6. Oscillatory Motion and Waves

6.1. At two momentsin time the displacements of a har-
monically oscillating point are the same. Can we state,
on the basis of what we have just said, that the phases at
these moments are also the same?

6.2. The oscillations depicted by curve I in the figure
are expressed by the equation £ = A4 sin of. What is the
equation for the oscillations depicted by curve 2?

6.3. Two material particlesof equal mass are performing
harmonic oscillations whose graphs are shown in the fig-
ure. What oscillation has a higher energy?
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6.4. As a result of adding two mutually perpendicular
oscillations of equal {requency, the motion of an object
occurs along an ellipse; in one case the motion is clock-
wise, while in the other it is counterclockwise. Write the
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Fig. 6.3

equatlions of motion along each coordinate axis, assuming
that the initial phase along the x axis is zero.

6.5. Two mutually perpendicular oscillations are added.
In one case the graphs representing these oscillations are
those shown in Figure (a) and in the other, those shown in
Figure (b). In what respect do the resultant oscillations
differ?

6.6. Suppose that the addition of two mutually perpendic-
ular oscillations in which a malerial particle partici-
pates results in an ellipse, with the direction of motion
indicated by the arrow in the figure. The equation of mo-
tion along the z axis can be written in the form z =
4, sin ot and that along the y axis, in the form y =
A,sin (ot + ¢). Determine the condition that ¢ must
meet.

(13.7. Two mutually perpendicular oscillations obey Lhe
aws

x — A, sin ot and y = A, sin (0t + ).

The addition of these two oscillations leads to the Lissa-
jous figure shown in the drawing accompanying the prob-
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Iem. Delermine the relationship between o, and w, and
the initial phase ¢ if the figure is traversed in the direc-
tion shown by the arrows.
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Fig. 6.6 Fig. 6.8

6.8. Two mutually perpendicular oscillations arc per-
formed according to the laws

z = A;sin 0, and y = A, sin @,t.

Determine the relationship between o, and w, using the
Lissajous figure shown in the drawing accompanying the
problem.

6.9. A material particle oscillates according to the harmon-
ic law. At which of the two moments, 7 or 2, is the kinet-
ic energy higher and in which, the potential encrgy?
Al which moment is the acceleration of the particle at
its maximum (in absolute value)?

6.10. Two loads whose masses are m; and m, are suspend-
ed by springs (m; > m,). When the loads were attached
to the unloaded springs, it was found that the elongations
of the springs were the same. Which of the two loads oscil-
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lates with a greater oscillation period and which of the
Iwo loads possesses a higher energy (provided that the
oscillation amplitudes are equal)? The springs are con-
sidered massless.
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6.11. A chemical test tube is balanced by a load al its
bottom so that it does not tip when submurged in a liquid
(the cross-sectional area of the tube is S). After submerg-
ing to a certain depth, the tube begins to oscillate about
its position of equilibrium. The tube, whose mass togeth-
er with the mass of the load is m, is in the stale ol equi-
librium in a liquid with a density p when its bottom is be-
low the level of liquid by a distance I. Determine the oscil-
lation period of the tube assuming that the viscosity of
the liquid is nil.

6.12. One way to measure the massof anobject in a space
station at zero gravily is lo use a device schematically
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shown in the figure. The principle of operation of this
device is as follows. First the austronaul measures the
oscillation frequency of an elastic system of known mass.
Then the unknown mass is added to this system and a new
measurement of the oscillation frequency is taken. [Tow
can one determine the unknown mass from the two mea-
sured values of frequency?
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6.13. Two simple pendulums having equal masses but
different lengths are in oscillatory motion with the same
angular amplitudes. Which of the two pendulums has a
higher oscillation energy?

6.14. Two pendulums, a physical one in the form of a
homogeneous rod and a simple one, of equal mass and

Fig. 6.13 Fig. 6.14 Fig. 6.15

length are in oscillatory motion with the same angular
amplitudes. Which of the two pendulums has a higher os-
cillation cnergy?

6.15. An axis passes Lhrough a disk of radius R and mass
m al. a distance R; from the disk’s center. What will be
the period of oscillations of the disk about Lhis axis
(which is fixed)?

6.16. Consider a physical pendulum that isa homogeneous
rod of length [. At what distance 1. from the center of
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gravily of the rod must the point of suspension lie for the
oscillation period to be maximal?

6.17. A force acting on a material particle varies accord-
ing to the harmonic law

F = Igsin ot.
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At time ¢t = 0 the velocity v is zero. 1{ow do the velocity
and position of the parlicle vary with time?

6.18. A force acting on a material particle varies ac-
cording to the harmonic law

I = F, cos wt.

At time ¢t = 0 the velocity v is zero. How do the ve-
locity and position of the particle vary with time?

6.19. The time dependence of the amplitude of damnped
oscillations is presented in the figures on a semilogarith-
mic¢ scale, that is, the time is laid off on the horizontal
axis on a linear scale and the amplitude, on the vertical

nA
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axis on a logarithmic scale. Construct the time depen-
dence of the energy of these oscillations using the semiloga-
rithmic scale. Set the initial values of the logarithins of
the amplitude and energy of the oscillations equal.
6.20. Suppose that certain damped oscillations are re-
presented in polar coordinates. Depict these oscillations in
Cartesian coordinates with the phase of the oscillations
laid off on the horizontal axis and the displacement, on
the vertical axis, assuming that the ratio of the sequen-
tial amplitudes of oscillations and the initial phase remain
unchanged. Find the logarithmic decrement of the oscil-
lations.

6.21. Suppose that a pendulum oscillates in a viscous me-
dium. The viscosity of the mediuim and the mass and
length of the pendulum are such that the oscillations are
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aperiodic. The pendulum is deflected from the posilion
of equilibrium and released. How will the absolute value
of the the pendulum’s velocity vary with time: will it
increase continuously, decrease continuously, pass
through a maximum, or pass through a minimum?
6.22. A load suspended by a spring in a viscous medium
performs damped oscillations. How should one change the
Ienglh of the spring (preserving all the characteristics of
the spring, i.e. the thickness of the wire, the density of
the turns, etc.) so that the oscillations become aperiodic?
The mass of the spring is assumed to be negligible com-
pared Lo the mass of the load.

6.23. An oscillalory circuil consists of a capacitance C,
an inductance L, and a resistance 2. Danped oscillalions
sel in in this civcuit. (1) How should one change Lhe dis-
tance between the plales of the capacitor for the discharge in
the circuit to become aperiodic? (2) How should one
change the capacitance and inductance (with the resistance
remaining unchanged) for the damping in the contour to
diminish provided Lhat the natural frequency of free os-
cillations remains the same? How will this change the
frequency of damped oscillations? (3) How will the loga-
rithmic decrement of the oscillations change il the re-
sistance and inductance change by the same factor?
6.24. T'wo spheres of the same diameler but of different
mmasses are suspended by strings of equal Tength. If the
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spheres ave deflecled from their positions of equilibrium,
which of the two will have a greater oscillation period
and which will have a greater Jogarithmic decrement if
their oscillations occur in a real medinm with viscosity?
6.25. A “dancing spiral” is sometimes demonstrated at
lectures. A spring fixed at ils upper end is submerged by
its lower end into mercury. Voltage supplied by a DC
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source is applied to the upper end and the wercury.
When current flows in the spring, the rings of the spring
tend to draw together, the spring gets shorter, and the
lower end moves out of the mercury. The current cecases,
and the lower end isagain submerged in the mercury. The
process repeals itself. Whal oscillations does the spring
perform in the process: free, forced, damped, or self-oscil-
lations?

6.26. Which of the two diagrams, Figure (a) or Figure
(b), represents the dependence of the amplitude of displace-
ments in forced oscillations on the frequency of the driv-
ing force and which represents the frequency dependence
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of the velocity amplitude? In what parameter determining
the oscillation conditions does cach curve represented in
Figures (a) and (b) differ? What paramelers determine the
intersection of each curve with the vertical axis in Figure
(a) and the position of the maximum?

6.27. How will the displacement amplitude at o =0
that is A,, the maximal amplitude 4 ,,, and the resonance
frequency w. vary if the resistance of the medium in
which the oscillations occur decreases provided that all
the other parameters that determine the forced oscilla-
tions remain unchanged?

6.28. The curve depicting the dependence of the ampli-
tude of forced oscillations on the frequency of the driving
force in a medium with no resistance tends to infinity as
® = m,. Why is this situation meaningless not only from
the physical standpoint but also from the mathematical
standpoint? ITow does a system oscillate in a medium
that has practically no resistance?

6.29. Two forced oscillations with the same natural fre-
quencies have amplitudes that differ by a factor of 2 for
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all values of the frequency of the driving force. In what
parameter, among the amplitude of the driving force,
the mass of the oscillating object, the elasticity coeffi-
cient, and the resistance of the medium, do these systems
differ? It is assumed that these systems may differ only
in one parameter.
6.30. Waves on the surface of water in the form of paral-
Icl lines advance on a wall with an aperture much narrow-
er than the wavelength. What will be the shape of the
waves propagating on the surface”behind the wall (and
aperture)?
6.31. In the standing waves that form as a result of re-
flection of waves from an obstacle the ratio of the ampli-
tude at a crest to the
amplitude at a node is
6. What fraction of the
energy passes past the
obstacle?
6.32. A wave is propa-
gating in a medium with
damping. The distance
from the source of oscil-
lations (in units of the
wavelength) is laid off
[ L on the horizontal axis
e s 77+ and the common loga-
Fig. 6.32 rithm of the oscillation
amplitude is laid off
on the verltical axis. Using the graph shown in the fig-
ure accompanying the problem, write a formula that will
link the amplitude with the distance.
6.33. The formula that expresses the speed of sound in a
gas can be written in the following form:

c=1V vplp. (6.33.1)

Here vy is the specific heat ratio (the ralio of the specific
heat capacity of the gas at constant pressure to the spe-
cific heat capacity at constant volume), p is the pressure of
the gas, and p is the density of the gas. Using this formu-
la as a basis, can we stipulate that upon isothermal change
of the state the speed of sound in the gas grows with pres-
sure?
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6.34. The figure demonstratesthe temperature dependence
of the speed of sound in neon and waler vapor on the
log-log scale. Which straight line corresponds to the light-
er of the gases?

6.35. The dependence of the frequency of oscillations reg-
istered by a receiver when the receiver and the source of
sound approach each other depends on whether the source
moves and the receiver is fixed, or whether the source is
fixed and the receiver is in motion. The curves in the fig-
urc represent the dependence of the ratio of the received
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frequency of oscillations to the frequency cmitted by the
source on the ratio of the rate of relative motion to the
velocity of sound. Which of the two curves corresponds
to a moving source and which, to a moving receiver?
The medium where the propagation of sound takes place
(air or water) is assumed fixed.

6.36. An observer standing at the bed of a railroad hears
the whistle of the locomotive of the train that rushes past
him. When the train is approaching the observer, the fre-
quency of the whistle sound is v,, while when it has passed
the observer, the frequency is v,. Determine the speed
of the train and find the whistle frequency when the ob-
server moves together with the train. The speed of sound
is assumed to be known.

6.37. Two observers stand at different distances from the
bed of a railroad. When a train passes them, cach hears
how the frequency of the train whistle changes, with the
change occurring along curve 7 for one observer and along
curve 2 for the other. Which of the two observers is stand-
ing closer to the roadbed?
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6.38. A source of sound whose frequency is v, is moving
with a speed v. The waves travel to a fixed obstucle,'urc
reflected by the obstacle, and are registed by a receiver
that moves together with the source. What frequency is
registed by the receiver if the speed of sound waves is c?
6.39. A source of oscillations S is fixed to the riverbed
of a river whose walers flow with a velocity v. Up and
down the stream there are fixed (also to the river bed)

Fig. 6.37 Fig. 6.39

two receivers, Ry and R, (sec the ligure). The source gen-
crales oscillations whose frequency is v,. What frequencies
do receivers R, and R, register?

6.40. Two boats are floating on a pond in the same direc-
tion and with the same speed v. Each boat sends,
through the water, a signal to the other. The frequencies
v, of the generaled signals are the same. Will the times

¥~
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it takes the signals to travel from one boat to the other be
the same? Are the wavelengths the same? Are the fre-
quencies received by the boals the same?

6.41. An underground explosion al a point 4 generates
vibrations. Seismographs thal are capable of measuring
longitudinal and transverse waves separately arve placed
at another point B. The time inlerval bet ween the arrival
of longitudinal and transverse waves is measured. How,
knowing the velocities of propagalion of longitudinal
and transverse waves and the time difference between
arrival, Lo determine the distance S belween points A
and B?

6.42. A sound wave travels in air and falls on the inter-
face between air and water at an angle ;. At what angle
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a, will the wave propagate in the medium: greater (han
a, or smaller than a,?

6.43. There are many documented cases when an explo-
sion at a point A will be heard al a point B that is locat-
ed far away from A4 while in a certain region, known as
the zone of silence, located much closer to A than to B
the explosion is not heard. Among the reasons for this is
the deflection of sound waves caused by the presence of a
vertical temperature gradient in the almopshere. How
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should Lhe air Lemperalure change with altitude for the
direction of propagalion of sound waves to be as shown
in the figure?

6.44. At a depth h, below ground level there isa pockel
of waler of deplth h,. Whal type of artificial seismic
waves, longitudinal or Lransverse, is needed o measure
the depth of the water pockel?

6.45. An airlane is in supersonic tlight at an altitude h.
At what smallest distance a (along the horizontal) from
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the observer on the ground is there a point from which
the sound emitted by the airplane motors travels to the ob-
server faster than from point A that is directly above the
observer?
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6. Oscillatory Motion and Waves

6.1. Equal deflections from the position of equilibrium
occur if

sin @, = sin @,, (6.1.1)
where @, = ot; and ®, = ol, (as shown in the figure,

the initial phase is zero). The z vs. wt curve shows that
condition (6.1.1) is met if

sin @, = sin (n — @,).

Here cos ®, = —cos ®,, that is, phases @, and ®,
correspond to velocities of the oscillating point that are
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Fig. 6.1

opposite in direction. The phases of harmonic oscillations
coincide if both the deflections and the velocities of the
oscillations coincide (both in absolute value and in direc-
tion).

6.2. The amplitude of the oscillations depicted by
curve 2 in the figure accompanying the question is twice
as large as that of the oscillations depicted by curve 1.
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The periods of the two oscillations coincide. Oscillations 2
lag in phase behind oscillations 7 by a quarter of one pe-
riod. Hence, oscillations 2 are represented by the equa-
tion

z = 24 sin (ot — 7/2).

6.3. Oscillations 7 have a period that is twice as large as
that of oscillations 2, so that the frequency of oscillations
1 is one-half of that of oscillations 2. Amplitude A, is
twice as large as amplitude A,. The energies of these os-
cillations arve

W= - m}A;

2

and W, meldi—+m (5)" @a=w,
that is, coincide.
6.4. The equation of the motion projected on the z
axis is

r = A, sin wt.

In the case where the object moves clockwise, the deflec-
tion along the y axis at time zero (¢ = 0) isy = 4,, and
then it decreases to zero when the maximum on the z
axis is attained. The sine decreases from unity to zero as
the angle changes from 7/2 to m. In this case the initial
phase of oscillations along the y axis is /2, and the equa-
tion of motion projected on the y axis is

y = Ay sin (ot + 7/2).

In the case where the object moves counterclockwise,
the deflection along the y axis is zero when the phase of mo-
tion along the x axis becomes /2 and, hence, the initial
value of this deflection is y = — A, and increases to ze-
ro in the course of a quarter of the period. In the case at
hand the equation of motion projected on the y axis can
be written in the form

y = A, sin (ot — n/2).
6.5. In the first case the oscillations along the y axis

‘begin m/2 earlier in phase than along the z axis, while
in the second case they lag behind by the same quantity.
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In both cases the motion takes place along an ellipse de-
scribed by the equation

-‘.—x2~3 !/2 1

A AT
The two motions differ in direction. In the first case the

motion is clockwise while in the second it is counterclock-
wise. The equations of motion have the form

z = A,sinot, y;= Aysin (mf—{—%), Yy = A4, sin (wt—%).

6.6. When the deflection along the x axis is zero and
the velocity is positive, the deflection along the y axis
is greater than zero but smaller than 4,, with y continu-
ing to increase according to the direcltion designated by
the arrow and reaching the value A, (i.e. when wt 4+
¢ = n/2) for 0 << ot << nn/2. Hence,

0<o<<a/2

6.7. In the course of one period the oscillating point
attains each of its maximal (but opposite) values once
(i.e. in the motion along an axis). For this reason the com-
plete Lissajous figure touches the sides of the rectangle
limiting the motion exactly the same number of times as
there are periods in the motion of the point in a certain
direction. Along the z axis the figure touches the sides of
the rectangle twice, while along the y axis four times.
Hence

w, = 20; and y = A, sin 2w,t + ¢).
To determine ¢, we assign to w,f the values that corre-
spond to points where the Lissajous figure touches the
limiting rectangle. For instance, if we take w,f = @/2,
then 2w, + ¢ = n/2 } ¢. Here
sin 2wt + ¢) = —1.
Hence,
n/2 4+ ¢ = —x/2, or ¢ = —m.

6.8. Just like in the previous problem, the number of
periods it takes to traverse completely the Lissajous figure
in either direction is determined by the number of points

where the Lissajous figure touches the rectangle that
limits the motion. There are three such points in the posi-
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tive direction of x and two points in the posilive direction
of y. Thus, the entire figure is traversed in the direction
z in the course of three periods and in the direction y
in the course of two periods. Hence,

(1)1/(02 = 3/2-

6.9. The kinetic energy is maximal when the velocity
is maximal in absolute value. Being the time derivative
of displacement, the velocity is maximal at moment 2.
The maximal potential energy is determined by the ma-
ximal displacement, that is, the amplitude, and is equal
to kA2/2. Hence, it is maximal at moment 7. At this mo-
ment the kinetic energy is zero, while the potential ener-
gy is zero at moment 2. The acceleration of the particle
is at its maximum when the second time derivative of the
displacement is maximal. This corresponds to moment
1. Since at this moment the second derivative is nega-
tive, so is the acceleration.

6.10. The period of harmonic oscillations that take place
due to a quasielastic force (F = —kz) is determined
from the formula

T =220 Y mik. (6.10.1)

The spring constant & is defined as the force that is required
to stretch the spring in such a manner that the spring
elongation becomes equal to its initial length. In the
case at hand the elongations occur because of the weight
of the loads, with the result that

ky = myg/l and k, = m,g/l.

Susbtituting & into (6.10.1), we see that the masses can-
cel out and in both cases the period is

v—2n) 1l/g.

The same result can be obtained (to within a constant coefficient)
from dimensional reasoning. There arc three quantities that appear
in the problem: mass, elongation, and time (the sought period).
In addition, since [orces equal to the weights of the loads are applied
to the springs, we may assume that the acceleration of gravity g
will enter into the solution. Bearing in mind that the dimensions of
the left- and right-hand sides of any equation must be the same,
we can write

T = MeLb [LT-2%],
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where a, b, and ¢ are the exponents of the cotresponding quantities.
We have the following equations for the exponents:

a=0, b+e=0, ¢=—1/2.
Hence,
T = %l‘/zg’/?,

where ¢4 is a dimensionless coefficient, which cannot be found
using solely dimensional considerations. Above it was shown that
this coefficient is equal to 2sm.

The energy of the oscillations of a load can be written
in the form

W = mA20?%2.

Since the periods of oscillations (and hence the frequen-
cies) are equal and so are the amplitudes (by hypothesis),
the load with the higher energy is the one whose mass is

m,.
6.11. In the case at hand the quasielastic force is Archi-
medes’ force. When the bottom of the test tube lies above
or below the position of equilibrium by a distance =z,
this force is

F = —Szpg. (6.11.1)

The mass of the test tube together with the mass of the
load is equal to the mass of the displaced water, or

m = 1Sp. (6.11.2)
Using (6.11.1), we can find the “spring constant”
k= |F|z= Spg. (6.11.3)

Substituting (6.11.2) and (6.11.3) into the expression for
the period of oscillations (6.10.1), we get

v=2n Y mik=2n Y 1g.

We see that T depends neither on the mass and cross-sec-
tional area of the tube nor on the density of the liquid.
The same result can be obtained from dimensional con-
siderations, just like it was done in Problem 6.10.

6.12. If m, is the known mass and m is the unknown
mass and if o, and » are the angular frequencies of oscil-
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fations of the systems with the known mass and the knowi
mass plus the unknown, then

wo =V k/my, (6.12.1)
o=V kl(m,+ m), (6.12.2)

where k is the spring constant. Combining (6.12.1) with
(6.12.2), we arrive at a formula for the unknown mass:

m= mo(m°—1)

6.13. The total energy of oscillations of a material par-
ticle can be made equal to the maximal kinetic energy or
maximal potential energy of the particle. In the case at
hand it proves expedient to compare the maximal poten-
tial energies, which are specified by the maximal deflec-
tions. When the deflection is at its maximum, the load
(or particle) is at a height » above the position of equilib-
rium:

h=1(1—cosa).

Since the expression inside the parentheses is the same for
both pendulums, the pendulum with the greater length
is raised to the greater height and, hence, has the higher
energy.

6.14. Just like in the previous problem, the total energy
can be made equal to the maximal potential energy. Since
the center of gravity of the physical pendulum is high-
er than that of the simple pendulum, the physical pen-
dulum can be thought of as a simple pendulum of smaller
length. Thus, the given simple pendulum has a higher
energy.

6.15. In the case at hand the disk constitutes a physical
pendulum. The period of oscillations of a physical pendu-
lum is given by the formula

1= ()"

The moment of inertia of the disk about the center is
J = mR?2. According to Steiner's theorem,

J = m (R*2 4+ R}),
whence

79 [(R2/2+R2) ]1/2.
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As expectled, the period does not depend on the mass of
the penduluin.

6.16. The angular frequency of oscillations for a physical
pendulum is

» = (mgR/J)/?,

where m is the mass of the pendulum, and J is the pen-
dulum’s moment of inertia. If the distance from the cen-
ler of gravily to the point of suspension is R, then, ac-
cording to Steiner’s thcorem, the moment of inertia of
the rod about the suspension point is equal to the moment
of inertia of the rod about the center of gravity plus the
momenl of iunertia of a material particle whose mass is
that of the rod about the point of suspension:

J= ’f_f 4 mR2.
Thus,

(-)—( 12gR, )1/2
L2 12R8

To find the extremum, we nullify the derivative of
with respect to R.:
do Gg (12~ 12Rg)

IR ~ REET12R2PE 0.

Whence

l
R, = — — 0.291.
23 0.29

6.17. The acceleration varies according to the same law
as Lthe force. Thus,

Iy

m@o

15
F, .
= ,—n’ S sin ot d¢ = (1 — cos wf) == vy, (1 — cos wi).
0

The v vs. t curve is depicted in Figure (a) accompanying
the answer. If the initial position of Lhe point is taken as
the origin, then
t
= vy S (1 —cos i) dt= vyt —':—3“ sin wt.
0



Thus, we have found that the particle is in trauslational
motion with a velocily that periodically increases from
zero to its maximum, equal lo 2vp, and then drops off Lo

0
' (a)
Fig. 6.17

zero. The motion is depicted schemaltically in Figure (b)
accompanying the answer.

6.18. The solution to this problem is similar to that of
Problem 6.17, the difference being that the initial phase

X

°| N t 0
(a) (b)
Fig. 6.18

of the driving force is different. In the case al hand, ini-
tially the force is maximal. The time dependence of the
velocily is
1
Iy . Fy . o
v=—\ coswl=——sinwl=v, sin of.
m mw
0
In contrast to the previous case, the velocily changes ils
direction during motion (Figure (a) accompanying the
answer). The displacement of the particle can be found
after inlegration:
f
. Um » R
wr S ) o —— — COS ®7).
x = vy 5 sin ot = -1 (1 )
0
Thus, in the case at hand the motion is purely harmouic,
as shown by the curve in Figure (b).
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A comparison of the results of the previous problem
with those of the present problem demonstrates that the
motion of a material particle under a force that varies ac-
cording to the harmonic law depends on the initial phase
of the force. The motion may vary from purely translation-
al to purely oscillatory. These features of a periodic force
manifest themselves in various phenomena, say, in
high-frequency electric discharge in gases, where the mo-
ments of collision of electrons, ions, and atoms accompa-
nied by changes in velocities occur at different phases of
the applied variable electric field.

6.19. If the amplitude decreases with the passage of
time according to the law

A = AOO"B’,
then, since the oscillation energy is proportional to the

square of the amplitude, the decrease in energy occurs ac-
cording to the law

W = Wyt or InW =In W, — 28t.

The slope of the straight line that expresses the decrease
in energy on the semilogarithmw scale must bhe double

(A, x
nW|
2 |
|
W |
| f
0 l.
0 1 37r/2 fm/z 71r/2 9n/2
//
//
~
~
/
Fig. 6.19 Fig. 6.20

the slope of the straight line that expresses the decrease
in amplitude.

6.20. The figure accompanying the problem shows that
the initial phase is n/4 while the ratio of the amplitude
whose phases differ by 2n is equal to 1.5. This means that
the logarithmic decrement In (4,4,/4,) is approximate-
ly equal to 0.4.
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6.21. Initially the velocity of the pendulum is zero and
tends Lo zero as the pendulum approaches its position of
equilibrium, so that it first grows and then, after passing
through its maximum, decreases. We can arrive at the
same conclusion after analyzing qualitatively the differ-
ential equation of the motion of the pendulum written

lot] wl

0 .
(@ to (b) !

Fig. 6.21

in polar coordinates in the common approximation of
small deflections:

Ia = —qo. — ra.

We select a system of coordinates in which the positive
direction is the one in which the pendulum was initially
deflected from the point of equilibrium. Initially, when
the velocity was zero and the deflection was the largest,
the acceleration was the highest. The curve depicting the
time dependence of the deflection has at this point the
greatest curvature. In the process of motion, the first
term on the right-hand side of the equation decreases in
numerical value, while the second term (which is positive

since a << 0) grows, and because of this the absolute val-
ue of the acceleration decreases. There finally comes a mo-
ment when the acceleration vanishes and the velocity
reaches its maximum. After that the acceleration grows,
that is, becomes positive and increases in numerical val-
ue, which in the system of coordinates employed here
implies deceleration, and the pendulum asymptotically
approaches the position of equilibrium. The time depen-
dences of the absolute values of the deflection and the ve-
locity of the pendulum are shown in Figures (a) and (b)
accompanying the answer.

6.22. In damped oscillations the damping factor is
smaller than the natural frequency of free oscillations of
the system: B << w,. In aperiodic motion the situation is
reversed: f > w,. The damping factor is defined as the
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ratio p = r/2m, where r is the resistance of the medium,
and m is the mass of the load. Both quantities remain un-
changed, and so does . To go over to the aperiodic mode,
we must make o, smaller. Since @, = V k/m, we must
diminish % since m is fixed. At a given elongation force,
the elongation of the spring is proportional to the initial
length of the spring. Hence, the spring constant isinverse-
ly proportional to the length of the spring, with the re-
sult that we must increase the length of the spring if we
wish to diminish k.

6.23. (1) The condition for an aperiodic discharge is
p > w,. The damping factor

B ="R/2L (6.23.1)

does not depend on the capacitance. To make the process
aperiodic,,we must diminish the natural frequency,
which ‘or a fixed inductance means increasing the capa-
citance, and the easiest way to do this is to bring the
plates of the capacitor closer together.

(2) According to (6.23.1), to decrease the damping fac-
tor for a fixed resistance, we must increase the inductance.
To preserve the value of the natural frequency w, =

1/} LC, the capacitance must be decreased by the same
factor. The frequency of the damped oscillations,!

m:V(-OO__ﬂ_zv

increases in the process, approaching o,.

(3) When the resistance and inductance are decreased
simultaneously, the damping factor remains unchanged,
but for a fixed capacitance the oscillation period 7 =
21/} o — B? decreases and, hence, so does the loga-
rithmic decrement.

6.24. Both the logarithmic decrement and the period
depend on the damping factor:

0 =pT (6.24.1)
T =2n/) o —p2. (6.24.2)
Since the lengths of the pendulums are equal, the natural

frequencies of free oscillations (that is, without resis-
tance) are equal, too. The damping factor is

B = r/2m, (6.24.3)



where r is the resistance of the medium, which is the
same for the two pendulums. Substituting (6.24.3) into
(6.24.1) and (6.24.2), we see that both the period and the
logarithmic decrement of the sphere with the smaller
mass are greater.

6.25. There is no periodic driving force in the system;
hence, the oscillations are not forced. The oscillation fre-
quency is determined by the mass and by the elastic prop-
erties of the spring, and since the amplitude of the oscil-
lations remains unchanged, the oscillations are undamped
although, of course, loss of energy is inevitable. This loss
is compensated by the energy stored in the DC source.
Thus, the oscillations belong to the type that occur with
a natural frequency but with replenishing the energy from
an external nonperiodic source, that is, self-oscillations.
6.26. The frequency dependence of the displacement am-
plitude in forced oscillations is given by the formula

A=—rFo
m V (@— o+ it

while the frequency dependence of the velocity amplitude
is given by the formula

B Fyo
" m V(0 — 0?2 -4pte? |

In the first case, at =0 the amplitude A does not van-
ish but becomes equal to Fy/mo}, or F/k, so that the curve
cuts off a segment on the vertical axis, which segment
is the displacement under a constant force. The velocity,
of course, is zero in this case. Thus, the curves in Figure
(a) correspond to the frequency dependence of the displace-
ment amplitudes, while the curves in Figure (b) cor-
respond to the frequency dependence of the velocity ampli--
tudes. The smaller the damping factor f, the higher
the curve in the respective diagrams. The damping factor
also determines the position of the maxima of the dis-
placement amplitudes:

Orpes = V‘Dz" 202

The maximal velocity amplitude for all damping factors
is achieved at w = w,.

6.27. The displacement A, at ® = 0 is determined by
the ratio of the maximal force F to the elastic constant

265



k (the spring constant), or A = F/k. By hypothesis,
both F, and k remain unchanged, whereby A does not de-
pend on the resistance of the medium. The resonance fre-
quency, defined as

Wpes = V/ 02— 22,

is the closer to the natural frequency the smaller the val-
ues of the damping factor . Since the latter is defined as
f = r/2m and the mass of the oscillating object remains
unchanged {(by hypothesis), B decreases and w.s grows
as r drops. The amplitude at the resonance frequency,

A e Fo
T
is the higher the smaller the resistance of the medium.

6.28. The differential equation describing the behavior
of the system is

]

mz Lz 4 ke = F, sin ot, (6.28.1)

and it has two solutions, a steady-state and a transient.
The latter describes the process of setting in of forced os-
cillations. Usually only the stcady-state solution is con-
sidered. However, at r = 0 and o = w, this equation
has no steady-state solution, and because of this the am-
plitude continuously increases and so does the energy of
the system, which energy is taken from the source of
oscillations. In reality, a system in which the resistance
of the medium is negligible for all practical purposes
either behaves in such a manner that the amplitude reaches
values at which Hooke’s law ceases to be valid (and, re-
spectively, Eq. (6.28.1) loses meaning) or is destructed.
One must bear in mind also that the fact that we ignore
the resistance of the medium, which at low velocities is
a valid assumption, cannot be justified as the velocity
grows higher and higher.

6.29. The resonance frequency is the same for both os-
cillations:

Ores =V 0F — 22,
Since the natural frequencies also coincide, so do the
damping factors . The resonance amplitude is

- Fy
A= o Vi



Only two quantities in this formula can vary: the mass of
the oscillating object and the amplitude of the driving
force. However, from the fact that the natural frequen-
cies are the same and the damping factors are the same, it
follows that for different masses only the elasticity coel-
ficients and the resistances differ:

wo=VkIm, p=r/2m.

But by hypothesis, the systems are supposed to differ
only in one paramecter. This parameter, therefore, can
only be the amplitude of the driving force, which for one
system is twice as high as for the other.

6.30. According to Huygens' principle, each point of a
wavefront is an independent source of oscillations. Au ap-

erture whose width is much smaller than the wavelength
limits a section of the wavefront (a line in the present
case) that can be considered as a point source. This
source emits approximately semispherical waves that
propagate in space; in the case at hand these are approxi-
mately semicircles with differences in radii between the
neighboring waves equal to one wavelength.

6.31. Since the frequency of the oscillations remains
constant, the energy carried by the wave is determined
uniquelly by the amplitude, that is, is proportional to
the square of the amplitude. The amplitude at a crest
A, is equal to the sum of the amplitudes of the incident
and reflected waves, A, and A,, while the amplitude at a
node, 4,, is equal to the difference between 4, and A,:

A1=A1+A2, AB=A1_A2'



Hence, the amplitudes of the incident and reflected waves
are
A+ A A-—4
Ai;‘ 2 n , A2= 2 n .
Hence,
Ay A=A, AAg—1 65—t
Al - AI+A11 - Al/An+1 - o+1°
The ratio of the energy of the reflected wave to thal of
the incident wave is equal to the ratio of the squares of

the amplitudes:

Hence, the ratio of the energy that has passed the obsta-
cle to Lhe energy of the waves incident on the obstacle
is

w1 = (57) = o

W, 5 CES

When the amplitudes are equal (8 = 1) no standing waves
are formed and the entire energy passes the obstacle.
In the theory and practice of propagation of waves (say,
clectromagnetic waves) a common notion is that of the
standing-wave ratio, which is the ratio of the cnergics (or
squares of amplitudes) at crest and node. Obviously, in
an ideal standing wave this ratio is infinite.
6.32. The figure accompanying the problem shows that
the amplitude decreases ten-fold over a distance equal
to four wavelengths. Denoting the amplitude near the
source by A, and the amplitude at a distance of four
wavelengths from the source by A4,, we can write

AyA, == 10, or log (A,/4,) = 1.
In natural logarithms,
In (Ay/A) == 2.3.

For the amplitude at a distance of one wavelength from
the source we have

In (4,/4,) = 2.3/4 — 0.575,

while for the amplitude at a distance of z from the
source we have

In (4,/4,) = 0.575z/A.
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Whence
A, = Ay exp (—0.575z/A).

This dependence is often expressed in terms of the wave
number %, which is related to the wavelength as follows:
k = 2n/A. Thus,

A, = A, exp (—0.0916 kz).

6.33. The statement is false. The densily of the gas,
which is in the denominator of formula (6.33.1), is de-
termined by the ideal-gas law thus:

p = pM/RT, (6.33.1)

where M is the molecular mass (weight) of the gas, and
R is the universal gas constant. If we substitute this val-
ue of the densily into (6.33.1), the pressure cancels out
and we get the formula

c=V YRTIM, (6.33.2)

according to which for given gas the speed of sound de-
pends only on the temperature of the gas. Actually, the
temperature dependence is somewhat more complicated
than simple proportionality to 7"/2, since in diatomic and
especially multiatomic gases the specific heat capacity
at constant volume grows noticeably with temperature.
6.34. According to formula (6.33.2), the speed of sound
in a gas is proportional to the square root of y and
inversely proportional to the molecular mass. At a fixed
temperature the difference in speeds of sound is deter-
mined by the ratio y/M. For water vapor (six degrees of
freedom) y = 1.33 and for neon (three degrees of freedom)
y = 1.67. The molecular mass of water is 1.8 X
10-2 kg/mol and that of neon is 2.02 X 10-2 kg/mol.
The ratios y/M is 74.1 for water vapor and 82.5 for neon.

Thus, the upper straight line depicts the temperature
dependence of the speed of sound in neon and the lower
one depicts the temperature dependence of the speed of
sound in water vapor. Both straight lines have the same
slope equal to 0.5. A calculation via formula (6.33.2)
yields 454 m/s for neon at 300 K and 430 m/s for water va-
por at the same temperature.
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6.35. When the source is moving and the receiver is
fixed, the registered frequency is

1
Vi="o 1—v/c ’

while when the source is fixed and the receiver is moving,
'Vz = Vo (/1 + U/C).

The first formula implies that v; grows without limit as
v/c tends to unity (curve I in the figure accompanying
the problem), while v, increases linearly as v/c tends to
unity (curve 2 in the same figure).
6.36. When the train is moving with a speed v and the
speed of sound is ¢ and the frequency measured by an ob-
server on the train is v, (better to say, when the train is
at rest), the frequency registered when the train ap-
proaches the observer standing at the roadbed is

vy = 0 (6.36.1)

T i—v/e’

while the frequency registered when the train is moving
away from the observer is

P Iy (6.36.2)

For the sake of brevity we introduce the notation v,/v, =
6 and v/c = B. Then

1+
6——-— W ’
whence f = (8 — 1)/(§ + 1), or
Vi—WV
Vs vi—{—v: c. (6.36.3)
Substituting (6.36.3) into (6.36.1) or (6.36.2), we get
Vo=, (1 —vlc)=v, (14 vic)= \’21\’41_\'\2,2 .

6.37. When the observer stands far from the line along
which the source of sound is moving, the equation that
describes the Doppler effect contains not the velocity of
the sound proper but its projection on the direction of
propagation of the wave. For the observer that stands
very near to the moving train this velocity is practically
that of the train and varies suddenly, and so does the
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pitch of the sound heard by that observer (curve 7 in the
figure accompanying the problem). For the observer that
stands at a rather big distance from the moving train,
the projection of the velocity varies more smothly, drop-
ping to zero when the train is closest to that observer and
then increasing. For this reason the time it takes the reg-
istered frequency to change is greater (curve 2).

6.38. If for an immobile source the wavelength is A,,
the wavelength A when the source moves with a velocity
v is shorter than A, by vT,. The waves will arrive at the
obstacle having the frequency

pm ety 1
7N T Ap—vT T 0 1—yje

The waves will reflect from the obstacle but will retain
their frequency and wavelength. Since the receiver is
moving toward the waves with a velocity v with respect
to the medium, the relative velocity of the receiver and
waves is ¢ + v and the registered frequency is

c+v c+v ) c+v o 14v/c

Vo == = == D, — .
2 A ¢/vo—v/vy 0 c—v 0 1—v/ec

6.39. At frequency v, the wavelength in still water is
Ay = c/vy. In a river whose waters flow with a velocity v,
the wavelength downstream is by v7l longer than A,
and the wavelength upstream is by vT shorter, that is,

= Ay £ VT.

In relation to the receiver that is down the stream, the
velocity of the received waves is the sum of the velocity
of waves in still water and the velocity of the river waters
(as if the receiver was moving against the waves). For
the receiver that is up the stream the velocities are sub-
tracted from each other, with the result that

¢ = ¢y V.

The frequency v registered by a receiver is the ratio of
the speed of sound to the wavelength, or

v—= v ¢ EvV
- xo:!:UT—Co/Vo:tv/Vo

= Vg.

We see that v is equal to the frequency of the oscillations
generated by the source.
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6.40. The wavelength of waves generated by a source
moving in a stationary medium is

}v=7\,oivT,

where the minus sign corresponds to the propagation of
waves from the source forward, while the plus sign corre-
sponds to waves propagating backward. When the receiv-
er is in motion, its velocity with respect to the waves is

c=cy v

Here the plus corresponds to motion against the waves,
while the minus corresponds to motion in the same direc-
tion as the waves propagate. Since the velocities of the
boats in relation to waves are different and the distance
between the boats remains unchanged, the time it takes
a signal to travel from one boat to the other depends on
which boat is the receiver and which boat is the source:

l

v °

If the boats could move with a speed equal to the speed
of waves, then the boat moving ahead of the other one
would cease to receive any signal, since the signal could
not catch up with it. The frequency of the signal received
by each boat is defined as the ratio of the velocity with
respect Lo the waves to the receiver wavelength. For the
boat floating at the rear,

ctv _ A+v/e

VT Rerol T Udlgvt 0
and for the boat floating in front,
v _CoV 1—v/cy ~ v,

A—vT — (1—vfc)vgt

In both cases the frequency of the received signal is equal
to that of the sent signal.

6.41. The times of arrival of longitudinal and trans-
verse waves are, respectively,

t” = S/U” and t.L = S/UJ_,

where v and v, are the velocities of propagation of the
longitudinal and transverse waves, and S is the distance
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between 4 and B. The time interval between the arrival
of longitudinal and transverse waves is

A[‘—_tl-—l"-S(l ~_I_")a

v
L Y

whence

Vv,

S’ m=t Af.

vy
If the seismographs are placed at two points, then by
measuring the distances S; and S, (see the figure accom-
panying the answer) we can
establish at which point the
source of explosion is located.
In fact, in this way the epicen-
ters of earthquakes are located.
6.42. The speed of sound waves

in air is ¢, = 330 m/s and Sy S
in water it is ¢, &~ 1500 m/s. 2
According to Snell’s law,

sin a,/sin oy = ¢,/cy. A A
Accordingly, when the “sound Fig. 6.41

beam” enters the water, it will

be deflected from the perpendicular line still strong-
er and angle a, becomes greater than angle «,. The
velocity ratio determines the maximal angle at which
sound waves can go “into” water. The maximal angle of
incidence oy, satisfies the condition (o, = 90°)

sin oy, = ¢//c,.

At ¢; = 330 m/s and ¢, = 1500 m/s we have sin o, =
0.22 and a, ~13°. At an angle greater than 13°
total reflection occurs. Such a situation is depicted in the
figure accompanying the problem.

The perturbation caused by the incident wave pene-
trates the surface of the water but dies out exponentially,
and this happens the faster the greater the angle of inci-
dence of the wave. The wave dies out practically at a
depth of the order of one wavelength. Sometimes one can
hear a fisherman whisper: “Keep quiet! The fish is here!”
The above estimate shows that a person standing at a

distance away from the riverbank can never “scare” the
fish.
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6.43. Imagine a plane that is parallel to the surface of
the earth. The sound that an explosion generates and that
propagates at a certain angle « to the normal to this plane
will be deflected still greater. As Snell's law shows,
this happens when the speed of sound increases with alti-
tude. Thus, the curve that represents the path along
which the sound wave propagates suggests that the speed
of sound increases continuously with altitude. Since the
speed of propagation of waves in a gas is proportional to
the square root of the temperature, then, hence, the behav-
ior of the curve of sound propagation (see the figure ac-
companying the problem) can be explained by the fact
that the air temperature increases with altitude.

6.44. Both longitudinal and transverse waves can trav-
el in the earth. The first are partially reflected by water
and partially transmitted through water, while the second
are completely reflected by water. The reflection of the
longitudinal and transverse waves can be used to estimate
the upper boundary of the water pocket. The longitudi-
nal waves will be partially reflected by the botton of the
pocket. Thus, to measure the depth of the pocket one can
use only longitudinal waves.

6.45. For the observer to hear the sound of the airplane
from a distance @ carlier than the sound arrives from
point A that is directly above the observer, the time it
takes the sound to travel from airplane to observer must
be shorter than the time it takes the airplane to fly the
distance a plus the time it takes the sound to travel from
point A to the observer. The first time is

t,=1V a®+h¥e,
while the second is
t, = alv + hle,

where ¢ is the speed of sound. The above-stated condition
can be written thus:
h

M<i+_.

c v ¢’

If we square both sides of this inequality and carry out
the necessary manipulations, we get

a(z_:_1)<2v

c
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The ratio v/c = M is known as the Mach number. Then
(6.45.1) can be written thus:

a <2 h.

M
M2—1
If, say, the airplane is flying with a speed double the speed
of sound, the maximal distance from which the sound

will arrive sooner than when the airplane appears over-
head is equal to (4/3)h.
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