

DPP No. 7

Total Marks : 29

Max. Time : 31 min.

Topic : Mathematical Tools

Type of QuestionsSingle choice Objective ('-1' negative marking) Q.1 to Q.4(3 marks, 3 min.)Subjective Questions ('-1' negative marking) Q.5 to Q. 6(4 marks, 5 min.)Comprehension ('-1' negative marking) Q.7 to Q.9(3 marks, 3 min.)					M.M., Min. [12, 12] [8, 10] [9, 9]
1.	If y = $\sqrt{\sin \sqrt{x}}$, then	dy dx is:			
	(A) $\frac{1}{4\sqrt{x}} \cdot \frac{\cos\sqrt{x}}{\sin\sqrt{x}}$	(B) $\frac{1}{4\sqrt{x}} \cdot \sqrt{\tan\sqrt{x}} \sqrt{c}$	$\frac{1}{\cos\sqrt{x}}$ (C) $\frac{1}{4\sqrt{x}}$	$\sqrt{\frac{\cos\sqrt{x}}{\sin\sqrt{x}}}$ (D) $\frac{1}{4\sqrt{x}}\sqrt{\cos^2(x)}$	$vt\sqrt{x} \cdot \sqrt{\cos\sqrt{x}}$
2.		ng a straight line such th etresThe velocity when (B) – 12 ms⁻¹	•		en by :
3.	The area of region be	tween y = sinx and x-a	kis in the interval	$\left[0,\frac{\pi}{2}\right]$ will be :	
	(A) 1	(B) 0	(C) 2	(D) ¹ / ₂	
4.	The value of $\int_{0}^{\pi/2} \sin^2 x$	dx will be :			
	(A) 1	(B) 0	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{2}$	
Evalua	ate : -				
5.	$\int_{0}^{1} (3x^{2} + 4) dx$				

 $6. \qquad \int_{0}^{\pi/2} (\sin x + \cos x) \, \mathrm{d}x$

COMPREHENSION

If a = $(3t^2 + 2t + 1)m/s^2$ is the expression according to which the acceleration of a particle varies moving along a straight line . Then -

7.	The expression for ins $(A) t^3 + 2t + 1$	tantaneous velocity at a (B) t ³ + t + 1	any time 't' will be (if the (C) $t^3 + t^2 + t$	ne 't' will be (if the particle was initially at rest) - $t^3 + t^2 + t$ (D) $t^3 + t^2 + t + C$				
8.	The change in velocity (A) 30 m/s	The change in velocity after 3 seconds of its start is :(A) 30 m/s(B) 39 m/s(C) 3 m/s(D) 20 m/s						
9.	Find displacement of the particle after 2 seconds of start - (A) 26 m (B) 26/3 m (C) 30/7 m (D) 26/7 m							

<u>Answers Key</u>

DPP NO. - 7

1.	(D)	2.	(D)	3.	(A)	4.	(C)	5.	5
6.	2	7.	(C)	8.	(B)	9.	(B)		

Hint & Solutions

DPP NO. - 7

1. $\frac{d}{dx} \left[(\sin \sqrt{x})^{1/2} \right] = \frac{1}{2} (\sin \sqrt{x})^{-1/2} \cdot [\cos \sqrt{x}] \cdot \frac{1}{2}$ (x)^{-1/2} (By power chain rule) $= \frac{1}{4\sqrt{x}} \cdot \frac{\cos \sqrt{x}}{\sqrt{\sin \sqrt{x}}} = \frac{1}{4\sqrt{x}} \cdot \sqrt{\cot \sqrt{x}} \cdot \sqrt{\cos \sqrt{x}}$ 2. $v = \frac{ds}{dt} = 3t^2 - 12t + 3, a = \frac{dv}{dt} = 6t - 12 = 0$ $\Rightarrow t = 2s$ $v = 3 \times 4 - 12 \times 2 + 3 = -9$ m/s

$$V_{t=2} = 3 \times 4 - 12 \times 2 + 3 = -9 \text{ m}$$

3.
$$\int_{0}^{\pi/2} \sin x dx = [-\cos x]_{0}^{\pi/2} = 1.$$

4.
$$\int_{0}^{\pi/2} \sin^2 x dx = \left[\frac{x}{2} - \frac{\sin 2x}{4} + c\right]_{0}^{\pi/2} = \frac{\pi}{4}.$$

Evaluate :

5.
$$\int_{0}^{1} (3x^{2} + 4) dx = \left[x^{3} \right]_{0}^{1} + 4 \left[x \right]_{0}^{1} = 1 + 4 = 5$$

6. $\int_{0}^{\pi/2} (\sin x + \cos x) \, dx = [-\cos x]_{0}^{\pi/2} + [\sin x]_{0}^{\pi/2}$ = 1 - 0 + 1 - 0 = 2

7. a = 3t² + 2t + 1

$$\int_{0}^{v} dv = \int_{0}^{t} 3t^{2} + 2t + 1)dt \quad v = t^{3} + t^{2} + t$$

8.
$$V(t = 0) = 0$$

 $V_{t=3} = (3)^3 + (3)^2 + 3$
 $= 27 + 9 + 3$
 $= 39$
 $\Delta V = 39 - 0 = 39$ m/s.

9.
$$\int_{0}^{s} dS = \int_{0}^{2} (t^{3} + t^{2} + t) dt \qquad S = \left[\frac{t^{4}}{4} + \frac{t^{3}}{3} + \frac{t^{2}}{2}\right]_{0}^{2} \qquad S$$

$$= 4 + \frac{8}{3} + 2S = \frac{12 + 8 + 6}{3} = \frac{26}{3}$$