
6. Oscillatory Motion and Waves

6.1. At two moments in time the displacements of a har­
monically oscillating point are the same. Can we state,
on the basis of what we have just said, that the phases at
these moments are also the same?
6.2. The oscillations depicted by curve 1 in the figure
are expressed by the equation x :::: A sin (ut. What is the
equation for the oscillations depicted by curve 2?
6.3. Two material particles of equal mass are performing
harmonic oscillations whose graphs are shown in the fig­
ure. What oscillation has a higher energy?

80



6.4. As a result of adding two mutually pcrpendieular
oscillations of equal frequency, tho motion of an object
occurs along an elli pse; in one ease the Illation is clock­
wise, while ill the ot.her it is counterclockwise. Write the

Ax

Fig. 6.2 Fig. 6.4

Ay

Fig. 6.3

equations of motion along each coordinate axis, assumi ng
that the initial phase along the x axis is zero.
6.5. Two rnutually perpendicular oscillations are added.
In one case the gra phs representing these oscillations are
those shown in Figure (a) and in the other, those shown in
Figure (b). In what respect do the resultant oscillations
di fIer?
6.6. Suppose that the addition of two mutually perpendic­
ular oscillations in which a mal.eri al particle part.ici­
pates results in an ellipse, with the direction of motion
indicated by the arrow in the figure. The equation of 1110-'

t ion a10 ng t he x axis can be \VI' itten i n the for m x =:
Al sin wt and that along the y axis, in the Iorrn y :-::=

A 2 sin (wt + (p). Determine tho condition that (P must
meet.
6.7. Two mutually porpend icular osci l lat.ions obey the
laws

x ~ A 1 sin (JJ 1tand y == A 2 sin ((I) 2t +. (p).

The addition of these two osci llutions leads to the Lissa­
jous figure shown in the d raw i ng accompanyi ng the Pl'o1>-
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lcm. Del ermine the relat.ionshi p between (1)1 and W 2 and
the initial phase 'P if the ftgure is traversed in the direc­
tion shown hy the arrows.

a,

Fig. 6.7

( ~)

Fig. 6.5

x,y

t"'ig. 6.6 Fig. 6.8

6.8. Two mutually perpendicular oscillations arc per­
formed according to the laws

Determine t.he relationship between (').1 and (J)2 using tho
Lissajous figure shown in the drawing accompanying the
problem.
6.9. A material particle oscillates according to the hCll"JIIOIl­

ic. law, At which of the t\VO moments, 1 or 2, is the k inet­
ic energy higher and in which, tho potential energy"
At which mornen t is the acceleration of the particle at
its maximum (in absolute value)?
6.10. Two loads whose masses are m., and m 2 arc suspend­
ed hy springs im.; > m 2 ) . When the loads were attached
to the unloaded springs, i L was found that the elongations
of the springs were the same. Which of the two loads oscil-
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lutes with a greater osri l lat ion perior] and which of t.he
two loads possesses a higher energy (provided that the
oscil lution amplitudes H"O equal}? The spri ngs arc ('011­

sid~J'(\d flln~slcs.~.

(~2 /

°l~t
:Fig. 6.9
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)i'ig. 6.10

6.11. A chemical test tube is hal anced by a load at its
bot.torn so that it does noL tip when submurged in a liquid
(the cross-sectional area of the tube is A.';). After submerg­
ing to a certain depth, the tube begins to oscillate about
its posi t.ion of cquilihrium. The Lube, whose In ass logcth­
er wi t.h the Blass of the load is m, is in the state of equi­
libri um in a liquid with a density p when its bottom is be­
low tho level of liquid by a d ista nco l. Determine the oscil­
lation period of the tube assuming that the viscosity of
the liquid is nil.
6.12. One way to measure the mass of an object in a space
station at zero graviLy is to uso a device schemat.icall y
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shown ill the figure. The principle of operation of this
device is as Iollows, First the austronaut measures the
oscillation frequency of an elastic system of known mass.
Then tho unknown mass is added to this system and a new
measurement of the oscillation frequency is l.aken. Tlow
can one drterrnine the unknown mass Irorn the two mea­
sured values of frequency?
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6.13. Two sim ple pendulums having equal masses hut
different lengths are in oscillatory motion wit h the same
angular amplitudes. Which of the t\VO pendulums has H

higher OSf illn t.io11 onergy?
6.14. Two pendulums, a physical OHO ill the Iorrn of a
homogeneous rod and a simple one, of equal mass and

Fig. 6.13
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length are in oscillatory motion wit.h t.he same angular
amplitudes. Which of the t\VO penrl ulums has a higher o~­

ci ll ation energy?
fl.15. An axis passes through a disk of radius Rand nH\SS

In at a distance llc from the disk's center'. What wi l l he
the period of oscillations of the disk about this axis
(which is fixed)?
6.16. Consider a physical pendulum that is a homogeneous
rod of length I. At what distance lie from the center of

Fig. 6.16

Fig. 6.17

Fig. 6.18

gravi ty of the rorl must the point of suspension lie for t.he
oscillation period to he rnax irnal?
6.17. A. force acting on a material parLiclo varies accord­
ing to the harmonic law

F === Fo sin tot,
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At t.ime t === 0 the veloci ty o j s zero. ] Iow do the vcloci ty
and position of the particle vary with Limo?
6.18. A force acting on a material particle varies ac­
cordi ng to the harmonic law

F == Fo cos wt.

At. t.imo t == 0 l he velocity v is zero. How do the ve­
locity and position of the part.iclo vary with t ime?
6.19. Tho t.ime dependence of tho ampli tudo of damped
osci ll at.ions is presented in the figures on a semilogarith­
mic scale, that is, tho t.ime is laid off OIl the horizontal
axis on a lineae scale and the ampli tude, on the vertical
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axis on a logari thmic scale. Construct the time dopen­
dence of the energy of these oscillations using the semi logu­
rithm ic scale. Set the initial values of the logarithms of
the arnplitude and energy of the oscillations equal.
6.20. Suppose that certain damped oscillations are re­
presented in polar coordinates. Depict these oscillations in
Cartesian coordinates with the phase of the oscillations
Iai d off on l he horizontal axis all d the displacement, on
the vertical axis, assuming that the ratio of the sequen­
tial am pli tudes of osci ll at.io ns and the initial phase remain
unchanged. Find the logarithmic decrerneut of tho oscil­
lations.
6.21. Suppose that a pendulum osci l lut cs in a viscous me­
diurn , The viscosity of LIte med i um and the IO:lSS and
length of Lho pendulum are such that the oscillations are
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aperiodic. Tho pendulum is deflected Irorn t.he position
of equil i hr ium and released. How will tho absolute value
of tho the pend ul um ' S veloci t y vary wi Lh Lime: will it
increase couti nuousl y, decrease cont inuousl y , pass
through a maximum. or pass through a minimum?
6.22. -A load suspended by a spr i ng in a viscous rnerl i um
performs dumped osci llatlons. How should one change the
length of the spring (preserving HIl tho charact.cr ist.ics of
the spring, LB. the thickness of the wire , the density of
the turns, etc.) so that the osci llal.ious become apcriod ic?
The mass of the spring is assumed to be negligible COJll­

pared 1.0 tho JDaSS of the load.
(-).23. An osci llntory circuit ronsisls 4')f a capaci tunce C,
au induc l.ance 1." and a resistance R . Dnm pod oscilluticus
set in in this r ircuil., (1) IIow should one change t.ho dis-­
tance between the plates of tho capar i Lor for the discharge ill
the circui t to bOCOII10 aperiodic? (2) How should one
change the capacitance and inductance (with the resistance
remaining unchanged) for the damping in the contour lo
d imi 11 ish provided that the na tural frequency of free os­
ci llat ions rem ains the sa me? How wil l this change the
frequency of dan} pod oscillations'? (3) How wil l the Ioga­
ri l hrnic decrement of the oscillations change i I the re­
sist auco and i urlurl nuco chango hy the SanHJ Iactor?
(i.2t!,. r!\\TO spheres of the same di.uuel.cr hut or diHel'PlI1
musses are suspended hy strings or equal ·h-lIgl.h. If t.he

R

Fig. 6.24 Fig. 6.25

spheres arc deflected front their positions of eq ui li briuru,
which of the t\VO wi ll have a greater oscillation period
and 'vhich wil l have a greater logar i thm ic decremen t if
their osci llnt inns OCCll)' jil a real J~·ledil1nl with viscosity"
6.25. A "dnnci ng spiral" i~ somcti rucs dcmonst rntorl at
~ectures. A spr~ng fixed at i ts upper end is suhmerged by
Its lower end Into mercury. Voltage supplied hy a DC
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source is applied to the upper end and the mcrcurv.
When current flows in the spring, the rings of tho spiting
lend to druw together, the spring gets shortor, and tho
lower end moves out of tho mercury. The current ceases,
and the lower end is again submerged in the mercury. The
process repeats itself. What oscillations does the spring
perform in the process: free, forced, damped, or self-oscil­
lations?
6.26. Which of tho t\VO diagrams, Figure (a) or Figure
(b), represents the dependence of the amplituda of displace­
ments in forced oscillations on the frequency of the driv­
ing force and which represents the frequeney dependence

((11

A

UJ

Fig. 6.26 Fig. 6.29

of the votocit.y.un pli tudc? IJJ what purumetor dctcrruiui ng
the osci llat.iou conditions does cacti. curve represented ill
Figures (a) and (1)) di Iler? What parameters del.ermi uc the
intersection of each curve wit.h the vertical axis in Figure
(a) and the position of the maximum?
6.27. How will the displacement amplitude at co =--= 0
that is A 0' the maximal amplitude A In' and the resonance
frequency ffircs vary if tho resistance of the medi urn in
which the oscillations occur decreases provided that all
the other parameters that determine the forced oscilla­
tions rem ai n unchanged?
6.28. Tho curve depicting the dependence of the nrn pl i­
tude of forced oscillations on the frequency of tho dri vi ng
force in a medium with no resistance tends to inlini t y as
co == (1)0. Why is this situation meaningless not only from
the physical standpoint but also from tho mathematical
standpoint? How docs a system oscillate in a medium
that has practically no resistance?
6.29. Two forced oscillations with the same natural fre­
quencies have amplitudes that differ by a factor of 2 for
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all values of the frequency of the driving force. In what
parameter, among the amplitude of the driving force,
the mass of the oscillating object, the elasticity coeffi­
cient, and the resistance of the medium, do these systems
differ? It is assumed that these systems may differ only
in one parameter.
6.30. Waves on the surface of water in the form of paral­
101 lines advance on a wall with an aperture much narrow­
er than the wavelength. What will be the shape of the
waves propagating on the surface.... jbehind the wall (and
aperture)?
6.31. In the standing waves that form as a result of re­
flection of waves from an obstacle the ratio of the ampli-

A tude at a crest to the
20 1· d d .amp itu e at a no e IS

6. What fraction of the
10 energy passes past the

obstacle?
6.32. A wave is propa­
gating in a medium with
damping. The distance
from the source of oscil­
lations (in units of the
wavelength) is laid off
on the horizontal axis

t· ---"-~-·--·-·j-_·--t-·-~----~/-.t and the cornmon loga-

Fig. 6.32 rithrn of the oscillation
amplitude is laid off

on the vertical axis. Using the graph shown in the fig­
ure accompanying the problem, write a formula that will
link the amplitude with the distance.
6.33. The formula that expresses the speed of sound in a
gas can be written in the following form:

c= y yp/p. (6.33.1)

Here 'Y is the specific heat ratio (the ratio of the specific
heat capacity of the gas at constant pressure to the spe­
cific heat capacity at constant volume), p is the pressure of
the gas, and p is the density of the gas. Using this formu­
la as a basis, can we stipulate that upon isothermal change
of the state the speed of sound in the gas grows with pres­
sure?
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6 .:i4. Tho figure demonstrates the temperal.uro depourlenro
of the speed of sound in neon and water vapor Oil the
log-log scale. Which straight line corresponds to the light­
er of the gases?
6.35. The dependence of the frequency of oscillations reg­
istered by a receiver when the receiver and the source of
sound approach each other depends on whether the source
moves and the receiver is fixed, or whether the source is
fixed and the receiver is in motion. The curves in the fig­
ure represent the dependence of the ratio of the recei ved
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frequency of oscillations to the Irequeucy entitled hy the
source on the ratio of the rate of relative motion to the
velocity of sound. Which of the two curves corresponds
to a moving source and which, to a mo vi ng recei ver?
The medium where the propagation of sound takes place
(air or water) is assumed fixed.
6.36. An observer standing at the bed of a railroad hears
the whistle of the locomotive of the train that rushes past
him. When the train is approaching the observer, the fre­
quency of the whistle sound is VI' while when it has passed
the observer, the frequency is V2. Determine the speed
of the train and find the whistle frequency when the ob­
server moves together with the train. The speed of sound
is assumed to be known.
6.37. Two observers stand at different distances from tho
bed of a railroad. When a train passes them, each hears
how the frequency of the train whistle changes, with the
change occurring along curve 1 for one observer and along
curve 2 for the other. Which of the two observers is st.anrl­
ing closer to the roadbed?
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6.:38. f\ SOIU'CO of sound whoso frequcllcy is \70 is moving
with a speed v. 'rho waves travel to a fixed obstacle, are
reflected by the obstacle, and are registed by a receiv~r'
that moves together wi th the source. What Ireq UCIJCY IS

registed by the receiver if tho speed of sound wav~s is c'?
6.39. A source of oscillations S' is fixed to the riverbed
of a river whoso waters flow with a velocity u. Up and
down the stream there are fixed (also to the river bed)

-~v
~

Fig. 6.37 l~ig. 6.39

t\VO rocoi verx, 111 and R 2 (see the figure). The source gen­
erales osci ll nl.ions whose frequency is \70' What Ircquencics
do receivers R 1 and 1/.2 register?
().40. Two hoats are floating on a pond in the same direc­
tion and with the same speed v. Each boat sends,
throug-h the water, a signal to the other. The frequencies
Vo of tho generated signals arc the same. Will the ti rnes

-Fig. 6.40 Fig. 6.41

it takes the signals to travel from one boat to tho other he
the same? Are the wavelengths the same? Are the Ire­
quencies recei vcd by the boats the same?
6.41. Au underground explosion at a point A generates
vibrations. Seismographs that are capable of measuring
lougi t ud i nul and transvorso wa yes separate] yare placed
at another point fl. Tho time interval bet ween tho arri val
of longitudinal and transverse waves is measured. How,
knowing the velocities of propagation of Iougi tudi nal
and transverse waves and the time difference between
arri val, La deterrni no t.he distance ..'; between pain ts .11
and B?
6.42. A sound wave Lravels in air and falls on the inter­
face between air and water at an angle (Xl. At what angle
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a~ will the wave propagate in the medium: grcnl.er lha n
at or smul lor than a i ?
(") .43. Thoro are runny documen Led cases when a n ex plo­
xion at a point -,1 wi ll be heard aL a point B that is locat­
ed far nway Irom A while ill a certain region, known as
the zone of silence, located .rnuch closer to ...1 than to Ii
the explosion j s not heard. Arnong the reasons for this is
tho deflection of sound waves caused hy the presence of a
vertical temperature gradient ill the al.mopshcrc. How

~---I ""~l

l?:-- -_.~------------ .. _--_ .. _.- ~A I !'ir',e ot I B
! sl.ll'nc~ I

f'ig. 6.4:l

should the air temporature change with altitude Ior the
direction of propagation of sound waves to be as shown
ill the figure?
(j.4~. At a depth h J below ground Jevel there is a pocket
uf water of depth "-2' WhHL t.ype of nrt.i llcia l scisnri«
waves, loug i tud iuul OJ" Lrn ns verxu, is Ileodpd to rneusurc
the depth of the water pocket?
H.45. An airlane is ill supersonic flight at all altitude h.
l\t what srn al lest distance a (along tho horizontal) from

~, A

I <,
I ' <,
I a <,

Fig. 6.45

the observer on tho ground is there (l point from whic.h
the sound emitted by the airplane motors travels to the ob­
server faster than from point i1 that is directly above the
observer?
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6. Oscillatory Motion and Waves
6.1. Equal deflections from the position of equi librium
oc-cur if

(6.1.1)

where <1>1 === U)t1 and <1>2 === wt2 (as shown in the figure,
the ini tial phase is zero). The x vs. wt curve shows that
condition (6.1.1) is rnet if

sin $2 == sin (n - cD1) .

Here cos Ql 2 ~ -cos <PI' that is, phases <1)1 and <1)2

correspond to velocities of the oscillating point that are

Fig. 6.1

opposite in direction. The phases of harmonic oscillations
coincide if both the deflections and the velocities of the
oscillations coincide (both in absolute value and in direc­
tion).
6.2. The amplitude of the oscillations depicted by
curve 2 in the figure accompanying the question is twice
as large as that of the oscillations depicted by curve 1.
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The periods of the two oscillations coincide. Oscillations 2
lag in phase behind oscillations 1 by a quarter of one pe­
riod. Hence, oscillations 2 arc represented by the cqua­
lion

x = 2A sin (rot - :rrJ2).

6.3. Oscillations 1 have a period that is twice as large as
that of oscillations 2, so that the frequency of oscillations
1 is one-half of that of oscillations 2. Amplitude Al is
twice as large as amplitude A 2 • The energies of these os­
cilIa ti ons are

T,T,Y 1 2A 2
vv 1 === 2 mU)l 1

and W2~+m(t):A;= ~ m(ro;)2(2A 1)2= W 1,

that is, coincide.
6.4. The equation of the motion projected on the .1:

axis is

x = Ax sin tot,

In the case where the object moves clockwise, the deflec­
tion along the y axis at time zero (t = 0) is y = A y , and
then it decreases to zero when the maximum on the x
axis is attained. The sine decreases from unity to zero as
the angle changes from n/2 to n. In this case the initial
phase of oscillations along the y axis is n/2, and the equa­
tion of motion projected on the y axis is

y == A y sin ((ut + n/2).

In the case where the object moves counterclockwise,
the deflection along the y axis is zero when the phase of Ino­
tion along the x axis becomes n/2 and, hence, the Initial
value of this deflection is y = - A y and increases to ze­
ro in the course of a quarter of the period. In the case at
hand the equation of motion projected on the y axis can
be written in the form

y = A y sin (rot - n/2).

6.5. In the first case the oscillations along the y axis
'begin n/2 earlier in phase than along the x axis, while
in the second case they lag behind by the same quantity.
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In both cases the motion takes place along an ellipse de­
scribed by the equation

fX2~ y2

~+A2==1.
l x Y

The two motions differ in direction. In the first case the
motion is clockwise while in the second it is counterclock­
wise. The equations of motion have the form

x = Axsinwt, v, = AI/sin (wt+ ~ ), Y2 = Ay sin (wt- ~.).

6.6. When the deflection along the x axis is zero and
the velocity is positive, the deflection along the y axis
is greater than zero but smaller than A 2 , with y continu­
ing to increase according to the direction designated by
the arrow and reaching the value A 2 (i .e. when (j)t +
(P ~ rt/2) for 0 < wt < n/2. lienee,

o< <p < n/2.

6.7. In the course of one period the oscillating point
attains each of its maximal (but opposite) values once
(i.e. in the motion along an axis). For this reason the com­
plete Lissajous figure touches the sides of the rectangle
limiting the motion exactly the same number of times as
there are periods in the motion of the point in a certain
direction. Along the x axis the figure touches the sides of
the rectangle twice, while along the y axis four times.
Hence

002 = 2w1 and y = A 2 sin (2w1t + qi).

To determine cp, we assign to Wtt the values that corre­
spond to points where the Lissajous figure touches the
limiting rectangle. For instance, if we take Wtt = n/2,
then 2w1t + cp = n/2 + rp. Here

sin (2w1t + rp) = -1.
Hence,

n/2 + rp == -n/2, or <p = -no

6.8. Just like in the previous problem, the number of
periods it takes to traverse completely the Lissajous figure
in either direction is determined by the number of points
where the Lissajous figure touches the rectangle that
limits the motion. There are three such points in the posi-
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tive direction of x and two points in the positive diroection
of y. Thus, the entire figure is traversed in the direction
x in the course of three periods and in the direction y
in the course of two periods. Hence,

w1/w 2 = 3/2.

6.9. The kinetic energy is maximal when the velocity
is maximal in absolute value. Being the time derivative
of displacement, the velocity is maximal at moment 2.
The maximal potential energy is determi ned by the rna­
ximal displacement, that is, the amplitude, and is equal
to kA 2/2. Hence, it is maximal at moment 1. At this mo­
ment the kinetic energy is zero, while the potential ener­
gy is zero at moment 2. The acceleration of the particle
is at its maximum when the second time derivative of the
displacement is maximal. This corresponds to moment
1. Since at this moment the second derivative is nega­
tive, so is the acceleration,
6.10. The period of harmonic osci llations that take place
due to a quasielast.ic force (/? ~ -kx) is determined
from the formula

(6.10.1)

The spring constant k is defined as the force that is required
to stretch the spring in such a manner that the spring
elongation becomes equal to its initial length. In the
case at hand the elongations occur because of the weight
of the loads, with the result that

k 1 = nugll and k 2 = nl 2gl l.

Susbtituting k into (H.10.1), we see that the masses can­
cel out and in both cases the period i s

L~ 2n -V Zig.

The same result can be obtained (to within a constant coefficient)
from dimensional reasoning. There are three quantit.ies that appear
in the problem: mass, elongation, and time (the sought perio~).
In addition, since forces equal to the weights of the ~oads are applIed
to the springs, we may assume that the acceleration ?f gra.vlty p
will enter into the solution. Bearing in In ind tha t the d1mensions of
the left- and right-hand sides of any equation must be the same,
we can write
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where a, h, and c are the exponents of the corresponding quantities.
We havs the following equations for the exponents:

a = 0, b + c = 0, c = -f/2.
IIence,

t = CIC 11/2g1/2,

where ;;C is a dimensionless coefficient, which cannot be found
using solely dimensional considerations. Above it was shown that
this coefficient is equal to 21"[.

The energy of the oscillations of a load can he written
in the form

W = mA2(1)2/2.

Since the periods of oscillations (and hence the frequen­
cies) are equal and so are the amplitudes (by hypothesis),
the load with the higher energy is the one whose mass is
nu,
6.11. In the case at hand thequasielastic force is Archi­
medes' force. When the bottom of the test tube lies above
or below the position of equilibrium by a distance x,
this force is

F == -Sxpg. (6.11.1)

The mass of the test tube together with the mass of the
load is equal to the mass of the displaced water, or

m = ISp.

Using (6.11.1), we can find the "spring constant"

k = I F IIx = Spg.

(6.11.2)

(6.11.3)

Substituting (6.11.2) and (6.11.3) into the expression for
the period of oscillations (6.10.1), we get

L~2nVm/k=2n Vl/g.

We see that l' depends neither on the mass and cross-sec­
tional area of the tube nor on the density of the liquid.
The same result can be obtained from dimensional con­
siderations, just like it was done in Problem 6.10.
6.12. If m o is the known mass and m is the unknown
mass and if 000 and ware the angular frequencies of oscil-
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lations of fhe systems with the known mass an(i tile known
mass plus the unknown, then

wo=Vk/mo, (6.12.1)

(t) == Vk/(mo+m), (6.12.2)

where k is the spring constant. Combining (6.12.1) with
(6.12.2), we arrive at a formula for the unknown mass:

m = mo ( :~ - 1) .

6.13. The total energy of oscillations of a material par­
ticlo can be made equal to the rnaximal kinetic energy or
maximal potential energy of the particle. In the case at
hand it proves expedient to compare the maximal poten­
tial energies, which are specified by the maximal deflec­
tions. When the deflection is at its maximum, the load
(or particle) is at a height h above the posi tion of equil ib­
rium:

h = l (1 - cos a).

Since the expression inside the parentheses is the same for
both pendulums, the pendulum with the greater length
is raised to the greater height and, hence, has the higher
energy.
6.14. Just like in the previous problem, the total energy
can be made equal to the maximal potential energy. Since
the center of gravity of the physical pendulum is high­
er than that of the simple pendulum, the physical pen­
dulum can be thought of as a simple pendulum of smaller
length. Thus, the given simple pendulum has a higher
energy.
6.15. In the case at hand the disk constitutes a physical
pendulum. The period of oscillations of a physical pendu­
lum is given by the formula

T=2n (m:Rcf/2.
The moment of inertia of the disk about the center is
J = mR2/2. According to Steiner's theorem,

J = m (R2/2 + R~),

whence

[
(R2/2 + R~) ] 1/2

T::=: 2Jt R •g c
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As expectcrt, the period does not depend on the nH1SS of
the pendulum.
6.16. The angular frequency of oscillations for a physical
pendulum is

where In is the mass of the pendulum, and .J is the pen­
dulums moment of inertia. If the distance Irorn the con­
l.er of gravity to the point of suspension is l1c , then, ae­
cording to Steiner's theorem, the moment of iuorti a of
the rod about the suspension point is equal to the moment
of inertia of the rod about the center of gravity plus the
moment of inertia of a materi al particle whose mass is
that of the rod about the point of suspension:

l:l.
J =:. 72 -1- mll~.

Thl1~,

(
12gRc ) 1/2

ell ==
. 12 . I 1211~ •

1'0 finrl the ext.rcmum, we nullify tho derivative of r»
wi th respect to R c:

(](I) Gg (12 --" "12Rg)
dne RI/2 (12+ 12I1D~/2 =~ o.

Whenee
lR; =".: --_ ~ 0.29l.

> 2 1/3

6.17. The accelerat.ion varies according to tho same Iaw
as the force. Thus,

t
F) 1. ]/0v === -' si n (,)t d t ==.-- -- (1 - cos (ut) :::-:: D,ll (1 - cos (Ill).m moo .

o

Tho u vs. t curve is depicted in Figure (a) accompanying
the answer. If the initial position of the point is taken as
the origin, then

t

x =-~ Urn r (1 - cos (J)t) tIt :--=- urnt - Vm sin rot.J co
o



Thus, we have found that the particle is in translational
mot.ion with a velocity that periodically i ncrcnsos Irorn
zero to its maximum, equal to 2vm , and then drops off to

v

(n)

Ftg, 6.17

(b)

zero. The mol.ion i s depicted schematic all y in Figure (h)
accompanying the answer.
6.18. The solution to this problem is sirni Iar to that of
Problem 6.17, the di fiercnco being that the initial phase

o ~ tOt

(a) (b)

Fig. 6.t8

of the driving force is different. . .IJI tho case at hand, im­
tiall y the force is maximal. The Limo dependence of the
velocity is

t
Fo ) . . t Fo • t '. tv == - eos tl) zzz: - SIll <'0 =--= UIll SIll ffi •
In mt»

o
In eon trast to the previous case, l he veloci ty changes i is
direction during motion (Figure (3) accompanying the
answer). The displacement of the particle can be found
after integration:

f

X ::-- V
n l

rsin (1)1 =-:--: Vm (1- cos rot).J (I)

()

Thus, in the case at hand the motion is purely harmonic,
as shown by the CU['VO in Figure (h).
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A comparison of tho results of the previous problem
with those of the present problem demonstrates that the
motion of a material particle under a force that varies ac­
cording to the harmonic law depends on the initial phase
of the force. The motion may vary from purely translation­
al to purely oscillatory. These features of a periodic force
manifest themselves in various phenomena, say, in
high-frequency electric discharge in gases, where the mo­
ments of collision of electrons, ions, and atoms accompa­
nied by changes in velocities occur at di fferent phases of
the applied variable electric field.
6.19. If the amplitude decreases with the passage of
tirne according to the law

A = Aoe-~t,

t.hen , since the oscil lation energy is proportional to the
square of the amplitude, the decrease in energy occurs ac­
cording to the law

W == W oc-2Bt , or In W = In W o - 2~t.

The slope of the straight line that expresses the decrease
in energy on the semilogurithmic scale must he double

x -l

I"ig. 6.19 Fig. 6.20

the slope of the straight line that expresses the decrease
in amplitude.
6.20. The figure accompanying the problem shows that
the initial phase is n/4 whi Ie the ratio of the amplitude
whose phases differ by 2n is eq ual to 1.5. This means that
the logarithmic decrement In (A n+1/A n ) is approximate­
ly equal to 0.4.
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6.21. Initially the velocity of the pendulum is zero and
tends to zero as the pendulum approaches its position of
equilibriurn, so that it first grows and then, after passing
through its max imurn , decreases. We can arrive at the
same conclusion after analyzing qualitatively the differ­
ential equation of the motion of the pendulum written

1«1

(a)

Fig. 6.21

(b)
·t

in polar coordinates in the common approxi matiou of
small deflections:

Ia = -qa - rae

\\Te select a system of coordinates in which the positive
direction is the one in which the pendulum was initially
deflected from the point of equilibrium. Initially, when
the velocity was zero and the deflection was the largest,
the acceleration was the highest. The curve depicting the
time dependence of the deflection has at this point the
greatest curvature. In the process of motion , the first
term on the right-hand side of the equation decreases in
numerical value, while the second term (which is positive

since ~ < 0) grows, and because of this the absolute val­
ue of the acceleration decreases. There finally comes a mo­
ment when the acceleration vanishes and the velocity
reaches its maximum. After that the acceleration grows,
that is, becomes positive and increases in numerical val­
ue, which in the system of coordinates employed here
implies deceleration, and the pendulum asymptotically
approaches the position of equilibrium. The time depen­
dences of the absolute values of the deflection and the ve­
locity of the pendulum are shown in Figures (a) and (b)
accompanying the answer.
6.22. In damped oscillations the damping factor is
smaller than the natural frequency of free oscillations of
the system: ~ < WOo In aperiodic motion the situation is
reversed: ~ > 000. The damping factor is defined as the
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ratio ~ = r/2m, where r is the resistance of the medium,
and m is the mass of the load. Both quantities remain un­
changed, and so does p. To go over to the aperiodic mode,
we must Inake W o smaller. Since (Do = ykfm, we must
diminish k since m is fixed. At a given elongation force,
the elongation of the spring is proportional to the initial
length of the spring. Hence, the spring constant is inverse­
ly proportional to the length of the spring, with the re­
sult that we must increase the length of the spring if we
wish to diminish k.
6.23. (1) The condition for an aperiodic discharge is
~ > 000. The damping factor

(6.23.1)

does not depend on the capacitance. To make the process
aperiodic.Twe must diminish the natural frequency,
which ~or a fixed_inductance means increasing the capa­
citance, and the easiest way to do this is to bring the
plates of the capacitor closer together.

(2) According to (6.23.1), to decrease the damping fac­
tor for a fixed resistance, we must increase the inductance.
To preserve the value of the natural frequency Wo =

1/VLt), the capacitance must he decreased by the same
factor. The frequency of the damped oscillatious.l

co === V{Oo - ~2,

increases in the process, approaching (do'

(3) When the resistance and inductance are decreased
simultaneously, the damping factor remains unchanged,
but for a fixed capacitance the oscillation period 11 ==
2:rtfyw~ - B2 decreases and, hence, so does the loga­
rithmic decrement.
6.24. Both the logarithmic decrement and the period
depend on the damping factor:

e = ~T

T == 231fV (t)~ - ~~

(6.24.1)

(6.24.2)

Since the lengths of the pendulums are equal, the natural
frequencies of free oscillations (that is, wi thout resis­
tance) are equal, too. The damping factor is

~ = rl2m, (6.24.3)



where r is the resistance of the medium, which is the
same for the two pendulums, Substituting (6.24.3) into
(6.24.1) and (6.24.2), we see that both the period and tho
logarithmic decrement I of the sphere with the smaller
mass are greater.
6.25. There is no periodic driving force in the system;
hence, the oscillations are not forced. The oscillation fre­
quency is determined by the mass and by the elastic prop­
erties of the spring, and since the amplitude of the oscil­
lations remains unchanged, the oscillations are undamped
although, of course, loss of energy is inevitable. This loss
is compensated by the energy stored in the DC source.
Thus, the oscillations belong to the type that occur with
a natural frequency but with replenishing the energy from
an external nonperiodic source, that is, self-oscillations.
6.26. The frequency dependence of the displacement am­
plitude in forced oscillations is given by the formula

A- Fo
- m V(Ct>~_0)2)2+4~2{J)2 '

while the frequency dependence of the velocity amplitude
is given by the formula

, FoCt>
DIn:':"': m V «(U~ - (02)2 ---1- 4~2W2 •

In the first case, at w == 0 the amplitude A does not van­
ish but becomes equal to F olm(fJ:, or Flk, so that the curve
cuts off a segment on the vertical axis, which segment
is the displacement under a constant force. The velocity,
of 'course, is zero in this case. Thus, the curves in Figure
(a) correspond to the frequency dependence of the displace­
ment amplitudes, while the curves in Figure (b) cor­
respond to the frequency dependence of the velocity ampli-"
tudes. The smaller the damping factor ~, the higher
the curve in tho respective diagrams. The damping factor
also determines the position of the maxima of the dis­
placement amplitudes:

(ures ==- V(()~ - 2~2.

The maximal velocity amplitude for all damping factors
is achieved at co === (UO.

6.27. The displacement A 0 at (I) == 0 is deterrni ned by
the ratio of the maximal force If' to the elastic constant
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k (the spring constant), or A = F/k. By hypothesis,
both F 0 and k remain unchanged, whereby A does not de­
pend on the resistance of the medium. The resonance fre­
quency, defined as

(Ores === 1/(I)~ - 2~2 ,

is the closer to the natural frequency the smaller the val­
ues of the damping factor ~. Since the latter is defined as
f1 == ri2m and the mass of the oscillating object remains
unchanged (by hypothesis), ~ decreases and W res grows
as r drops. The amplitude at the resonance frequency,

/1 -- F 0

.J. res - 2~ln V ~_~2 '

is the higher the smaller the resistance of the medium.
6.28. rrhe differential equation describing the behavior
of the system is

.. .
mx + rx + kx == Fo sin wt, (6.28.1)

and it has two solutions, a steady-state and a transient.
The latter describes the process of setting in of forced os­
cillations. Usually only the steady-state solution is con­
sidered. However, at r = 0 and co = 000 this equation
has no steady-state solution, and because of this the am­
plitude continuously increases and so does the energy of
the system, which energy is taken from the source of
oscillations. In reality, a system in which the resistance
of the medium is negligible for all practical purposes
either behaves in such a manner that the amplitude reaches
values at which Hooke's law ceases to be valid (and, re­
spectively, Eq. (6.28.1) loses meaning) or is destructed.
One must bear in mind also that the fact that we ignore
the resistance of the medium, which at low velocities is
a valid assumption, cannot be justified as the veloci ty
grows higher and higher.
6.29. The resonance frequency is the same for both os­
cillations:

cures == V (J)~ - 2~2.

Since the natural frequencies also coincide, so do the
damping factors B. The resonance amplitude is

A - Jlo
res - 2~m y ro~- ~~ •



Only two quantities in this formula can vary: the mass of
the osc-illating object and tho amplitude of the driving
force. However, from the fact that the natural Irequen­
cies are the same and the darn ping factors are the same, it
follows that for di fferent masses only the elastici ty coef­
ficients and the resistances di ffer:

roo == -V kim, ~ == r/2m.

But by hypothesis, the systems are supposed to differ
only in one parameter. This parameter, therefore, can
only be the amplitude of the driving force, which for one
system is twice as high as for the other.
6.30. According to Huygons' principle, each point of a
wavefront is an independent source of oscillations. All ap-

Fig. 6.30

erture whose width is much smaller than the wavelength
limits a section of the wavefront (a line in the present
case) that can be considered as a point source. This
source emits approximately semispherical waves that
propagate in space; in the case at hand these are approxi­
rnately semicircles with di fferences in radii between the
neighboring waves equal to one wavelength.
6.31. Since the frequency of the oscillations remains
constant, the energy carried by the wave is determined
uniquelly by the amplitude, that is, is proportional to
the square of the amplitude. The amplitude at a crest
Al is equal to the sum of the amplitudes of the incident
and reflected waves, Al and A 2 , while the amplitude at a
node, An' is equal to the difference between Al and A 2 :



Henco , the ampli tudes of the i ncitleut and reflected waves
are

lIcnee,
A2 A}--A n AI/A n - 1 0-1
~ AI"+A n AI/An+1 _.- t)-t-1 •

Tho ratio of the energy of the reflected wave to that of
the incident wave is equal to the ratio of the squares of
the amplitudes:

~: ccc ( ~+~ r.
Helice, the ratio of the energy that has passed the obsta­
cle to the energy of the waves incident Oil the obstacle
is

Wa ( 6-1 )2 48
Wl=~-1- 8+1 ==(6+1)2·

When the amplitudes are equal (6 == 1) no standing waves
are formed and the entire energy passes the obstacle.

In the theory and practice of propagation of waves (say,
electromagnetic waves) a common notion is that of the
standing-wave ratio, which is the ratio of the energies (or
squares of amplitudes) at crest and node. Obviously, in
an ideal standing wave this ratio is infinite.
6.32. The figure accompanying the problem shows that
tho amplitude decreases ten-fold over a distance equal
to four wavelengths. Denoting the amplitude near the
source by AD and the amplitude at a distance of four
wavelengths frorn the source by A 4 , we can write

A o/A 4 ~ 10, or log (A o/A 4 ) === 1.

In natural Iogurithrns,

III (A 0/A 4) ==-= 2.3.

For the arnplitude at a distance of one wavelength Irorn
the source we have

In (AD/A!) == 2.3/4 == 0.575,

whi Ie for the am pli tude at a distance of z from the
source we have

In (AoIA z) = O.575z/A.
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'whence
A z ~ Ao exp (-O.575z/~).

This dependence is often expressed in terms of the wave
number k, which is related to the wavelength as follows:
k = 2rt/A. Thus,

A z == Ao exp (-0.0916 kz).

6.33. The statement is false. The density of the gas,
whichisin the den 0 minato r 0 f for I n II Ja (() .33. 1), i s dc­
termincd by the ideal-gas law thus:

p == pMIRT, (G.33.1)

where M is the molecular mass (weight) of the gas, and
R is the universal gas constant. If we substitute this val­
ue of the densi Ly into (6.~13.1), tho pressure cancels out
and we get the Iorrnula

c== 11 yRl'/M, (G.3:3.2)

according to which for gi yen gas the speed of sound de­
pends only on tho temperature of the gas. Actually, the
temperature dependence is somewhat more complicated
than simple proportionality to 1'1/2, since...in diatomic and
especially multiatomic gases the specific heat capacity
at constant volume grows noticeably with temperature.
6.34. According to formula (6.33.2), the speed of sound
in a gas is proportional to the square root of y and
inversely proportional to the molecular mass. At a fixed
temperature the difference in speeds of sound is deter­
mined by the ratio 'VIM. For water vapor (six degrees of
freedom) y = 1.33 and for neon (three degrees of freedom)
y = 1.67. The molecular mass of water is 1.8 X
10-2 kg/mol and that of neon is 2.02 X 10-2 kg/mol.
The ratios ylM is 74.1 for water vapor and 82.5 for neon.

Thus, the upper straight line depicts the temperature
dependence of the speed of sound in neon and the lower
one depicts the temperature dependence of the speed of
sound in water vapor. Both straight lines have the same
slope equal to 0.5. A calculation via formula (6.33.2)
yields 454 rn/s for neon at 300 I( and 430 mls for water va­
por at the same temperature.
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6.35. When the source is mov ng and the receiver is
fixed, the registered frequency s

1
V1==-VO i-vIc'

while when the source is fixed and the receiver is moving,

"2 = Vo (1 + vic).

The first formula implies that V 1 grows without limit as
vic tends to unity (curve 1 in the figure accompanying
the problem), while "2 increases linearly as vic tends to
unity (curve 2 in the same figure).
6.36. When the train is moving with a speed v and the
speed of sound is c and the frequency measured by an ob­
server on the train is Vo (better to say, when the train is
at rest), the frequency registered when the train ap­
proaches the observer standing at the roadbed is

'V - "0
1 - 1- u]« ' (6.36.1)

while the frequency registered when the train is moving
away from the observer is

"2 .~ 1. ~:/C · (6.3G.2)

For the sake of brevity we introduce the notation vIiv 2 =
6 and vic === ~. Then

() _ 1+~
- 1--~ ,

whence ~ = (6 - 1)/(6 + 1), or

(6.36.3)

Substituting (6.36.3) into (6.36.1) or (6.36.2), we g-et

"0 = "1 (i-vIc) = "2 (i + vIc) = 2Vr2 ."1 "2
6.37. When the observer stands far from the line along
which the source of sound is moving, the equation that
describes the Doppler effect contains not the velocity of
the sound proper but its projection on the direction of
propagation of the wave. For the observer that stands
very near to the moving train this velocity is practically
that of the train and varies suddenly, and so does the

270



pitch of the sound heard hy that observer (curve j in the
figure accompanying the problem). For the observer that
stands at a rather big distance from the moving train,
the projection of the velocity varies more smothly, drop­
ping to zero when the train is closest to that observer and
then increasing. For this reason the time it takes the reg­
istered frequency to change is greater (curve 2).
6.38. If for an immobile source the wavelength is Ao'
the wavelength 'A when the source moves with a velocity
v is shorter than Ao by vTo- The waves will arrive at the
obstacle having the frequency

c c 1
v1 == T == Ao-vT =="0-1---v-/c-·

The waves will reflect from the obstacle but will retain
their frequency and wavelength. Since the receiver is
moving toward the waves with a velocity v with respect
to the medium, the relative velocity of the receiver and
waves is c + v and the registered frequency is

_ C+v __ C -1-- v C+v 1 -1- v/ C

"2 --- -A- ~-- c/vo- vivo =----= Vo c- v == "0 1-- vic ·

6.39. At frequency Vo the wavelength in still water is
Ao == c/vo. In a river whose waters flow with a velocity v,
the wavelength downstream is by vT longer than Ao
and the wavelength upstream is by vT shorter, that is,

A = Ao ± vT.

In relation to the receiver that is down the stream, the
velocity of the received waves is the sum of the velocity
of waves in still water and the velocity of the river waters
(as if the receiver was moving against the waves). For
the receiver that is up the stream the velocities are sub­
tracted from each other, with the result that

C = Co ± v.

The frequency v registered by a receiver is the ratio of
the speed of sound to the wavelength, or

_ Co ± v _ Co ± v
v-- - Vo•Ao ± vT co/vo ± vivo

We see that v is equal to the frequency of the oscillations
generated by the source.
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6.40. The wavolongth of waves general,{\d hy a source
moving in a stationary medium is

f.w = ""0 + vT,

where the minus sign corresponds to the propagation of
waves from the source forward, while the plus sign corre­
sponds to waves propagating backward. When the receiv­
er is in motion, its velocity with respect to the waves is

C = Co + v.

Here the plus corresponds to motion against the wa ves,
while the minus corresponds to motion in the same direc­
tion as the waves propagate. Since the velocities of the
boats in relation to waves are different and the distance
between the boats remains unchanged, the time it takes
a signal to travel from one boat to the other depends all
which boat is the receiver and which boat is the source:

l
t~ •

Co ± v

If the boats could move with a speed equal to the speed
of waves, then the boat moving ahead of the other one
would cease to receive any signal, since the signal could
not catch up with it. The frequency of the signal received
by each hoat is defined as the ratio of the velocity with
respect to the waves to the receiver wavelength. For the
boat floating at the rear,

._ co+v _ 1+v/co
== 'Vo'v--_· -

(1+vic) 'VOlAo+vT

and for the boat floating in front,

co-v 1- v/co
'---:"0·v=-=: - (1- vic) 'VOlAo-vT

In both cases the frequency of the received signal is equal
to that of the sent signal.
6.41. The times of arrival of longitudinal and trans­
verse waves arc, respectively,

t/1 = Slv" and t.l = Siv1.,

where ull and v.l are the velocities of propagation of the
longi tud i nal and transverse waves, and S is the distance
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between A and B. The ti me interval between tho arrival
of longitudinal and transverse waves is

whence

L.~ :::-.:.:.: V IIv J. ~ t .
lJ II - IJJ_

If the .seismogr~phs are placed at two points, then by
measurmg the distnnces 8 1 and 1..')2 (see the figure accom­
panying the answer) we can
establish at which point the
source of explosion is located.
In fact, in this way the epicen­
ters of earthquakes are located.
6.42. The speed of sound waves
in air is C1 ~ 330 mls and
in water it is c2 ~ 1500 rn/s.
According to Snell's law,

sin aI/sin a 2 = c1lc2 •

Accordingly, when the "sound :Fig. 6.41
beam" enters the wate r, it wi ll
be deflected from the perpendicular line sti ll strong­
er and angle a 2 becomes greater than angle a l • The
velocity ratio deterrnines the maximal angle at which
sound waves can go "into" water. The maximal angle of
incidence am· satisfies the condit.ion (a 2 == 90°)

sin am = C1/C2•

At C1 ~-= 330 luis and C2 == 1500 mls we have sin am ===
0.22 and CG m ~ 13°. At an angle greater than 13°
total reflection occurs, Such a situation is depicted in the
figure accompanying the problem.

The perturbation caused hy the incident wave pene­
trates the surface of the water but dies out exponentially,
and this happens the faster the greater the angle of inci­
dence of the wave. The wave dies out practically at a
depth of the order of one wavelength. Sometimes one can
hear a fisherman whisper: "Keep quiet! The fish is here!"
The above estimate shows that a person standing at a
distance away from the rivorbank can never "scare" tho
fish.
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6.43. Imagine a plane that" is parallel to the surface of
the earth. Tho sound that an explosion generates and that
propagates at a certain augle a to the nurrnal to this plane
will be deflected sl.il 1 grca tel'. As SHoll' s Ia w shows,
this happens when the speed of sound increases with alti­
tude. Thus, the curve that represents the path along
which the sound wave propagates suggests that the speed
of sound increases continuously with altitude. Since the
speed of propagation of waves in a gas is proportional to
the square root of the temperature, then, hence, the behav­
ior of the curve of sound propagation (see the figure ac­
companying the problem) can be explained by the fact
that the air temperature increases wi lh alt.i tude.
6.44. Both longitudinal and transverse waves call trav­
el ill the eart.h. -Tho r'1I'St are partially reflected by water
and partially transrnittcd through water, while the second
are completely reflected hy water. The reflection of the
longitudinal and transverse waves can be used to estimate
the upper boundary of the water pocket. The longitudi­
nal waves will be partially reflected by the bottom of the
pocket. Thus, to measure the depth of the pocket one can
use only longitudinal waves.
6.45. For tho 0 bscrver to heal' the sound of the airplane
from a distance a earlier than the sound arrives from
point A that is directly above the observer, the time it
takes the sound to travel from airplane to observer must
be shorter than the time it takes the airplane to fly the
distance a plus the time it takes the sound to travel from
point A to the observer. The first time is

t1 == Va2 + h2/c,

while the second is

t2 = alv + hie,

where c is the speed of sound. The above-stated condition
can be written thus:

Va2 + h2 a h--c--<V-+c·

If we square both sides of this inequality and carry out
the necessary manipulations, we get
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The ratio vic == M is known as the Mach num her. Then
(G. 4.S.1) ('an he \vritten (, hus:

< 0) M I
a ~ M2_1 i,

If, say, the airplane is flying with a speed double the speed
of sound, the maximal distance from which the sound
will arrive sooner' than when the airplane appears over­
head is equal to (4/3)h.
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