

Topics : Circle, Straight Lines

DPP No. 56

Total Marks : 25

Max. Time : 29 min.

Type of Questions		M.M., Min.	
Comprehension (no negative marking) Q.1 to Q.3	(3 marks, 3 min.)	[9,	9]
Subjective Questions (no negative marking) Q.4,5,6,7	(4 marks, 5 min.)	[16,	20]

COMPREHENSION (For Q.No. 1 to 3)

Let $f(x) \equiv x^2 + px + q = 0$ have real roots α , β and $g(x) \equiv x^2 + rx + s = 0$ have real roots γ , δ

1. The area of the quadrilateral formed by points (γ , 0), (α , 0), (0, β), (0, δ) taken in order is

(A) $\frac{|q-s|}{2}$ (B) $\frac{|q+s|}{2}$ (C) $\frac{|r+p|}{2}$ (D) $\frac{|p-r|}{2}$

- The centre of the circle passing through the points of intersection of pairs of lines f(x) = 0 and g(y) = 0 is
 - $(A) \left(\frac{p}{2}, \frac{r}{2}\right) \qquad (B) \left(\frac{q}{2}, \frac{s}{2}\right) \qquad (C) \left(-\frac{q}{2}, -\frac{s}{2}\right) \qquad (D) \left(-\frac{p}{2}, -\frac{r}{2}\right)$

3. Equation of the director circle of the circle f(x) + g(y) = 0 is (A) $f(x) + g(y) = p^2 + r^2 - q - s$ (B) $f(x) + g(y) = q^2 + s^2$

(C) $f(x) + g(y) = \frac{p^2 + r^2}{4} - q - s$ (D) $f(x) + g(y) = p + r - \frac{(q^2 + s^2)}{4}$

- **4.** Two circles touch the x-axis and the line y = mx (m>0). They meet at (9, 6) and at another point and the product of their radii is 68. Find 'm'.
- 5. Show that the common tangents to the circles $x^2 + y^2 6x = 0$ and $x^2 + y^2 + 2x = 0$ form an equilateral triangle.
- 6. The circle $x^2 + y^2 4x 4y + 4 = 0$ is inscribed in a triangle which has two of its sides along the co-ordinate axes. The locus of the circumcentre of the triangle is $x + y xy + k\sqrt{x^2 + y^2} = 0$, find k.
- 7. Let A, B, C be real numbers such that

(1) (sin A, cos B) lies on a unit circle centred at origin.

(2) tan C and cot C are defined.

If the minimum value of $(\tan C - \sin A)^2 + (\cot C - \cos B)^2$ is a + b $\sqrt{2}$, where a, b \in I, find the value of $a^3 + b^3$.

Answers Key

1. A **2.** D **3.** C **4.**
$$m = \frac{12\sqrt{221}}{49}$$
 6. $k = 1$

7. 19