3 = 3axy$ along (b) y-axis the equation $x^2 - ax - a - 1 = 0$ $a(a \neq -1)$ is	(d) (c) , ther (b) (d)	Line $y = x$ the area of the triang $\frac{-a^2(a+2)}{2(a+1)}$, if $a < -1$ $\frac{a^2(a+2)}{2(a+1)}$, if $a < -2$	(d) Opposite quadrants le formed by the three straight lines						
213. 214. 215.	(c) $-3 < \alpha < -1$ and $2 < \alpha$ The symmetry in curve $x^3 + (a) x$ -axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = \alpha$ (a) $\frac{a^2(a+2)}{2(a+1)}$, if $a > -1$ (c) $\frac{-a^2(a+2)}{2(a+1)}$, if $-2 < a < \alpha$ A line which makes an accurate	< 1 $y^3 = 3axy$ along (b) <i>y</i> -axis the equation $x^2 - ax - a - 1 = 0$ $a(a \neq -1)$ is < -1 the angle θ with the positive direction	(d) (c) , ther (b) (d) ction	Line $y = x$ the area of the triang $\frac{-a^2(a+2)}{2(a+1)}$, if $a < -1$ $\frac{a^2(a+2)}{2(a+1)}$, if $a < -2$ of <i>x</i> -axis is drawn through	(d) Opposite quadrants le formed by the three straight lines ugh the point $P(3,4)$ to meet the line						
213. 214. 215.	(c) $-3 < \alpha < -1$ and $2 < \alpha$ The symmetry in curve $x^3 + (a)$ (a) x-axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = \alpha$ (a) $\frac{a^2(a+2)}{2(a+1)}$, if $a > -1$ (c) $\frac{-a^2(a+2)}{2(a+1)}$, if $-2 < a < \alpha$ A line which makes an acu x = 6 at R and $y = 8$ at S, the	$ < 1 $ $ < y^3 = 3axy \text{ along} $ (b) <i>y</i> -axis the equation $x^2 - ax - a - 1 = 0$ $ a(a \neq -1) \text{ is} $ 	(d) (c) , ther (b) (d) ction	Line $y = x$ the area of the triang $\frac{-a^2(a+2)}{2(a+1)}$, if $a < -1$ $\frac{a^2(a+2)}{2(a+1)}$, if $a < -2$ of x-axis is drawn through	(d) Opposite quadrants le formed by the three straight lines ugh the point $P(3,4)$ to meet the line						
213. 214. 215.	(c) $-3 < \alpha < -1$ and $2 < \alpha$ The symmetry in curve $x^3 + (a)$ (a) <i>x</i> -axis If m_1, m_2 are the roots of $y = m_1 x, y = m_2 x$ and $y = \alpha$ (a) $\frac{a^2(a+2)}{2(a+1)}$, if $a > -1$ (c) $\frac{-a^2(a+2)}{2(a+1)}$, if $-2 < a < \alpha$ A line which makes an acu x = 6 at <i>R</i> and $y = 8$ at <i>S</i> , the (a) <i>PR</i> = 3 sec θ	< 1 $y^3 = 3axy$ along (b) <i>y</i> -axis the equation $x^2 - ax - a - 1 = 0$ $a(a \neq -1)$ is x = -1 and $a = -1$ the angle θ with the positive direction	(d) (c) , ther (b) (d) ction (b)	Line $y = x$ a the area of the triang $\frac{-a^2(a+2)}{2(a+1)}$, if $a < -1$ $\frac{a^2(a+2)}{2(a+1)}$, if $a < -2$ of <i>x</i> -axis is drawn throw $PS = 4 \operatorname{cosec} \theta$	(d) Opposite quadrants le formed by the three straight lines ugh the point $P(3,4)$ to meet the line						

216. P(m,n) (where *m*, *n* are natural numbers) is any point in the interior of the quadrilateral formed by the pair of lines xy = 0 and the two lines 2x + y - 2 = 0 and 4x + 5y = 20. The possible number of positions of the point *P* is (a) Six (b) Five (c) Four (d) Eleven

Assianment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	С	b	b	d	b	b	а	С	а	а	d	С	а	С	С	b	d	b	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	d	С	а	b	а	b	а	С	b	d	b	d	а	а	а	d	С	b	а
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
С	а	d	b	а	а	b	а	а	С	а	d	С	b	а	b	а	а	b	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	b	а	а	а	а	b	а	а	а	С	а	С	b	а	b	a,c	а	а	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
С	b	b	b	а	С	b	b	b	b	С	b	а	а	b	С	С	d	С	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
С	d	b	b	b	С	С	С	b	d	С	С	а	а	а	b	b	а	С	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	b	а	b	d	С	d	а	b	С	а	b	а	С	b	а	d	а	d	а
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
а	b	d	а	b	С	а	С	С	а	а	b	а	С	С	а	а	С	а	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
d	C	а	С	d	a,b,c,d	а	b	а	b	b	b	а	b	b	а	b	d	а	d
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200

Indices and Surds 59

С	b	b	b	b	b	а	С	b	b	а	С	а	а	b	С	а	С	С	d
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216				
b	а	а	d	С	а	С	b	С	а	b,d	а	С	a,c,d	a,b,c,d	а				