

Quadrilaterals

MATHEMATICAL REASONING

- 1. The bisectors of angles of a parallelogram forms (a) Trapezium (b) Rectangle (c) Rhombus (d) Kite
- 2. If a quadrilateral has two adjacent sides are equal and the opposite sides are unequal, then it is called a
 - (a) Parallelogram (b) Square
 - (c) Rectangle (d) Kite
- 3. If the angles of a quadrilateral are in the ratio 1:2:3:4. Then, the measure of angles in descending order are
 - (a) $36^{\circ}, 108^{\circ}, 72^{\circ}$ and 144°
 - (b) $144^\circ\!,\!108^\circ\!,\!72^\circ$ and 36°
 - (c) $36^{\circ}, 72^{\circ}, 108^{\circ}$ and 144°
 - (d) None of these
- In a $\triangle ABC, P, Q$ and R are the mid-points of sides 4. BC. CA and AB respectively. If AC = 21 cm, B = 29 cm and AB = 30 cm. The perimeter of the quadrilateral ARPQ is .

- 5. The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If $\angle DAC = 32^{\circ}$ and $\angle AOB = 70^{\circ}$, then, $\angle DBC$ is equal to (a) 38° (b) 86° (c) 24° (d) 32°
- 6. If the angles of a quadrilateral are $x + x + 20^{\circ}, x - 40^{\circ}$ and 2x. Then, the difference between greatest angle and the smallest angle is

(a) 70°	(b) 90°
(c) 80°	(d) None of these

7. Two adjacent angles of a parallelogram are in the ratio 2:3. The angles are (a) 90°,180° (b) 36°,144°

(c) 72°.108° (d) 52°,104°

8. In a quadrilateral ABCD, the line segments bisecting $\angle C$ and $\angle D$ meet at *E*. Then $\angle A + \angle B$ is equal to

- 9. The diagonals of a rectangle *PQRS* intersect at *O*. If $\angle ROQ = 60^\circ$, then find $\angle OSP$.
 - (a) 70° (b) 50°
 - (d) 80° (c) 60°
- 10. If diagonals of a quadrilateral bisect each other at right angles, then it is a (a) Parallelogram (b) Rectangle (d) Trapezium (c) Rhombus
- 11. The measure of all the angles of a parallelogram, if an angle adjacent to the smallest angle is 24° less than twice the smallest angle, is (a) 37°,143°,37°,143° (b) 108°,72°,108°,72° (c) 68°,112°,68°,112° (d) None of these
- 12. The quadrilateral formed by joining the midpoints of the sides of a quadrilateral PQRS, taken in order, is a rectangle if (a) PQRS is a rectangle
 - (b) PQRS is a parallelogram
 - (c) Diagonals of PQRS are equal
 - (d) Diagonals of PQRS are at right angles

13. ABCD is a rhombus with $\angle ABC = 56^\circ$, then $\angle ACD$ is equal to

14. ABCD is a parallelogram. If AB is produced to Esuch that ED bisects BC at O. Then which of the following is correct?

- (a) AB = OE(b) AB = BE(c) OE = OC
 - (d) None of these

15. *D* and *E* are the mid-points of the sides *AB* and *AC*, respectively of $\triangle ABC \cdot DE$ is produced to *F*. To prove that *CF* is equal and parallel to *DA*, we need an additional information which is
(a) $\angle DAE - \angle FEC$ (b) $\triangle E - EE$

(a)
$$\angle DAE = \angle EFC$$
 (b) $AE = EF$

(c) DE = EF (d) $\angle ADE = \angle ECF$

16. *X*, *Y* are the mid-points of opposite sides *AB* and *DC* of a parallelogram *ABCD*. *AY* and *DX* are joined intersecting in *S*; *CX* and *BY* are joined intersecting in *R*. Then *SXRY* is a

17. In the given figure, if *ABCD* is a rectangle and *P*, *Q* are the mid-points of *AD*, *DC* respectively. Then, the ratio of lengths *PQ* and *AC* is equal to

18. In given figure, ABCD is a parallelogram in which P is the midpoint of DC and Q is a point on AC

such that $CQ = \frac{1}{4}AC$ and PQ produced meet BC

19. If *APB* and *CQD* are two parallel lines, then the bisectors of the angles *APQ*, *BPQ*, *CQP* and *PQD* form

(a) Kite	(b) Rhombus
(c) Rectangle	(d) Trapezium

20. In figure, *E* and *F* are the mid-points of sides AB and AC of a $\triangle ABC$. If AB = 5 cm, BC = 5 cm and AC = 6 cm, then *EF* is equal to

ACHIEVERS SECTION (HOTS)

- **21.** Study the statements carefully.
 - **Statement-1:** If a sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.

Statement-2: A line drawn through mid-point of a side of a triangle, parallel to another side equal to third side.

Which of the following options holds?

- (a) Both Statement-1 and Statement-2 are true.
- (b) Statement-1 is true but Statement-2 is false.
- (c) Statement-1 is false but Statement-2 is true.
- (d) Both Statement-1 and Statement-2 are false.
- **22.** Read the statements carefully and state 'T' for true and 'F' for false.

(i) Diagonals of a parallelogram are perpendicular to each other.

(ii) All four angles of a quadrilateral can be obtuse angles.

(iii) If all sides of a quadrilateral are equal, then it is a rhombus.

	(i)	(ii)	(iii)
(a)	Т	F	F
(b)	F	F	Т
(c)	F	Т	Т
(d)	F	F	F

23. Fill in the blanks.

(a) If consecutive sides of a parallelogram are equal then it is necessarily a <u>P</u>.
(b) The figure formed by joining the mid-points of

consecutive sides of a quadrilateral is <u>Q</u>. (c) If the diagonals of a parallelogram are equal

and perpendicular to each other, it is a $\underline{\mathbf{R}}$.

	Р	Q	R
(a)	Square	Parallelogram	Rhombus
(b)	Kite	Rhombus	Square
(c)	Rhombus	Rectangle	Rectangle
(d)	Rhombus	Parallelogram	Square

24. If the sides *BA* and *DC* of quadrilateral *ABCD* are produced as shown in the given figure, then

25. By using a given figure of quadrilateral ABCD, match the following:

	Column-I	Column-II
(p)	If <i>ABCD</i> is a parallelogram, then sum of the angles <i>x</i> , <i>y</i> and <i>z</i> is	(1) 25°
(q)	If <i>ABCD</i> is a rhombus, where $\angle D = 130^\circ$, then the value of x is	(2) 180°
(r)	If $ABCD$ is a rhombus, the value of w is	(3) 50°
(s)	If $ABCD$ is a parallelogram, where $x + y = 130^{\circ}$ then the value of <i>B</i> is	(4) 90°

 $\begin{array}{l} (a) \ (p) \rightarrow (1), (q) \rightarrow (2), (r) \rightarrow (3), (s) \rightarrow (4) \\ (b) \ (p) \rightarrow (2), (q) \rightarrow (1), (r) \rightarrow (4), (s) \rightarrow (3) \\ (c) \ (p) \rightarrow (3), (q) \rightarrow (1), (r) \rightarrow (2), (s) \rightarrow (4) \\ (d) \ (p) \rightarrow (4), (q) \rightarrow (3), (r) \rightarrow (1), (s) \rightarrow (2) \end{array}$

HINTS & EXPLANATIONS

- **1.** (b):
- **2.** (d) :
- **3.** (b) : Let the angles of a quadrilateral be x, 2x, 3x and 4x.

 $\therefore \qquad x + 2x + 3x + 4x = 360^{\circ}$

(
$$\therefore$$
 Sum of angles of a quadrilateral is 360°)

 $\Rightarrow 10x = 360^{\circ} \Rightarrow x = 36^{\circ}$

:. Angles are $36^{\circ}, 72^{\circ}, 108^{\circ}, 144^{\circ}$ And, angles in descending order are $144^{\circ}, 108^{\circ}, 72^{\circ}, 36^{\circ}$

(c) : Given,
$$AC = 21 cm$$
, $AB = 30 cm$
 $\therefore Q$ is mid-point of AC
 $\therefore AQ = \frac{AC}{2} = \frac{21}{2} cm$...(i)
 $\therefore B$ is mid-point of AB

 $\therefore R$ is mid-point of AB

$$AR = \frac{AB}{2} = \frac{30}{2}cm \qquad \dots (ii)$$

In ΔBCA ,

4

P is mid-point of BC, R is mid-point of BA then, by mid-point theorem,

$$PR \parallel AC \text{ and } PR = \frac{1}{2}AC = \frac{21}{2}$$
 ...(iii)

Similarly, Q is mid-point of AC, P is mid-point of BC, then $QP \parallel AB$ and

$$QP = \frac{1}{2}AB = \frac{30}{2} \qquad \dots (iv)$$

$$\therefore \text{ Perimeter of quad. } ARPQ = AR + RP + PQ + AQ = \frac{30}{2} + \frac{21}{2} + \frac{30}{2} + \frac{21}{2} \qquad (\text{from (i), (ii), (iii) and (iv)})$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$
 (from (i), (ii), (iii) and (i)
= $2 \cdot \frac{30}{2} + 2 \cdot \frac{21}{2} = 30 + 21 = 51 \text{ cm}.$

5. (a) : Given, $\angle DAC = 32^{\circ}$ As $DA \parallel BC$ and AC is transversal.

 $\therefore \angle ACB = \angle DAC = 32^{\circ}$ (alternate angles) Also, $\angle AOB + \angle BOC = 180^{\circ}$ (linear pair) $\Rightarrow 70^{\circ} + \angle BOC = 180^{\circ}$ $\Rightarrow \angle BOC = 110^{\circ}$ In $\triangle BOC, \angle BOC + \angle OBC + \angle OCB = 180^{\circ}$ (angle sum property) $\Rightarrow 110^{\circ} + \angle OBC + 32^{\circ} = 180^{\circ}$ $\Rightarrow \angle OBC = 180^{\circ} - (110^{\circ} + 32^{\circ}) = 38^{\circ}$ $\Rightarrow \angle DBC = 38^{\circ}$

- 6. (d) : Since, sum of all angles of a quadrilateral is 360° . $\therefore x + x + 20^{\circ} + x - 40^{\circ} + 2x = 360^{\circ}$ $\Rightarrow 5x = 360^{\circ} - 20^{\circ} + 40^{\circ} = 380^{\circ}$ $\Rightarrow x = 76^{\circ}$
 - $\Rightarrow x = 76^{\circ}$
 - \therefore Angles are $\,76^\circ, 96^\circ, 36^\circ\, \text{and}\,\, 152^\circ$
 - \therefore Required difference = $152^{\circ} 36^{\circ} = 116^{\circ}$

(c) : Let the adjacent angles of a parallelogram be 2x and 3x and sum of adjacent angles of parallelogram is 180°.
∴ 2x + 3x = 180°

 $\Rightarrow 5x = 180^{\circ} \Rightarrow x = 36^{\circ}$ $\therefore \text{ Angles are } 72^{\circ} \text{ and } 108^{\circ}.$

(c) : In quadrilateral ABCD, (angles sum 8. property.) $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $\Rightarrow \angle A + \angle B + 2\angle 2 + 2\angle 1 = 360^{\circ}$ $(:: \angle 2 = \frac{1}{2} \angle C \text{ and } \angle 1 = \frac{1}{2} \angle D)$ $\Rightarrow \angle + \angle B = 360^{\circ} - 2(\angle 1 + \angle 2)$...(i) In $\triangle DEC$, $\angle 1 + \angle 2 + \angle CED = 180^{\circ}$ (angle sum property) $\Rightarrow \angle 1 + \angle 2 = 180^{\circ} - \angle CED$...(ii) From (i) and (ii), we get $\angle A + \angle B = 360^{\circ} - 2(180^{\circ} - \angle CED)$ $\angle A + \angle B = 360^\circ - 360^\circ + 2\angle CED$ $\Rightarrow \angle A + \angle B = 2 \angle CED$

9. (c) : $\angle ROQ = \angle SOP = 60^{\circ}$...(i) [Vertically opposite angles]

$$\therefore PR = SQ \Longrightarrow PO = SO$$

(Diagonals of a rectangle are equal and bisect each other)

$$\Rightarrow \angle OPS = \angle OSP$$

[: In a triangle, angles opposite to equal sides are equal]

In $\triangle POS$, by angle sum property $\angle OSP + \angle OPS + \angle SOP = 180^{\circ}$ $\Rightarrow 2\angle OSP = 180^{\circ} - 60^{\circ}$ [Using (i) & (ii)] $\Rightarrow \angle OSP = 60^{\circ}$

- **10.** (c) : In rhombus, diagonals bisect each other at right angles.
- **11.** (c) : Let the smallest angle be $\angle A = x$, and other adjacent angle $\angle B = (2x 24)^{\circ}$ Now, sum of adjacent angles of parallelogram is 180°.

 $\Rightarrow x + 2x - 24^{\circ} = 180^{\circ}$ $\Rightarrow 3x = 204^{\circ} \Rightarrow x = 68^{\circ}$ $\therefore A = x = 68^{\circ}$ and $\angle B = (2x - 24)^{\circ} = 2 \times 68^{\circ} - 24^{\circ} = 112^{\circ}$ Since, opposite angles of a parallelogram are equal. So, $\angle A = \angle C = 68^{\circ}, \angle B = \angle D = 112^{\circ}$

12. (d) : Let *A*, *B*, *C* and *D* be the mid-points of *PQ*, *QR*, *RS* and *SP* respectively

Now, In ΔRSQ , C and B are the mid-p and RQ respectively. So, by mid-poin CB SQ	ooints 1t theo	of R orem (i)	S.
Similarly, In ΔPSQ ,			
DA SQ		(ii)	
In $\triangle SPR$,			
CD RP		(iii)
Also, in $\triangle QRP$			
AB RP		(iv)
From (i) and (ii), <i>CB</i> DA		(v))
From (iii)and (iv), CD AB			
Hence, from (v) and (vi), AE parallelogram.	3CD	is	a
Now, if diagonals bisect SQ and PR a	ire at	90°	
Then,			
$CB \perp CD, CB \perp AB, AB \perp DA$ and A	$D \perp 0$	CD.	
So, ABCD is a rectangle.			

13. (d) : As diagonals of rhombus bisect the angles. $\therefore \angle BAC = \angle CAD$ Also, In rhombus *ABCD*. $\angle A + \angle B = 180^{\circ} \text{ (Sum of adjacent angles)}$ $\Rightarrow \angle A + 56^{\circ} = 180^{\circ} \Rightarrow \angle A = 124^{\circ}$ $\therefore \angle BAC = \angle CAD = \frac{\angle A}{2} = 62^{\circ}$ Now, (ACD) = (BAC(Alternate angles))

Now $\angle ACD = \angle BAC$ (Alternate angles) $\Rightarrow \angle ACD = 62^{\circ}$ **14.** (b) :

In the figure, *ABCD* is a parallelogram where *AB* is produced to *E* such that OC = OBIn $\triangle OBE$ and $\triangle OCD$, $\angle 1 = \angle 2$ (Vertically opposite angles) $\angle 3 = \angle 4$ (Alternate angles) OB = OC (given) $\therefore \triangle OBE \cong \triangle OCD$ (By ASA congruency) $\Rightarrow BE = CD$ (By CPCT) Also, AB = CD (\because ABCD is parallelogram) $\therefore AB = BE$

15. (c) : We have produced DE to F such that DE = EF(i)

In $\triangle ADE$ and $\triangle CFE$,

AE = CE[$\therefore E$ is the mid-point of AC] $\angle AED = \angle CEF$ [Vertically opposite angles]DF = FE[By (i)] $\therefore \Delta ADE \cong \Delta CFE$ [By SAS congruency] $\therefore AD = CF$ and $\angle ADE = \angle CFE$ [By CPCT]This show that alternate interior angles are equal.Thus, $AD \parallel CF$

Therefore, the additional information which we need is DE = EF

(c) : In quadrilateral AXCY, 16. $(:: AB \parallel CD)$ AX || CY ...(i) $AX = \frac{1}{2}AB$ and $CY = \frac{1}{2}CD$ (:: X and Y are midpoint of AB and CD)Also, AB = CD(Opposite sides of parallelogram) So, AX = CY \Rightarrow AXCY is a parallelogram (from (i) and (ii)) Similarly, quadrilateral DXBY is a parallelogram. In quadrilateral SXRY, SX || YR (:: SX is a part of DX and YR is a part of YB) Similarly, $SY \parallel XR$ So, SXRY is a parallelogram.

17.

(b) : In $\triangle ACD, P$ and Q are mid-points of AD and DC.

By mid-point theorem,

PQ || AC and PQ = $\frac{1}{2}AC$ ∴ $\frac{PQ}{AC} = \frac{1}{2}$ Now, PQ: AC = 1:2

18. (b) : Join *B* and *D*. Suppose *AC* and *BD* intersect

Now,
$$CQ = \frac{1}{4}AC$$
 [Given]

$$\Rightarrow CQ = \frac{1}{2}OC$$

In $\triangle COD$, *P* and *Q* are the mid-points of *DC* and *OC* respectively.

 $\therefore PQ \mid DO$ [By mid-point theorem] Also, in $\triangle COB, Q$ is the mid-point of OC and $QR \mid\mid OB$

 \therefore *R* is the mid-point of *BC*.

[By converse of mid-point theorem]

 $\Rightarrow CR = RB$

19. (c) : Given, *APB* and *CQD* are two parallel lines. Let the bisectors of angles *APQ* and *CQP* meet at a point *M* and bisectors of angles *BPQ* and *PQD* meet at a point *N*.

 $\therefore \angle APQ = \angle PQD$

[Alternate interior angles]

$$\Rightarrow \frac{1}{2} \angle APQ = \frac{1}{2} \angle PQD$$

 $\Rightarrow \angle MPQ = \angle NQP$

This shows that alternate interior angles are equal. $\therefore PM \parallel QN$

Similarly, $\angle NPQ = \angle MQP$, which shows that alternate interior angles are equal.

 $\therefore PN \parallel QM$

So, quadrilateral *PMQN* is a parallelogram. Also, $\angle CQP + \angle DQP = 180^{\circ}$ [Linear pair] $\Rightarrow 2\angle MQP + 2\angle NQP = 180^{\circ}$ $\Rightarrow 2(\angle MQP + \angle NQP) = 180^{\circ}$ $\Rightarrow \angle MQN = 90^{\circ}$ Thus, *PMQN* is a rectangle.

20. (b) : In △ABC, Given, *E* is mid-point of AB and F is mid-point of AC. Then, by mid-point theorem $BC || EF and EF = \frac{1}{2}BC$ $\therefore EF = \frac{1}{2}(5) = 2.5 cm$

21. (b) :

22. (b) :

- **23.** (d) :
- **24.** (a) : Join BD. In $\triangle ABD$, we have $\angle ABD + \angle ADB = b$...(i)

In $\triangle CBD$, we have $\angle CBD + \angle CDB = a$...(ii) Adding (i) and (ii), we get $(\angle ABD + \angle CBD) + (\angle ADB + \angle CDB) = a + b$ $\Rightarrow x + y = a + b$

25. (c) : (P) In $\triangle ABC$, by angle sum property $x + y + \angle ABC = 180^{\circ}$ $\Rightarrow \angle ABC = 180^{\circ} - (x + y)$...(i) $\therefore \angle ABC = \angle ADC$ [:: Opposite angles of a parallelogram are equal] $\therefore z = 180^{\circ} - (x + y)$ [using (i)] $\Rightarrow x + y + z = 180^{\circ}$ (Q) $\angle C = 2x$ [Since, diagonals bisects the angles in rhombus] Now, we have $\angle D + \angle C = 180^{\circ}$ [Co-interior angles] $130^{\circ} + 2x = 180^{\circ}$ $(\angle D = 130^{\circ})$ $\Rightarrow 2x = 180^{\circ} - 130^{\circ} = 50^{\circ} \Rightarrow x = 25^{\circ}$ (R) Since, in a rhombus, diagonals bisect each other. $w = 90^{\circ}$ ÷. (S) Since in a parallelogram opposite angles are equal. $\therefore \ \angle B = \angle D = z$...(i)

In $\triangle ABC$, by angle sum property, $\angle B + x + y = 180^{\circ}$ $\angle B = 180^{\circ} - (x + y)$ $\therefore z = 180^{\circ} - (x + y)$ (using (i)) $= 180^{\circ} - 130^{\circ} = 50^{\circ}$