CUET (UG)

Mathematics Sample Paper - 08

Solved

Time Allowed: 50 minutes

Maximum Marks: 200

General Instructions:

- 1. There are 50 questions in this paper.
- 2. Section A has 15 questions. Attempt all of them.
- 3. Attempt any 25 questions out of 35 from section B.
- 4. Marking Scheme of the test:
- a. Correct answer or the most appropriate answer: Five marks (+5).
- b. Any incorrectly marked option will be given minus one mark (-1).
- c. Unanswered/Marked for Review will be given zero mark (0).

Section A

1. Let I be an identity matrix, then [5]

a)
$$I = [a_{ij}]_n, \text{ where } a_{ij} = \begin{cases} 0 \text{ if } i = j & b \\ 1 \text{ if } i \neq j & I = [a_{ij}]_n, \text{ where } a_{ij} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$$

c)
$$I = [a_{ij}]_n, \text{ where } a_{ij} = \begin{cases} 0 \text{ if } i \neq j & \text{d) } I = [a_{ij}]_n, \text{ where } a_{ij} = k \forall i, j, k \\ 1 \text{ if } i \neq j & \in R \end{cases}$$

d)
$$I = [a_{ij}]_n$$
, where $a_{ij} = k \forall i, j, k$

2. If A is square matrix, then A is symmetric, if

[5]

a)
$$A^2 = A$$

b)
$$A^T = A$$

$$c)A^{T}=-A$$

d)
$$A^2 = I$$

 $A = [a_{ij}]_{m \times n}$ is a square matrix, if 3.

[5]

$$a) m = n$$

b)
$$m > n$$

c) None of these

The function $f(x) = x^9 + 3x^7 + 64$ is increasing on 4.

[5]

a)
$$(-\infty, 0)$$

$$b) R_0$$

$$c)(0,\infty)$$

d) R

5. If m be the slope of a tangent to the curve $e^y = 1 + x^2$ then

[5]

 $a) |m| \le 1$

b) |m| < 1

c) |m| > 1

d) m < 1

6. The function f(x) = |x| has

[5]

a) only one maxima

b) only one minima

c) no maxima or minima

d) none of these

7. $\int \frac{\cot x}{(\csc x - \cot x)} dx = ?$

[5]

a) $\csc x + \cot x - x + C$

b) $-\cos ex + \cot x - x + C$

c) -cosec x - $\cot x$ - x + C

d) $\csc x - \cot x - x + C$

 $8. \quad \int \frac{x}{\left(1 - x^6\right)} dx = ?$

[5]

a) $\frac{1}{6} \log \left| \frac{1+x^3}{1-x^3} \right| + C$

b) $\frac{1}{3} \log \left| \frac{1 - x^3}{1 + x^3} \right| + C$

c) $\frac{1}{6} \log \left| \frac{1 - x^3}{1 + x^3} \right| + C$

d) None of these

9. The value of $\int_0^{\pi/2} \cos x e^{\sin x} dx$ is

[5]

a) e - 1

b) 0

10. The area of the region bounded by the curve $y = x^2$ and the line y = 16

[5]

[5]

[5]

a) $128 \frac{}{3}$

b) $64 \frac{}{3}$

c) $32 \frac{}{3}$

- d) $\frac{256}{3}$
- 11. The solution of the differential equation $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$ is
 - a) $e^{X} + e^{Y} = \frac{x^{3}}{3} + c$

b) $e^{X} - e^{Y} = \frac{x^{3}}{3} + c$

c) $y = e^{x-y} - x^2 e^{-y} + c$

- 12. The general solution of a differential equation of the type $\frac{dy}{dy} + P_1 x = Q_1$ is
 - a) $xe^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy}\right) dy + C$ b) $ye^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy}\right) dy + C$
 - c) $y \cdot e^{\int P dx} = \int \left(Q_1 e^{\int P_1 dx}\right) dx + C$ d) $x e^{\int P^1 dx} = \int \left(Q_1 e^{\int P_1 dx}\right) dx + C$
- 13. By graphical method solution of LLP maximize Z = x + y subject to $x + y \le 2x$; $y \ge [5]$ 0 obtained at

	c) only one point	d) at definite number of points	
14.	A coin is tossed 10 times. The probability	y of getting exactly six heads is	[5]
	a) 100	b) 512	
	153	513	
	c) 10 _{C6}	d) 105	
		512	
	1		[5]
15.	If $P(A) = \frac{1}{2}$, $P(B) = 0$, then $P(A B)$ is		
	a) 0	b) not defined	
	c) 1	d) 1	
	$\overline{2}$		
		ection B	
		ny 25 questions	
16.	If f and g are two functions from R to R fog (x) for $x < 0$ is:	defined as $f(x) = x + x$ and $g(x) = x - x$, then	[5]
	a) 2x	b) 4x	
	c) -4x	d) 0	
17.	The principal value of cosec ⁻¹ (-1) is		[5]
	a) 0	b) -π	
		2	

b) only two points

a) at infinite number of points

c)
$$\pi$$

d)
$$3\pi$$
 $\frac{\pi}{2}$

18. If
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then $A^4 =$

[5]

a)
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{pmatrix} c \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

19. If the points A(3, -2), B(k, 2) and C(8, 8) are collinear then the value of k is

b) 2

d) 5

20. If A is a 2-rowed square matrix and IAI = 6 then A \cdot adj A = ?

[5]

[5]

$$\begin{bmatrix} 6 & 0 \\ 1 \\ 0 & \frac{7}{6} \end{bmatrix}$$

b) None of these

$$\begin{bmatrix}
3 & 0 \\
0 & 3
\end{bmatrix}$$

$$\begin{pmatrix} d \\ 0 \\ 6 \end{pmatrix}$$

21. The system of equations, 3x + y - z = 0, 5x + 2y - 3z = 2, 15x + 6y - 9z = 5 has

[5]

b) two distinct solutions

d) infinitely many solutions

		_	a c \			
22.	At x =	: 2. :	f(x)	=	$ \mathbf{x} $	19
	1 10 11	-,	-()		1 4 - 1	-

- a) Continuous but not differentiable
- b) None of these

c) Continuous as well as differentiable

d) Differentiable but not continuous

23. If
$$f(x) = \tan^{-1} x$$
 and $g(x) = \tan^{-1} \left(\frac{x+1}{1-x}\right)$, then

[5]

[5]

[5]

[5]

a) f'(x) = g'(x)

b) f(x) = g(x)

c) None of these

d) $D_f = D_g$

24. If
$$y = \log \sqrt{\tan x}$$
, then the value of $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$ is given by

a) 0

b) ∞

c) $\frac{1}{2}$

d) 1

- 25. The set of points where the functions f given by $f(x) = |x 3| \cos x$ is differentiable is [5]
 - a) none of these

b) $(0, \infty)$

c) $R - \{3\}$

d) R

26. The function
$$f(x) = \frac{x-1}{x(x^2-1)}$$
 is discontinuous at

a) exactly two points

b) exactly one point

c) exactly three points

d) no point

27. The two curves
$$x^3 - 3xy^2 + 2 = 0$$
 and $3x^2y - y^3 - 2 = 0$ intersect at an angle of

c)
$$\pi$$
 d) π $\frac{\pi}{3}$

28. If the tangent to the curve $x = at^2$, y = 2at is perpendicular to x-axis, then its point of contact is

a)
$$(a, a)$$
 b) $(a, 0)$

c)
$$(0, a)$$
 d) $(0, 0)$

29. The point on the curve $y = (x - 3)^2$ where the tangent is parallel to the chord joining (3, [5]

a)
$$-5$$
 1 b) -7 1 $(\frac{1}{2}, \frac{1}{4})$

c) 7 1 d) 5 1
$$(\frac{1}{2}, \frac{1}{4})$$

30. The normal to the curve $2 y = 3 - x^2$ at (1, 1) is

[5]

a)
$$x - y = 0$$
 b) $- y = 0$

c)
$$x + y + 1 = 0$$
 d) $x - y + 1 + 0$

31.
$$\int \frac{dx}{\left(4x^2 - 4x + 3\right)} = ?$$

a) None of these

b)
$$\frac{1}{2\sqrt{2}}\tan^{-1}\left(\frac{2x-1}{\sqrt{2}}\right) + C$$

c)
$$-\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{2x-1}{\sqrt{2}}\right) + C$$

d)
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{2x-1}{\sqrt{2}} \right) + C$$

[5]

[5]

[5]

$$32. \quad \int \frac{\sin^2 x}{\cos^4 x} dx =$$

a)
$$1 1 b) 1 2 \tan^2 x + c 3 \tan^2 x + c$$

$$\frac{1}{3}\tan^3 x + c$$

33.
$$\int_{-\frac{2}{0}}^{\pi} \sin x \sin 2x dx =$$

a) 3 - - 5

b) $\frac{2}{3}$

c) 3 -

d) $\frac{5}{6}$

34. Let [x] denote the greatest integer less than or equal to x. Then,
$$\int_{-1}^{1} [x] dx = ?$$

a) 2

35. The area bounded by the curves $y = \sqrt{x}$, 2y + 3 = x and the x- axis in the first quadrant [5]

is

a) 25

b) 9

c) none of these

- d) 36
- 36. Find a solution of $\cos\left(\frac{dy}{dx}\right) = a$ ($a \in R$) which satisfy the condition y = 1 when x = 0.
 - a) y-10 $\cos \frac{1}{x} = a$

b) y-1 $\cos \frac{1}{x} = a$

c) y-4 $\cos \frac{1}{x} = a$

- $d) \quad y-3 \\ cos \frac{}{x} = a$
- 37. The number of arbitrary constants in the general solution of a differential equation of fourth order are:
 - a) 3

b) 2

c) 1

- d) 4
- 38. The order of the differential equation satisfying $\sqrt{1-x^4} + \sqrt{1-y^4} = a(x^2-y^2)$ is [5]
 - a) 4

b) 3

c) 2

d) 1

a) 2

b) 0

c) 3

- d) 1
- 40. If \vec{a} and \vec{b} are vectors such that $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$ then the angle between \vec{a} and \vec{b} is
 - a) 2π $\frac{}{3}$

b) π

c) π $\frac{\pi}{4}$

- d) π
- 41. Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
 - a) $\sqrt{65}$

b) $\sqrt{65}$

3

2

[5]

[5]

c) $\sqrt{61}$

d) $\sqrt{61}$

3

- 2
- 42. The area of the parallelogram whose adjacent sides are $\hat{i} + \hat{k}$ and $2\hat{i} + \hat{j} + \hat{k}$ is
 - a) $\sqrt{2}$

b) 3

- 43. Find the vector components of the vector with initial point (2, 1) and terminal point (- [5] 5, 7).
 - a) $7\hat{i}$ and $6\hat{j}$

b) $-7\hat{i} \ and - 6\hat{j}$

c) $7\hat{i}$ and $-6\hat{j}$

- d) $-7\hat{i}$ and $6\hat{j}$
- 44. A vector parallel to the line of intersection of the planes $\vec{r} \cdot (3\hat{i} \hat{j} + \hat{k}) = 1$ and [5]

$$\vec{r} \cdot (\hat{i} + 4\hat{j} - 2\hat{k}) = 2 \text{ is}$$

a) $-2\hat{i} - 7\hat{j} + 13\hat{k}$

b) $2\hat{i} + 7\hat{j} + 13\hat{k}$

c) $2\hat{i} + 7\hat{j} - 13\hat{k}$

- d) $-2\hat{i} + 7\hat{j} + 13\hat{k}$
- 45. Find the Cartesian equation of the plane \vec{r} . $(2\hat{i} + 3\hat{j} 4\hat{k}) = 1$

[5]

[5]

a) 2x + 3y - 4z = 3

b) 2x + 3y - 4z = 2

c) 2x + 3y - 4z = 4

- d) 2x + 3y 4z = 1
- 46. In vector form, if θ is the angle between the two planes \vec{r} . $n_1 = d_1$ and $\vec{r} \cdot n_2 = d_2$, then

$$\begin{vmatrix} \rightarrow & \rightarrow \\ n_1 \cdot n_2 \end{vmatrix}$$

$$\begin{vmatrix} \rightarrow & \rightarrow \\ n_1 \cdot n_2 \end{vmatrix}$$

$$\theta = \tan^{-1} \frac{1}{\left| \begin{array}{c} -1 \\ |n_1| \end{array} \right| \left| \begin{array}{c} -1 \\ |n_2| \end{array} \right|}$$

$$\theta = \cot^{-1} \frac{}{ |n_1| |n_2|}$$

$$\begin{vmatrix} \rightarrow & \rightarrow \\ n_1 \cdot n_2 \end{vmatrix}$$

$$\begin{vmatrix} \rightarrow & \rightarrow \\ n_1 \cdot n_2 \end{vmatrix}$$

$$\theta = \sin^{-1} \frac{}{ } \frac{}{ |n_1| |n_2| }$$

47. If
$$P(A) = \frac{3}{10}$$
, $P(B) = \frac{3}{5}$ and $P(A \cup B) = \frac{3}{5}$, then $P(B/A) + P(A/B)$ equals

[5]

a) 1 $\frac{1}{3}$

b) 1

c) 5 $\frac{12}{12}$

 $d) 7 \\ \overline{12}$

48. If the events A and B are independent, then
$$P(A \cap B)$$
 is equal to

a) P(A). P(B)

b) P(A)/P(B)

c) P(A) - P(B)

d) P(A) + P(B)

[5]

a) 25 42

b) 5 = 6

c) 5 7

d) 1

50. In a binomial distribution, the occurrence and the non-occurrence of an event are equally likely and the mean is 6. The number of trials required is

a) 15

b) 6

c) 10

d) 12

Solutions

Section A

1.

(b)
$$I = [a_{ij}]_n$$
, where $a_{ij} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$

Explanation: By definition of identity matrix

$$I = [a_{ij}]_n, \text{ where } a_{ij} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$$

2.

(b)
$$A^{T} = A$$

Explanation: Since transpose of a symmetric matrix is equal to the matrix itself so, for a symmetric matrix $A^T = A$

3. (a) m = n

Explanation: We know that if a given matrix is said to be a square matrix if the number of rows is equal to the number of columns.

Therefore, $A = [a_{ij}]_{m \times n}$ is a square matrix if m = n.

4.

Explanation: R

5. (a)
$$|m| \le 1$$

Explanation: We have $e^y = 1 + x^2$

$$\Rightarrow e^{y} \frac{dy}{dx} = 2x$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x}{e^{y}} = \frac{2x}{1+x^{2}} \left[\because e^{y} = 1 + x^{2} \right]$$

$$\Rightarrow m = \frac{2x}{1+x^{2}} \text{ or } |m| = \frac{2|x|}{1+|x|^{2}}$$

As
$$1 + |x|^2 - 2|x| = (1 - |x|)^2 \ge 0$$

 $\Rightarrow 1 + |x|^2 \ge 2|x| \Rightarrow 1 \ge \frac{2|x|}{1 + |x|^2} = |m|$
 $\Rightarrow |m| \le 1$

6.

Explanation: Given
$$f(x) = |x| = \begin{cases} -x, & x < 0 \\ x, x > 0 \end{cases}$$

$$\Rightarrow f'(x) = -1 \text{ when } x < 0 \text{ and } 1 \text{ when } x > 0$$

But, we have f'(x) does not exist at x = 0, hence we have x = 0 is a critical point At x = 0, we get f(0) = 0

For any other value of x, we have f(x) > 0, hence f(x) has a minimum at x = 0.

(c) -cosec
$$x$$
 - cot x - x + C

7.

Explanation: Given:
$$\int \frac{\cot x}{(\cos ecx - \cot x)} dx = \int \frac{\cot x(\cos ecx + \cot x)}{(\cos ecx)^2 - (\cot x)^2} dx$$

$$= \int \cot x \, \csc x + (\cot x)^2 dx$$

$$= -\cos e c x + c_1 + \int (\cos e c^2 x - 1) dx$$

$$=$$
- cosec x + c₁ - cot x + c₂ - x + c₃

=
$$-\cos c x - \cot x - x + c (: c = c_1 + c_2 + c_3)$$

8. **(a)**
$$\frac{1}{6} \log \left| \frac{1+x^3}{1-x^3} \right| + C$$

Explanation:
$$I = \int \frac{x^2}{(1)^2 - (x^3)^2} dx$$

Let
$$x^3 = t$$

$$\Rightarrow$$
 3x² dx = dt

$$\Rightarrow x^2 dx = \frac{dt}{3}$$

$$\therefore I = \frac{1}{3} \int \frac{dt}{1^2 - t^2}$$

We know,
$$\int \frac{1}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$$

$$= \frac{1}{6} \log \frac{1+t}{1-t} + c$$

put
$$t = x^3$$

$$= \frac{1}{6} \log \frac{1+x^3}{1-x^3} + c$$

Explanation: Let
$$I = \int \frac{x}{\Theta} \cos x e^{\sin x} dx$$

Let $\sin x = t$, then $\cos x \, dx = dt$

When
$$x = 0$$
, $t = 0$ and $x = \frac{\pi}{2}$, $t = 1$

Therefore the integral becomes

$$I = \int_0^1 e^t dt$$
$$= \left[e^t \right]_0^1$$
$$= e - 1$$

10.

(d)
$$\frac{256}{3}$$

Explanation: Since area = $2\int_0^1 6\sqrt{y}dy$, solve the integral to compute the value.

11.

(d)
$$e^y - e^x = \frac{x^3}{3} + C$$

Explanation: We have, $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$

$$\Rightarrow$$
 e^y dy = (e^x + x²)dx

$$\Rightarrow \int e^{y} dy = \int \left(e^{x} + x^{2} \right) dx$$

$$\Rightarrow$$
 $e^y = e^x + \frac{x^3}{3} + c$

$$\Rightarrow e^y - e^x = \frac{x^3}{3} + c$$

12. **(a)**
$$xe^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$$

Explanation: The integrating factor of the given differential equation

$$\frac{dx}{dy} + P_1 x = Q_1 \text{ is } e^{\int P_1 dy}$$

Thus, the general solution of the differential equation is given by,

$$x(I. F.) = \int (Q_1 \times I. F.) dy + C$$

$$\Rightarrow x. e^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy}\right) dy + C$$

13. (a) at infinite number of points

Feasible region is shaded region with corner points (0, 0), (2, 0) and (0, 2)

$$Z(0, 0) = 0$$

$$Z(2, 0) = 2 \leftarrow \text{maximise}$$

$$Z(0, 2) = 2 \leftarrow \text{maximise}$$

 $Z_{\text{max}} = 2$ obtained at (2, 0) and (0, 2) so is obtained at any point on line segment joining (2, 0) and (0, 2).

14.

(d)
$$\frac{105}{512}$$

Explanation: $n = 10, X = 6, p = q = \frac{1}{2}$

$$P(X=6) = {}^{10}C_6 \left(\frac{1}{2}\right)^{10} = \frac{105}{512}$$

15.

(b) not defined

Explanation: We know that:

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A \cap B)}{0}$$

which is not defined

Section B

16.

Explanation:
$$f(x) = |x| + x$$

$$f(x) = \begin{cases} 2x & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

Similarly,

$$g(x) = \begin{cases} 0 & \text{if } x > 0 \\ -2x & \text{if } x \le 0 \end{cases}$$

for
$$x < 0$$

fog(X) = f(g(x)) = f(-2x) = -4x

(b)
$$\frac{-\pi}{2}$$

Explanation: Let $\csc^{-1}(-1) = \alpha \implies \csc \alpha = -1 = \csc(\frac{-\pi}{2})$

$$\Rightarrow \alpha = -\frac{\pi}{2} \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\}$$

 \therefore Principal value of $\operatorname{cosec}^{-1}(-1)$ is $\frac{-\pi}{2}$.

18.

(b)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

19.

(d) 5

Explanation: As given parts are collinear

So, value of determinant = 0

$$\begin{vmatrix} 3 & -2 & 1 \\ k & 2 & 1 \\ 8 & 8 & 1 \end{vmatrix} \Rightarrow 3(2-8) + 2(k-8) + 1(8k-16) = 0$$

$$-18 + 2k - 16 + 8k - 16 = 0$$

$$10k - 50 = 0$$

$$\therefore$$
 k = 5

20.

(d)
$$\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$

Explanation: A.(adj A) = |A|I

$$=6\begin{pmatrix}1&0\\0&1\end{pmatrix}$$

$$= \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$$

(c) no solution

Explanation: The given system of equations does not has a solution if:

$$\begin{vmatrix} 3 & 1 & -1 \\ 5 & 2 & -3 \\ 15 & 6 & -9 \end{vmatrix} = 0 \Rightarrow 3(-18 + 18) - 1(-45 + 45) - 1(30 - 30) = 0$$

22.

(b) None of these

Explanation: Let us see that graph of the floor function, we get

We can see that f(x) = [x] is neither continuous and non differentiable at x = 2.

23. (a)
$$f'(x) = g'(x)$$

Explanation:

$$g(x) = \tan^{-1}\left(\frac{1+x}{1-x}\right) \Rightarrow g'(x) = \frac{1}{1+\left(\frac{1+x}{1-x}\right)^2} \frac{(1-x).1-(1+x).(-1)}{(1-x)^2} = \frac{1}{(1+x^2)}$$

24.

(d) 1

Explanation: $y = \log \sqrt{\tan x}$

$$\frac{dy}{dx} = \frac{1}{\sqrt{\tan x}} \times \frac{1}{2\sqrt{\tan x}} \sec^2 x$$

$$\frac{dy}{dx} = \frac{\sec^2 x}{2\tan x}$$

$$\left| \frac{dy}{dx} \right|_{x=\frac{\pi}{4}} = \frac{\sec^2 \frac{\pi}{4}}{2\tan \frac{\pi}{4}} = \frac{2}{2 \times 1} = 1$$

(c)
$$R - \{3\}$$

Explanation: R - {3}

26. (a) exactly two points

Explanation: exactly two points

27.

(d)
$$\frac{\pi}{2}$$

Explanation: Given equation of curves are

$$x^3 - 3xy^2 + 2 = 0$$
 ...(i)

and
$$3x^2y - y^3 - 2 = 0$$
 ...(ii)

Differentiating equation (i) w.r.t. x, we get

$$3x^2 - 3x \cdot 2y \frac{dy}{dx} - 3y^2 \cdot 1 + 0 = 0$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_1 = \frac{x^2 - y^2}{2xy}$$

Differentiating equation (ii) w.r.t. x, we get

$$3x^2 \frac{dy}{dx} + 6xy - 3y^2 \frac{dy}{dx} + 0 = 0$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_2 = \frac{2xy}{v^2 - x^2}$$

Now
$$\left(\frac{dy}{dx}\right)_1 \left(\frac{dy}{dx}\right)_2 = -1$$

Hence, the curves intersect at right angle.

28.

(d)
$$(0,0)$$

Explanation: $x = at^2$ and y = 2at

$$\Rightarrow \frac{dx}{dt} = 2at \text{ and } \frac{dy}{dt} = 2a$$

$$\Rightarrow \frac{dy}{dx} = \frac{2a}{2at} = \frac{2a}{y}$$

Slope of tangent
$$=\frac{2a}{v}$$

Tangent is perpendicular to y-axis.

 \Rightarrow Tangent is parallel to x-axis.

Slope of tangent = Slope of x-axis

$$\frac{2a}{y} = 0$$

$$a = 0$$

 $\Rightarrow x = 0 \text{ and } y = 0$
Point is $(0, 0)$

(c)
$$(\frac{7}{2}, \frac{1}{4})$$

Explanation: Given, $y = (x - 3)^2$

$$\Rightarrow \frac{dy}{dx} = 2(x-3)$$

Let (α, β) be the required point, then $\beta = (\alpha - 3)^2$...(i)

and
$$\left(\frac{dy}{dx}\right)_{(\alpha,\beta)}$$
 = slope of the line joining (3,0) and (4,1)

$$\Rightarrow 2(\alpha - 3) = \frac{1 - 0}{4 - 3} = 1$$

$$\Rightarrow \alpha = \frac{7}{2}$$

$$\Rightarrow (\frac{7}{2} - 3)^2 = \frac{1}{4}$$

Hence, the required point is $\left(\frac{7}{2}, \frac{1}{4}\right)$

30. (a) x - y = 0

Explanation: $2y = 3 - x^2$

$$\Rightarrow 2\frac{dy}{dx} = -2x$$

$$\Rightarrow \frac{dy}{dx} = -x$$

$$\Rightarrow \frac{dy}{dx}at(1,1) = -1$$

Slope of tangent = m = -1

Hence, equation of normal is $y - y_1 = \frac{-1}{m} (x - x_1)$

$$\Rightarrow y - 1 = 1(x - 1)$$

$$\Rightarrow x - y = 0$$

31.

(b)
$$\frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{2x-1}{\sqrt{2}} \right) + C$$

Explanation: Consider
$$\int \frac{dx}{4x^2 - 4x + 3}$$
,

Completing the square

$$4x^{2} - 4x + 3 = 4\left(x^{2} - x + \frac{3}{4}\right)$$

$$= 4\left(x^{2} - x + \frac{3}{4} + \frac{1}{4} - \frac{1}{4}\right)$$

$$= 4\left(\left(x - \frac{1}{2}\right)^{2} + \frac{1}{2}\right)$$

$$= \frac{1}{4}\int \frac{dx}{\left(\left(x - \frac{1}{2}\right)^{2} + \frac{1}{2}\right)}$$

$$Let x - \frac{1}{2} = t$$

dx = dt

$$\therefore I = \frac{1}{4} \int \frac{dt}{t^2 + \frac{1}{\sqrt{2}}}$$

We know,
$$\int \frac{1}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$$

$$\Rightarrow I = \frac{\sqrt{2}}{4} \tan^{-1} \frac{t}{\frac{1}{\sqrt{2}}} + c$$

$$= \frac{1}{2\sqrt{2}} \tan^{-1} \sqrt{2}t + c$$

put t = x - 1
=
$$\frac{1}{2\sqrt{2}} \tan^{-1} \frac{2x-1}{\sqrt{2}} + c$$

32.

$$(d) \frac{1}{3} \tan^3 x + c$$

Explanation:
$$I = \int \frac{\sin^2 x}{\cos^4 x} dx$$

$$I = \int \tan^2 x \sec^2 x dx$$

Put
$$\tan x = t \Rightarrow \sec^2 x dx = dt$$

Put
$$\tan x = t \rightarrow \sec^2 x dx = dt$$

$$I = \int t^2 dt$$

$$I = \frac{t^3}{3} + c$$

$$I = \frac{\tan^3 x}{3} + c$$

(b)
$$\frac{2}{3}$$

Explanation: $I = \int_{\overline{\Theta}}^{\pi} \sin x (2\sin x \cos x) dx$

$$=2\int_{\overline{Q}}^{\pi}\sin^2x\cos x dx$$

Let,
$$\sin x = t$$

Differentiating both side with respect to t

$$\cos x \frac{dx}{dt} = 1$$

$$\Rightarrow$$
 cos x dx = dt

At
$$x = 0$$
, $t = 0$

At
$$x = \frac{\pi}{2}$$
, $t = 1$

$$I = 2\int_0^1 t^2 dt$$

$$=2\left(\frac{t^3}{3}\right)_0^1$$

$$=\frac{2}{3}$$

Explanation:
$$\int_{-1}^{1} [x] dx = \int_{-1}^{0} [x] dx + \int_{0}^{1} [x] dx$$

= $\int_{-1}^{0} -1 dx + \int_{0}^{1} 0 dx$

$$= -1 - 0 + 0$$

 $= -1$

(b) 9

Explanation: To find area the curves $y = \sqrt{x}$ and x = 2y + 3 and x - axis in the first quadrant., We have ;

 $y^2 - 2y - 3 = 0$, (y-3)(y+1) = 0. y = 3, -1. In first quadrant, y = 3 and x = 9. Therefore, required area is;

$$\int_{0}^{9} \sqrt{x} dx - \int_{3}^{9} \left(\frac{x-3}{2}\right) = \left[\frac{\frac{3}{2}}{\frac{3}{2}}\right]_{0}^{9} - \frac{1}{2} \left[\frac{x^{2}}{2} - 3x\right]_{3}^{9} = 9$$

36.

(b)
$$cos \frac{y-1}{x} = a$$

Explanation: $\frac{dy}{dx} = \cos^{-1}a$

$$\int dy = \cos^{-1} a \int dx$$
$$y = x\cos^{-1} a + c$$

When y = 1, x = 0, then $1=0 \cos^{-1} a + c$ c = 1

$$\therefore y = x\cos^{-1}a + 1$$

$$\therefore \frac{y-1}{x} = \cos^{-1}a$$

37.

(d) 4

Explanation: 4, because the no. of arbitrary constants is equal to order of the differential equation.

38.

(d) 1

Explanation: The differential equation contains only one constant.

Therefore, Order of differential equation is 1.

39. **(a)** 2

Explanation: From the identity, we know that,

If $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ be the direction cosines of a vector, then,

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

Using, $\sin^2\theta + \cos^2\theta = 1$

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 + 1 + 1$$

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + 1 = 3$$

On simplifying, we get,
 $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$

(c)
$$\frac{\pi}{4}$$

Explanation: Given $|\vec{a}| = \sqrt{3} |\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$

let θ be the angle between the vectors \vec{a} and \vec{b}

Hint

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{\sqrt{6}}{\sqrt{3} \times 2} = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$$

41.

(d)
$$\frac{\sqrt{61}}{2}$$

Explanation: Given position vector of A, $\overrightarrow{OA} = \hat{i} + \hat{j} + 2\hat{k}$ position vector of B,

$$\overrightarrow{OB} = 2\hat{i} + 3\hat{j} + 5\hat{k}$$
 and that of C, $\overrightarrow{OC} = \hat{i} + 5\hat{j} + 5\hat{k}$ therefore,

$$\rightarrow$$
 \rightarrow \rightarrow $AB = OB - OA = (2\hat{i} + 3\hat{j} + 5\hat{k}) - (\hat{i} + \hat{j} + 2\hat{k}) = \hat{i} + 2\hat{j} + 3\hat{k}$ (by triangle law of vector addition) thus we may write

$$\overrightarrow{AB} = \hat{i} + 2\hat{j} + 3\hat{k}, AC = 4\hat{j} + 3\hat{k},$$

$$\therefore AB \times AC = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 4 & 3 \end{vmatrix} = -6\hat{i} - 3\hat{j} + 4\hat{k}$$

$$\Rightarrow |AB \times AC| = \sqrt{61}$$

$$\Rightarrow \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{61}$$

Therefore, the area of triangle ABC is $=\frac{1}{2}\sqrt{61}$

42.

(d)
$$\sqrt{3}$$

Explanation: $\sqrt{3}$ is the correct answer. Area of the parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \hat{b}|$.

43.

(d)
$$-7\hat{i}$$
 and $6\hat{j}$

Explanation: The scalar and vector components of the vector with initial point (2, 1) and terminal point (-5, 7) is given by : (-5-2) i.e. -7 and (7-1) i.e. 6. Therefore, the scalar components are -7 and 6, and vector components are $-7\hat{i}$ and $6\hat{j}$.

44.

(d)
$$-2\hat{i} + 7\hat{j} + 13\hat{k}$$

Explanation: Let the required vector be a $\hat{i} + b\hat{j} + c\hat{k}$...(i)

Since the vector is parallel to the line of intersection of the given planes,

$$3a - b + c = 0$$
 ...(ii)

$$a + 4b - 2c = 0$$
 ...(iii)

Solving (i) and (iii), we get

$$\frac{a}{-2} = \frac{b}{7} = \frac{c}{13}$$

Substituting these values in (i), we get

 $-2\hat{i} + 7\hat{j} + 13\hat{k}$ which is the required vector.

45.

(d)
$$2x + 3y - 4z = 1$$

Explanation: On putting $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, we get:

$$\left(x\hat{i} + y\hat{j} + z\hat{k}\right).\left(2\hat{i} + 3\hat{j} - 4\hat{k}\right) = 1 \Rightarrow 2x + 3y - 4z = 1$$

46.

(d)
$$\theta = \cos^{-1} \frac{\begin{vmatrix} \rightarrow & \rightarrow \\ n_1 & n_2 \end{vmatrix}}{\begin{vmatrix} \rightarrow & \rightarrow \\ n_1 & n_2 \end{vmatrix}}$$

Explanation: In vector form, if θ is the angle between the two planes \vec{r} . $n_1 = d_1$ and

$$\rightarrow$$

 $\vec{r} \cdot n_2 = d_2$, then, the cosine of the angle between these two lines is given by:

$$\theta = \cos^{-1} \frac{\begin{vmatrix} \rightarrow & \rightarrow \\ n_1 \cdot n_2 \end{vmatrix}}{\begin{vmatrix} \rightarrow & \\ n_1 \end{vmatrix} \begin{vmatrix} \rightarrow & \\ n_2 \end{vmatrix}}.$$

47.

(d)
$$\frac{7}{12}$$

Explanation: Here,
$$P(A) = \frac{3}{10}$$
, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{3}{5}$

$$P(B/A) + P(A/B) = \frac{P(B \cap A)}{P(A)} + \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(A) + P(B) - P(A \cup B)}{P(A)} + \frac{P(A) + P(B) - P(A \cup B)}{P(B)}$$

$$= \frac{\frac{3}{10} + \frac{2}{5} - \frac{3}{5}}{\frac{3}{10}} + \frac{\frac{3}{5} - \frac{3}{5}}{\frac{2}{5}}$$

$$= \frac{\frac{1}{10} + \frac{1}{10}}{\frac{3}{10} + \frac{1}{2}} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$$

48. (a) P(A). P(B)

Explanation: If A and B are independent, then $P(A \cap B) = P(A) \cdot P(B)$

49. **(a)**
$$\frac{25}{42}$$

Explanation: Here, $P(A) = \frac{2}{5}$, $P(B) = \frac{3}{10}$ and $P(A \cap B) = \frac{1}{5}$

$$P(A'/B') = \frac{P(A' \cap B')}{P(B')} = \frac{1 - P(A \cup B)}{1 - P(B)}$$
$$= \frac{1 - [P(A) + P(B) - P(A \cap B)]}{1 - P(B)}$$

$$= \frac{1 - \left(\frac{2}{5} + \frac{3}{10} - \frac{1}{5}\right)}{1 - \frac{3}{10}}$$

$$= \frac{1 - \left(\frac{4 + 3 - 2}{10}\right)}{\frac{7}{10}} = \frac{1 - \frac{1}{2}}{\frac{7}{10}} = \frac{5}{7}$$

$$And P(B'/A') = \frac{P(B' \cap A')}{P(A')} = \frac{1 - P(A \cup B)}{1 - P(A)}$$

$$= \frac{1 - \frac{1}{2}}{1 - \frac{1}{5}} = \frac{1/2}{3/5} = \frac{5}{6} \left[\because P(A \cup B) = \frac{1}{2} \right]$$

$$\therefore P(A'/B') \cdot P(B'/A') = \frac{5}{7} \cdot \frac{5}{6} = \frac{25}{42}$$

(d) 12

Explanation: Given, $p = q = \frac{1}{2}$ and mean of Binomial distribution = np = 6 $\Rightarrow n \times \frac{1}{2} = 6 \Rightarrow n = 12$