SAMPLE PAPER FOR SA-1 CLASS – X MATHEMATICS

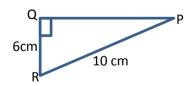
Time: 3 hours Maximum Marks: 90

General Instructions:

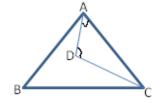
- 1. All questions are compulsory.
- 2. The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 8 questions of 1 mark each, Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each and Section D comprises of 10 questions of 4 marks each.
- 3. Question numbers 1 to 8 in Section A are multiple choice questions where you are to select on correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- 6. An additional 15 minutes time has been allotted to read this question paper only.

SECTION A

- [1] If the system of liner equations x ky =2 and 3x + 2y =-5 has a unique solution, then the value of k is: [a] $k = \frac{2}{3}$ [b] $k \neq -\frac{2}{3}$ [c] $k = \frac{3}{2}$ [d] $k \neq -\frac{3}{2}$
- [2] If $\tan \theta = \frac{3}{4}$ then the value of $\frac{1 \cos \theta}{1 + \cos \theta}$ is :- $[a] \frac{1}{9} \qquad [b] \frac{2}{9} \qquad [c] 1 \qquad [d] \frac{1}{9}$
- [3] If $\sin 3x = \cos[x-26^0]$ and 3x is an actual angle, then the value of x is :[a] 29^0 [b] 26^0 [c] 29^0 [d] 13^0
- [4] If $x=2^3x \ 3 \ x \ 5^2$, $y=2^2x3^3$, then HCF [x, y] is:-[a] 12 [b]108 [c]6 [d]36
- [5] If a positive integer p is divided by 3, then the remainder can be:[a]1 or 3 [b]1,2 or3 [c]0,1 or 2 [d]2 or 3
- [6] If the given figure, the value of tanP cotRis:[a]1 [b]0 [c] -1 [d] 2

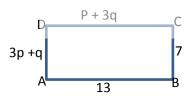


- [7] Construction of a cumulative frequency table is useful in determining the :-
- [a]Mean [b] Median [c] Mode [d]All the above
- [8]In the given figure, if $\angle A = \angle D = 90^{\circ}$, AD=6cm , CD = 8cm and BC =26cm then ar($\triangle ABC$) is :-
- [a]240cm² [b]48cm² [c]120² [d]260cm²



SECTION - B

[9] Find the value of p and q in the given figure, if ABCD is a rectangle



[10]If α and $\frac{1}{\alpha}$ are the zeroes of the polynomial p(x)=4x $^2-2x^2+k-4$, then find the value of k

Or

Divide the polynomial $p(x) = 5 - 3x + 3x^2 - x^3$ by $g(x) = x^2 - x + 1$ and find the quotient and remainder

[11] Without actually performing the long division, state whether $\frac{39}{343}$ will have a terminating or non-terminating, repeating decimal expansion

[12] Find the value of k , if
$$\frac{\cos 35^0}{\sin 55^0} + \frac{2 \sin \theta}{\cos (90^0 - \theta)} = \frac{k}{2}$$

[13] ABC is right angle triangle with \angle ABC =90 0 , BD \perp AC , DM \perp BC , and DN \perp AB. prove that $DM^{2} = DN \ X \ BC$.

IN - DIV A DC.

[14] The following table gives production yield per hectare of wheat of 100 farms of yillage:-

,		5 O	7.0.0.	P			J - ·
	Production	25-35	35-45	45-55	55-65	65-75	75-85
	(in kg/hec)						
	No.of farms	4	6	10	26	35	19

Write the above distribution to a more than type distribution.

SECTION - C

[15] Prove that $\frac{7\sqrt{7}}{4}$ is irrational.

Oı

Prove that $(16-5\sqrt{7})$ is irrational.

[16] If one diagonal of a trapezium divides the other diagonal in the ratio 1:2. Prove that one of the parallel sides is double the other?

[17] Prove that:
$$\frac{\sin\theta}{\cot\theta + \csc\theta} = 2 + \frac{\sin\theta}{\cot\theta - \csc\theta}$$
?

[18] The sum of the numerator and denominator, of a fraction is 8. If 3 is added to both the numerator and the denominator, the fraction become $\frac{3}{4}$. Find the fraction.

Or

Seven times a two digit number is equal to 4 times the number obtained by reversing the order of its digits. If the difference of digit is 3, find the number.

[19] If one zero of the polynomial $p(x) = 3x^2-8x+2k+1$ is seven times of other, then find the zeores and the value of k.

[20] If $\sin\theta + \sin^2\theta + \sin^3\theta = 1$, prove that $\cos^6\theta - 4\cos^4\theta + 8\cos^2\theta = 4$.

[21] Find the mean of the following data, using step-deviation method:-

Class Interval	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	7	8	12	10	8	5

 Or

 Class Interval
 0-20
 20-40
 40-60
 60-80
 80-100

 Frequency
 17
 28
 32
 p
 19

If the mean of the above data is 50, then find the value of p?

[22] Prove that
$$\tan \theta - \cot \theta = \frac{2 \sin^2 \theta - 1}{\sin \theta \cos \theta}$$

[23] In Δ ABC, if AD is the median, then show that $AB^2 + AC^2 = 2[AD^2 + BD^2]$.

[24] Find the median of the following data:

Class-	10-20	20-30	30-40	40-50	50-60	60-70	70-80
interval							
Frequency	12	30	34	65	46	25	18

SECTION-D

[25] Prove that, if a line is drawn parallel to one side of a triangle, to intersect the other two sides in distinct points the other two sides are divided into the same ratio.

Or

Prove that in a right triangle the square of the hypotenus is equal to the sum of the square of the other two sides?

[26] If x=a
$$\sin\theta$$
 , y=b $\tan\theta$.prove that $\frac{a^2}{x^2} \cdot \frac{b^2}{y^2} = 1$.

[27] On dividing $3x^3+4x^2+5x-13$ by a polynomial g(x), the quotient and remainder are 3x+10 and 16x+43 respectively, Find the polynomial g(x).

28] The fraction become $\frac{9}{11}$, if 2 is added to both the numerator and the denominator. If 3 is added to both the numerator and the denominator, it becomes $\frac{5}{6}$. Find the fraction.

[29] The following table shows the ages of the patients admitted in a hospital during a year:

AGE(in	5-15	15-25	25-35	35-45	45-55	55-65
years)						
No. of	6	11	21	23	14	5
patients						

Find the mode and mean of the data given above.

[30] The perpendicular from A on the side BC of the $\triangle ABC$ intersects BC at D such that DB=3CD Prove that $2AB^2 = 2AC^2 + BC^2$.

[31] Draw the graph of following eqn:-

$$2x+3y = 12$$
 and $x-y = 1$

Shade the region between the two lines and x – axis. Also, determine the vertices of the triangle so formed.

$$[32] \text{Prove that: } \frac{\cos\theta}{1-\tan\theta} + \frac{\sin^2\theta}{\sin\theta - \cos\theta} = \sin\theta + \cos\theta$$
 Or
$$\text{Evaluate: } \frac{\sin^2\theta + \sin^2(90^0 - \theta)}{3(\sec^261^0 - \cot^229^0)} - \frac{3\cot^230^0\sin^254^0\sec^236^0}{2(\csc^265^0 - \tan^225^0)} \; .$$

[33] In a sports meet, the number of players in Football, Hockey and Athletics are 48,60,132, respectively. Find the minimum number of room required, if in each room the same number of player are to be seated and all of them being in the same sports?

[34] The following distribution gives the daily income of 65 workers of a factory :-

Daily income (in Rs)	100-120	120 – 140	140 -160	160- 180	180- 200
No. of worker	14	16	10	16	9

Convert the distribution above to a more than type cumulative frequency distribution and draw its ogive.

MARKING SCHEME

SUMMATIVE ASSESSMENT – 1

Sl.no 1. 2. 3. 4. 5. 6. 7.	(b) (d) (a) (a) (c) (b) (b) (c) SECTION-B	marks 1 1 1 1 1 1 1 1
9.	Since opposite sides of the rectangle are equal So. P+3q=13, 3p+q=7	1
10.	Solving p=1, q=4 Since α and $\frac{1}{\alpha}$ are the zeros of the polynomial P(x)= $4x^2$ -2x+k-4	1
	So, $\alpha \times \frac{1}{\alpha} = \frac{k-4}{4}$	1
	$\Rightarrow 1 = \frac{k-4}{4}$ $\Rightarrow k = 8$ or	1
	x^{2} -x+1)- x^{3} +3 x^{2} -3x+5(-x+2 - x^{3} + x^{2} -x + - + - + - + - + - + - + - + - + - + -	$1\frac{1}{2}$
	$2x^{2}-2x+5$ $2x^{2}-2x+2$	
	3	1/2
11.	So, quotient = -x+2 , remainder = 3 Here, $\frac{39}{343} = \frac{3 \times 13}{7 \times 7 \times 7}$ Since denominator contains prime factor 7 other than 2 or 5 So, $\frac{39}{343}$ will have a non-terminating repeating decimal expansion.	$\frac{\frac{1}{2}}{\frac{1}{2}}$
12.	we have $ \frac{\cos 35^{\circ}}{\sin 55^{\circ}} + \frac{2\sin\theta}{\cos(90^{\circ} - \theta)} = \frac{k}{2} $ $ \frac{\cos 35^{\circ}}{\cos(90^{\circ} - 35^{\circ})} + \frac{2\sin\theta}{\sin\theta} = \frac{k}{2} $	1
	$1 + 2 = \frac{k}{2}$ $K = 6$	1
13.	$\therefore DN \perp AB \text{ and } \angle B = 90^{\circ}, DM \perp BC$	1
	So, DN BC and DM AB so, DNBM is a grm. ⇒ DN =BM	
	In \triangle BDM and \triangle DCM, $\angle 1=\angle 3$, $\angle 2=\angle 4$,	1
	by AA-Similarity $\triangle BDM \sim \triangle DCM$ $\Rightarrow \frac{DM}{CM} = \frac{BM}{DM}$ $\Rightarrow DM^2 = CM \times BM$	1
1.4	$\Rightarrow DM = CM \times BM$ $\Rightarrow DM^2 = CM \times DN \qquad Proved.$	1 . 1

1+1

14.

More than type	Commutative frequency
more than 25	100
more than 35	96
more than 45	90
more than 55	80
more than 65	54
more than 75	19

SECTION-C

15. Let us assume that, on contrary $\frac{7\sqrt{7}}{4}$ is rational

$$\therefore \frac{7\sqrt{7}}{4} = \frac{a}{b}, \text{ where } a, b \text{ are integers with } b \neq 0$$

$$\Rightarrow \sqrt{7} = \frac{4a}{7b}$$

 $\frac{4a}{7h}$ is a rational number. So, $\sqrt{7}$ is rational.

but this contradicts the fact that $\sqrt{7}$ is irrational.

so our assumption is wrong. $\therefore \sqrt{7}$ is irrational.

1

OR

on contrary, Let $16-5\sqrt{7}$ is rational 1

so, $16-5\sqrt{7} = \frac{a}{b}$, where a, b are integers with $b \neq 0$ $\Rightarrow \sqrt{7} = \frac{16b-a}{5b} = \frac{integer}{integer}$ 1

$$\Rightarrow \sqrt{7} = rational$$

But, this contradicts the fact that $\sqrt{7}$ is irrational.

so, $16-5\sqrt{7}$ is irrational.

16. 1

Given that to prove

In Δ , ABP and Δ CDP,

17.

$$\angle ABP = \angle CDP$$
 (alt. $\angle s$)
 $\angle BAP = \angle DCP$ (alt. $\angle s$)

∴
$$\triangle ABP \sim \triangle CDP$$
 (BY AA-Similarity)
$$\Rightarrow \frac{AB}{AP} = \frac{AP}{AP} = \frac{2}{AP}$$

 $\Rightarrow \frac{AB}{DC} = \frac{AP}{CP} = \frac{2}{1}$ $\Rightarrow AB = 2DC$ 1 Proved.

Given: $\frac{\sin \theta}{\cot \theta + \csc \theta} = 2 + \frac{\sin \theta}{\cot \theta - \csc \theta}$ $\Rightarrow \frac{\sin \theta}{\cot \theta + \csc \theta} - \frac{\sin \theta}{\cot \theta - \csc \theta} = 2$ L.H.S.=Sin θ $\left[\frac{1}{\cot \theta + \csc \theta} - \frac{1}{\cot \theta - \csc \theta}\right]$ 1/2

$$\Rightarrow \frac{1}{\cot\theta + \csc\theta} - \frac{1}{\cot\theta - \csc\theta} = 2$$
L.H.S.=Sin $\theta \left[\frac{1}{\cot\theta + \csc\theta} - \frac{1}{\cot\theta - \csc\theta} \right]$
½

$$= \sin\theta \left[\frac{-2\cos ec\theta}{\cot^2\theta - \csc^2\theta} \right]$$

$$= \frac{-2\sin\theta \cdot \frac{1}{\sin\theta}}{-(\cos e^2\theta - \cot^2\theta)} = 2 \quad \text{Proved.}$$

18. Let the numerator be x and denominator be y, then fraction = $\frac{x}{y}$ 1/2

As per question, 1 $\begin{aligned}
 x + y &= 8 \\
 x + 3 &= 3
 \end{aligned}$

$$\frac{x+5}{y+3} = \frac{3}{4}$$
solving, $x = 3$, $y = 5$

$$fraction = \frac{x}{y} = \frac{3}{5}$$
1

	_	be x and tens di	git be y			1/2
	then no. $= 10y$	+ <i>x</i>				
	As per question					1
	` '	x) = 4(10x + y)				
	and $x - y = 3$					
	solving $x = 6$,	y = 3				1
	so No. = 36					1/2
19.	Let zeroes of the	given polynomial	$p(x)$ be α and β			1/2
	then, as per ques	tion				
	$\beta = 7\alpha$					
	sum of zeroes $lpha$ -	$+\beta = \frac{-b}{a}$				1
	$\Rightarrow \alpha + 7\alpha =$	$=\frac{8}{3}$				
	$\Rightarrow \alpha = \frac{1}{3}$					
	also, Product of z	eroes $\alpha\beta = \frac{c}{a}$				1/2
	\Rightarrow $7\alpha X\alpha =$	$=\frac{2k+1}{3}$				
	solving, $k = \frac{2}{3}$	J				1
	solving, $k = \frac{2}{3}$ zeroes are $\frac{1}{3}, \frac{7}{3}$					
20.	We have,					1/2
	$\sin\theta + \sin\theta$	$^{2}\theta$ + sin $^{3}\theta$ =1				
	sinθ(1+si	$n^2\theta$)=1-sin ² θ				
		$\sin^2\theta$)= $\cos^2\theta$ squa	ring both sides			1/2
		$(1+1-\cos^2\theta)^2 = \cos^4\theta$				1/2
	solving,	(1:1 003 0) 003				1_{2}^{1}
		$0s^4\theta + 8\cos^2\theta = 4$				12
21.	003 0 400	73 010003 0-4				1^{1}_{2}
·	Class –Interval	Mid value (x_i)	frequency (f_i)	$u_i = \frac{x_i - d}{h}$	$f_i u_i$	
	0-20	10	7	-2	-14	\neg
	20.40	20	0	1	0	

Class –Interval	Mid value (x_i)	frequency (f_i)	$u_i = \frac{x_i - d}{h}$	$f_i u_i$
0-20	10	7	-2	-14
20-40	30	8	-1	-8
40-60	A=50	12	0	0
60-80	70	10	1	10
80-100	90	8	2	16
100-120	110	5	3	15
		$\sum f_i = 50$		$\sum f_i u_i = 19$

Here, A=50, h=20,
$$\sum f_i = 50$$
, $\sum f_i u_i = 19$

Mean(\bar{x})= A + $\left[\frac{\sum f_i u_i}{\sum f_i}\right] X h$

Mean(\bar{x})= 50 + $\frac{19}{50} X 20$

= 57.6

OR

 1^{1}_{2}

frequency (f_i) Class class – $mark(x_i)$ $f_i x_i$ 0-20 17 10 170 20-40 28 30 840 40-60 32 50 1600 60-80 70 70*p* $\frac{19}{\sum f_i = 96 + p}$ 1710 80-100 90 $\overline{\sum f_i x_i} = 4320 + 70p$

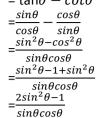
$$\mathsf{Mean}(\bar{x}) = \left[\frac{\sum f_i x_i}{\sum f_i}\right]$$

Given $\bar{x} = 50$

$$\Rightarrow 50 = \frac{4320 + 70p}{96 + p}$$

Solving p = 24

22. L.H.S. $= \tan\theta - \cot\theta$



1/2

1/2 1

1

1

1/2

1

1/2

1

1/2

2

2

1

1

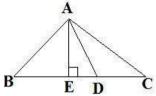
1/2

1+1

23. construction:-Draw AE ⊥BC

In
$$\triangle ADE$$
, $AD^2 = AE^2 + ED^2$
 $\Rightarrow AE^2 = AD^2 - DE^2$

(Pythagoras theoren



In
$$\triangle ABE$$
, $AB^2 = AE^2 + BE^2$ ($\angle B = 90^0$, Pythagoras theorem) 1
 $\Rightarrow AB^2 = AD^2 - DE^2 + (BD - DE)^2$ Using (I)

$$\Rightarrow AB^2 = AD^2 - DE^2 + (BD - DE)^2$$

$$\Rightarrow$$
 AB²=AD²+BD²-2BD.DE -----(II)

In
$$\triangle ACE$$
, $AC^2 = AE^2 + EC^2$

$$\Rightarrow$$
 AC² = AD² - DE² +(CD+DE)²

$$\Rightarrow AC^2 = AD^2 + CD^2 + 2CD.DE$$

\Rightarrow AC^2 = AD^2 + BD^2 + 2BD.DE

$$AB^2 + AC^2 = 2[AD^2 + BD^2]$$

24.

Class – Interval	Frequency (f _i)	Cumulative frequency
10-20	12	12
20-30	30	42
30-40	34	76
40-50	65	141
50-60	46	187
60-70	25	212
70-80	18	230
· · · · · · · · · · · · · · · · · · ·	$N = \sum f_i - 230$	

$$\frac{N}{2} = \frac{230}{2} = 115$$

$$l = 40,$$
 $cf = 76,$ $f = 65,$ $h = 10$

$$\therefore Median = l + \frac{\frac{N}{2} - cf}{f} X h$$

$$= 46$$

26. Given,
$$x = asin\theta$$
, $y = btan\theta$

$$\Rightarrow \frac{a}{r} = \frac{1}{\sin \theta}$$
 and $\frac{b}{r} = \frac{1}{\tan \theta}$

$$\Rightarrow \frac{a}{x} = \frac{1}{\sin\theta} \quad and \quad \frac{b}{y} = \frac{1}{\tan\theta}$$
$$\Rightarrow \frac{a}{x} = Cosec\theta \quad and \quad \frac{b}{y} = \cot\theta$$

$$LHS = \frac{a^2}{x^2} - \frac{b^2}{y^2} = cosec^2\theta - cot^2\theta = 1 = RHS \qquad Proved.$$

27. Here, Dividend
$$p(x) = 3x^3 + 4x^2 + 5x - 13$$

Quotient
$$q(x) = 3x + 10$$

Remainder r(x) = 16x - 43

$$p(x) = g(x)q(x) + r(x)$$

$$g(x) = \frac{p(x) - r(x)}{q(x)}$$

$$= \frac{(3x^3 + 4x^2 + 5x - 13) - (16x - 43)}{3x + 10}$$

$$= \frac{3x^3 + 4x^2 - 11x + 30}{3x + 10}$$

Correct division

$$g(x) = x^2 - 2x + 3$$

$$g(x) = x^2 - 2x + 3$$
28. Let the fraction be $\frac{x}{y}$

As per question

$$\frac{x+2}{y+2} = \frac{9}{11}$$

$$\Rightarrow 11x - 9y + 4 = 0$$

$$\frac{x+3}{y+3} = \frac{5}{6}$$

 \Rightarrow 6x - 5y + 3 = 0

Solving above,
$$x = 7$$
, $y = 9$

$$\therefore$$
 Fraction = $\frac{7}{9}$

29.

Age (in years)	No. Of Patients (f_i)	Class $Mark(x_i)$	$f_i x_i$
5-15	6	10	60
15-25	11	20	220
25-35	21	30	630
35-45	23	40	920
45-55	14	50	700
55-65	5	60	300
	$\sum f_i = 80$		$\sum f_i x_i = 2830$

Here I= 35,
$$f_1$$
 = 23, f_2 = 14, f_0 = 21, h = 10

Here l= 35,
$$f_1$$
 = 23, f_2 = 14, f_0 = 21, h = 10
Mode = l + $\left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) * h$

$$Mean(\bar{x}) = \frac{\sum f_i x_i}{\sum f_i}$$

= 35.68

Proof:-

In right
$$\triangle ADB$$
,

$$AB^2 = AD^2 + DB^2$$

In right ∆ACB,

$$AC^2=AD^2+CD^2$$

$$\therefore AB^2-Ac^2=DB^2-CD^2$$

$$= \left(\frac{3}{4}BC\right)^{2} - \left(\frac{1}{4}BC\right)^{2} = \frac{8 \cdot 1}{16 \cdot 2}BC^{2} = \frac{1}{2}BC^{2}$$

$$\Rightarrow AB^{2} - AC^{2} = \frac{1}{2}BC^{2}$$

$$\Rightarrow$$
 AB²-AC²= $\frac{1}{2}BC^2$

$$\Rightarrow$$
 2AB²=2AC²+BC²

1/2

2

1/2

1

1

1

1/2

1

$$1_{2}^{1}$$

1

1/2

1/2

1

1

1

31.	Given Equations are	1
	2x + 3y = 12 (i)	
	$x - y = 1 (ii)$ $x \mid 0 \mid 3 \mid 6$	
	$from (i) y = \frac{12-2x}{3}$ $y = 4$ $y = 0$	
	y 4 2 0	
	From (ii) $y = x - 1$	2
	$\begin{bmatrix} x & 0 & 1 & 3 \end{bmatrix}$	
	Graph for above equations $y -1 0 2$	
	Vertices of triangle are (1,0), (6,0), (3,2)	1
32.	LHS $= \frac{\cos\theta}{1 - \tan\theta} + \frac{\sin^2\theta}{\sin\theta - \cos\theta}$	1^{1}_{2}
	$ \begin{array}{ccc} 1 - tan\theta & sin\theta - cos\theta \\ cos^2\theta & sin^2\theta \end{array} $	
	$=\frac{\cos^2\theta}{\cos\theta-\sin\theta}+\frac{\sin^2\theta}{\sin\theta-\cos\theta}$	
	$\cos^2\theta - \sin^2\theta$	1
	$= \frac{\cos\theta - \sin\theta}{(\cos\theta + \sin\theta)(\cos\theta - \sin\theta)}$	1
	$=\frac{(\cos\theta - \sin\theta)}{\cos\theta - \sin\theta}$	1
	$= cos\theta + sin\theta$	1/2
	OR	
	$\frac{sin^2\theta + sin^2(90^0 - \theta)}{3(sec^261^0 - cot^229^0)} - \frac{3cot^230^0sin^254^0sec^236^0}{2(cosec^265^0 - tan^225^0)}$	2
	$3(sec^261^0 - cot^229^0)$ $2(cosec^265^0 - tan^225^0)$	
	(20, 20, 20, 30)	
	$=\frac{\sin^2\theta + \cos^2\theta}{3(\sec^261^0 - \tan^261)} - \frac{3 X (\sqrt{3})^2 \sin^254^0 \csc^254^0}{2(\csc^265^0 - \cot^265^0)}$	
	1 3 X 3 X 1	1
	$= \frac{1}{3 \times 1} - \frac{3 \times 3 \times 1}{2 \times 1}$ $= \frac{1}{3} - \frac{9}{2} = -\frac{25}{6}$	
	$=\frac{1}{3}-\frac{9}{2}=-\frac{23}{6}$	1
33.	Prime factorization of 48=2 ⁴ X 3	1
	Prime factorization of $60=2^2 X 3 X 5$	
	Prime factorization of $132=2^2 X 3 X 11$	
	HCF of (48, 60, 132)=2 X 2 X3 = 12	1
	\therefore In each room 12 players of same sports can be accomodated.	1
	\therefore number of roms required = $\frac{Total \ number \ of \ players}{Total \ number \ of \ players}$	
	$\therefore number of roms required = \frac{Total number of players}{Number of players in a room}$	
	\Rightarrow number of roms required = $\frac{48+60+132}{12}$	1
	= 20	
		_

2

2

34.

correct table

correct graph