Complementary events

For an event E such that $0 \le P(E) \le 1$ of an experiment, the event \overline{E} represents 'not E', which is called the complement of the event E. We say, E and \overline{E} are **complementary** events. $P(E) + P(\overline{E}) = 1$ $\Rightarrow P(\overline{E}) = 1 - P(E)$

Example: A pair of dice is thrown once. Find the probability of getting a different number on each die.

Solution: When a pair of dice is thrown, the possible outcomes of the experiment can be listed as:

	1					
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

The number of all possible outcomes = $6 \times 6 = 36$ Let E be the event of getting the same number on each die. Then, \overline{E} is the event of getting different numbers on each die.

Now, the number of outcomes favourable to E is 6. $\therefore P(\overline{E}) = 1 - P(E) = 1 - \frac{6}{36} = \frac{5}{6}$

Thus, the required probability is $\overline{6}$.

- Algebra of events
- **Complementary event:** For every event *A*, there corresponds another event *A*' called the complementary event to *A*. It is also called the event 'not *A*'.

 $A' = \{ \omega \colon \omega \in S \quad \text{and} \omega \notin A \} = S - A.$

• **The event 'A or B':** When sets A and B are two events associated with a sample space, then the set $A \cup B$ is the event 'either A or B or both'.

That is, event 'A or B' = $A \cup B = \{\omega : \omega \in A \text{ or } \omega \in B\}$

• **The event 'A and B':** When sets A and B are two events associated with a sample space, then the set $A \cap B$ is the event 'A and B'.

That is, event 'A and B' = $A \cap B$ = { ω : $\omega \in A$ and $\omega \in B$ }

• **The event 'A but not B':** When sets *A* and *B* are two events associated with a sample space, then the set *A* - *B* is the event '*A* but not *B*'.

That is, event 'A but not $B' = A - B = A \cap B' = \{\omega : \omega \in A \text{ and } \omega \notin B\}$

Example: Consider the experiment of tossing 2 coins. Let *A* be the event 'getting at least one head' and *B* be the event 'getting exactly two heads'. Find the sets representing the events (i) complement of '*A* or *B*'

(i) complement of 'A or B'
(ii) A and B
(iii) A but not B

Solution:

Here, $S = \{HH, HT, TH, TT\}$ $A = \{HH, HT, TH\}, B = \{HH\}$ (i) A or $B = A \cup B = \{HH, HT, TH\}$ Hence, complement of A or $B = (A \text{ or } B)' = (A \cup B)' = U - (A \cup B) = \{TT\}$ (ii) A and $B = A \cap B = \{HH\}$ (iii) A but not $B = A - B = \{HT, TH\}$

• Mutually Exclusive Events

Two events, *A* and *B*, are called mutually exclusive events if the occurrence of any one of them excludes the occurrence of the other event i.e., if they cannot occur simultaneously. In this case, sets *A* and *B* are disjoint i.e., $A \cap B = \emptyset$ If $E_1, E_2, ..., E_n$ are *n* events of a sample space *S*, and if

$$\bigcup_{i=1}^{n} E_{i} = S_{i} = S_{i} = U_{i} = S_{i} = S_{i}$$

 $E_1, E_2, \dots E_n$ are called mutually exclusive and exhaustive events.

In other words, at least one of E_1 , E_2 , ... E_n necessarily occurs whenever the experiment is performed.

The events $E_1, E_2, ..., E_n$, i.e., *n* events of a sample space (*S*) are called mutually exclusive and exhaustive events if

 $E_i \cap E_i = \phi$ for $i \neq j$ i.e., events E_i and E_j are pairwise disjoint, and $\bigcup_{i=1}^n = S$

Example: Consider the experiment of tossing a coin twice. Let *A* and *B* be the event of "getting at least one head" and "getting exactly two tails" respectively. Are the events *A* and *B* mutually exclusive and exhaustive? **Solution:** Here, $S = \{HH, HT, TH, TT\}$ $A = \{HH, HT, TH\}$ $B = \{TT\}$ Now, $A \cap B = \emptyset$ and $A \cup B = \{HH, HT, TH, TT\} = S$ Thus, *A* and *B* are mutually exclusive and exhaustive events.

- The number P (ω_i) i.e., the probability of the outcome ω_i , is such that
- $\circ \quad 0 \leq P(\omega_i) \leq 1$
- $\sum P(\omega_i) = 1$ for all $\omega_i \square S$
- For any event *A*, $P(A) = \sum P(\omega_i)$ for all $\omega_i \square A$
- For a finite sample space *S*, with equally likely outcomes, the probability of an event *A* is denoted as P (*A*) and it is given by

 $\mathbb{P}(A) = \frac{n(A)}{n(S)},$

• Where, n(A) = Number of elements in set A and n(S) = Number of elements in set S

If *A* and *B* are two events, then

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• If *A* and *B* are mutually exclusive events, then

 $P(A \cup B) = P(A) + P(B)$

• If *A* is any event, then

P(A') = 1 - P(A)

Example: Consider the experiment of tossing a die. Let *A* be the event "getting an even number greater than 2" and *B* be the event "getting the number 4". Find the probability of (i) getting an even number greater than 2 or the number 4 (ii) getting a number, which is not the number 4, on the top face of the die

(II) getting a number, which is not the number 4, on the top face of the

Solution: Here, $S = \{1, 2, 3, 4, 5, 6\}$ $A = \{4, 6\}, B = \{4\}$ $A \cap B = \{4\}$ $p(A) = \frac{2}{6}, p(B) = \frac{1}{6}, p(A \cap B) = \frac{1}{6}$ (i) Required probability = $P(A \cup B)$ $= P(A) + P(B) - P(A \cap B)$ $= \frac{2}{6} + \frac{1}{6} - \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$

(ii)
$$P(B) = \frac{1}{6}$$

 $\therefore P(\text{not } B) = 1 - P(B) = 1 - \frac{1}{6} = \frac{5}{6}$

Hence, the required probability of not getting number 4 on the top face of the die is $\frac{5}{6}$.

Example: 20 cards are selected at random from a deck of 52 cards. Find the probability of getting at least 12 diamonds.

Solution: 20 cards can be selected at random from a deck of 52 cards in ${}^{52}C_{20}$ ways. Hence, Total possible outcomes = ${}^{52}C_{20}$ P (at least 12 diamonds) = P (12 diamonds or 13 diamonds) = P (12 diamonds) + P (13 diamonds)

$$= \frac{{}^{13}C_{12} \times {}^{39}C_{8}}{{}^{52}C_{20}} + \frac{{}^{13}C_{13} \times {}^{39}C_{7}}{{}^{52}C_{20}}$$

$$= \frac{13 \times {}^{39}C_{8}}{{}^{52}C_{20}} + \frac{{}^{39}C_{7}}{{}^{52}C_{20}}$$

$$= \frac{13 \times {}^{39}C_{8} + {}^{39}C_{7}}{{}^{52}C_{20}}$$

$$= \frac{13 \times {}^{39!} \times {}^{39!} + \frac{39!}{32! \times 7!}}{{}^{52}C_{20}}$$

$$= \frac{13 \times {}^{39!} \times {}^{39!} + \frac{39! \times 8}{32 \times 31! \times 7! \times 8}}{{}^{52}C_{20}}$$

$$= \frac{13 \times {}^{39!} \times {}^{39!} + \frac{8}{32} \times {}^{39!} \times {}^{52}C_{20}}$$

$$= \frac{13 \times {}^{39!} \times {}^{39!}$$