ALTERNATING CURRENT

1. AC AND DC CURRENT :

A current that changes its direction periodically is called alternating current (AC). If a current maintains its direction constant it is called direct current (DC).

3. ROOT MEAN SQUARE VALUE: Root Mean Square Value of a function, from t₁ to t₂, is defined as

$$f_{\rm rms} = \sqrt{\frac{\int_{t_1}^{t_2} f^2 dt}{t_2 - t_1}}$$

4. POWER CONSUMED OR SUPPLIED IN AN AC CIRCUIT:

Average power consumed in a cycle =
$$\frac{\int_{\omega}^{2\pi}}{\frac{2\pi}{\omega}} = \frac{1}{2} V_{m} I_{m} \cos \phi$$

$$= \frac{V_{\rm m}}{\sqrt{2}} \cdot \frac{I_{\rm m}}{\sqrt{2}} \cdot \cos\phi = V_{\rm rms} I_{\rm rms} \cos\phi.$$

Here $\cos\phi$ is called **power factor**.

5. SOME DEFINITIONS:

The factor $\cos \phi$ is called **Power factor**. I_m sin ϕ is called wattless current.

Impedance Z is defined as Z = $\frac{V_m}{I_m} = \frac{V_{rms}}{I_{rms}}$

 ωL is called **inductive reactance** and is denoted by X₁

 $\frac{1}{\omega C}$ is called **capacitive reactance** and is denoted by X_{c.}

6. PURELY RESISTIVE CIRCUIT:

$$I_{rms} = \frac{V_{rms}}{R}$$

$$\langle P \rangle = V_{rms} I_{rms} \cos \phi = \frac{V_{rms}^2}{R}$$

7. PURELY CAPACITIVE CIRCUIT:

$$I = = \frac{V_m}{1/\omega C} \cos \omega t$$
$$= \frac{V_m}{X_C} \cos \omega t = I_m \cos \omega t$$

= V_msin ωt

$$X_c = \frac{1}{\omega C}$$
 and is called capacitive reactance

I_c leads by v_c by $\pi/2$ Diagrammatically (phasor diagram) it is represented as V_m . Since $\phi = 90^\circ$, $\langle P \rangle = V_{rms} I_{rms} \cos \phi = 0$