Chapter - 2 Polynomial

Exercise 2.3

Divide the polynomial by the polynomial and find the quotient and remainder in each of the following:

(i)
$$p(x) = x^3 - 3x^2 + 5x - 3$$
, $g(x) = x^2 - 2$

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5$$
, $g(x) = x^2 + 1 - x$

(iii)
$$p(x) = x^4 - 5x + 6$$
, $g(x) = 2 - x^2$

(i)By long division method we have,

Quotient = x - 3

Remainder = 7x - 9

(ii) By long division method we have,

$$x^{2} + x - 3$$

$$x^{2} - x + 1 \sqrt{x^{4} + ox^{3} - 3x^{2} + 4x + 5}$$

$$x^{4} - x^{3} + x^{2}$$

$$- + -$$

$$x^{3} - 4x^{2} + 4x + 5$$

$$x^{3} - x^{2} + x$$

$$- + -$$

$$-3x^{2} + 3x + 5$$

$$-3x^{2} + 3x - 3$$

$$+ - +$$

$$- +$$

Quotient = $x^2 + x - 3$

Remainder = 8

(iii) By long division method we have,

$$-x^{2}-2$$

$$-x^{2} + 2\sqrt{x^{4} + 0x^{2} - 5x + 6}$$

$$x^{4} - 2x^{2}$$

$$- +$$

$$2x^{2} - 5x + 6$$

$$2x^{2} - 4$$

$$- +$$

$$-5x + 10$$

Quotient = $-x^2 - 2$

Remainder = -5x + 10

Q. 2 Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i)
$$t^2$$
 -3, $2t^4$ + $3t^3$ - $2t^3$ - $9t$ - 12

(ii)
$$x^2 + 3x + 1$$
, $3x^4 + 5x^3 - 7x^2 + 2x + 2$

(iii)
$$x^3 - 3x + 1$$
, $x^5 - 4x^3 + x^2 + 3x + 1$

(i)
$$t^2$$
-3 = t^2 + 0 t - 3

$$2t^{2} + 3t + 4$$

$$t^{2} + 0t - 3\sqrt{2}t^{4} + 3t^{3} - 2t^{2} - 9t - 12$$

$$2t^{4} + 0t^{3} - 6t^{2}$$

$$- - +$$

$$3t^{3} + 4t^{2} - 9t - 12$$

$$3t^{3} + 0t^{2} - 9t$$

$$- - +$$

$$4t^{2} + 0t - 12$$

$$4t^{2} + 0t - 12$$

$$- - +$$

$$0$$

Since the remainder is 0,

Hence, $t^2 - 3$ is a factor of $2t^4 + 3t^3 - 2t^2 - 9t - 12$.

$$3x^{2} - 4x + 2$$

$$x^{2} + 3x + 1 \quad \sqrt{3x^{4} + 5x^{3} - 7x^{2} + 2x + 2}$$

$$3x^{4} + 9x^{3} + 3x^{2}$$

$$- - - -$$

$$-4x^{3} - 10x^{2} + 2x + 2$$

$$-4x^{3} - 12x^{2} - 4x$$

$$+ + + +$$

$$2x^{2} + 6x + 2$$

$$2x^{2} + 6x + 2$$

$$0$$

Since the remainder is 0,

Hence, x^2+3x+1 is a factor of $3x^4+5x^3-7x^2+2x+2$.

(iii)

$$\begin{array}{r} x^2 - 1 \\
 x^2 - 3x + 1 & \sqrt{x^5 - 4x^3 + x^2 + 3x + 1} \\
 & x^5 - 3x^2 + x^2 \\
 & - + - \\
 & -x^3 & + 3x + 1 \\
 & -x^3 & + 3x - 1 \\
 & + - + - \\
 & 2
 \end{array}$$

Since the remainder $\neq 0$,

Hence, x^3-3x+1 is not a factor of $x^5-4x^3+x^2+3x+1$.

Q. 3 Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

$$p(x) = 3x^4 + 6x^3 - 2x^2 - 10x - 5$$

Since the two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$

$$\therefore \left(x - \sqrt{\frac{5}{3}}\right) \left(x + \sqrt{\frac{5}{3}}\right) = \left(x^2 - \frac{5}{3}\right) \text{ is a factor of } 3x^4 + 6x^3 - 2x^2 - 10x$$
- 5.

Therefore, we divide the given polynomial by $x^2 - \frac{5}{3}$.

$$3x^{2} + 6x + 3$$

$$x^{2} + 0x - \frac{5}{3} \quad \sqrt{3x^{4} + 6x^{3} - 2x^{2} - 10x - 5}$$

$$3x^{4} + 0x^{3} - 5x^{2}$$

$$- \quad - \quad +$$

$$6x^{3} + 3x^{2} - 10x - 5$$

$$6x^{3} + 0x^{2} - 10x$$

$$- \quad - \quad +$$

$$3x^{2} + 0x - 5$$

$$3x^{2} + 0x - 5$$

$$- \quad - \quad +$$

$$0$$

We know, Dividend = (Divisor \times quotient) + remainder

$$3 x^4 + 6 x^3 - 2x^2 - 10 x - 5 = \left(x^2 - \frac{5}{3}\right) (3x^2 + 6x + 3)$$

$$3 x^4 + 6 x^3 - 2 x^2 - 10x - 5 = \left(x^2 - \frac{5}{3}\right) (x^2 + 2x + 1)$$

As
$$(a+b)^2 = a^2 + b^2 + 2ab$$

So,
$$x^2 + 2x + 1 = (x+1)^2$$

$$3 x^4 + 6 x^3 - 2 x^2 - 10 x - 5 = 3 \left(x^2 - \frac{5}{3}\right)(x+1)^2$$
Therefore, its zero is given by $x + 1 = 0$.

$$\Rightarrow$$
 x = -1 ,-1

Hence, the zeroes of the given polynomial are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ and -1, -1.

Q. 4 On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x) the quotient and remainder were (x - 2) and (-2x + 4), respectively. Find g(x).

Solution: Given,

Polynomial, $p(x) = x^3 - 3x^2 + x + 2$ (dividend)

Quotient =
$$(x - 2)$$

Remainder =
$$(-2x + 4)$$

To find: divisor = g(x)we know, Dividend = Divisor × Quotient + Remainder

$$\Rightarrow$$
 x³ - 3x² + x +2 = g(x) × (x - 2) + (-2x + 4)

$$\Rightarrow$$
 x³ - 3x² + x + 2 + 2x - 4 = g(x)(x - 2)

$$\Rightarrow$$
 x³ - 3x² + 3x - 2 = g(x)(x - 2)

g(x) is the quotient when we divide $(x^3 - 3x^2 + 3x - 2)$ by (x - 2)

$$x^{2} - x + 1$$

$$x - 2 \sqrt{x^{3} - 3x^{2} + 3x - 2}$$

$$x^{3} - 2x^{2}$$

$$- +$$

$$-x^{2} + 3x - 2$$

$$-x^{2} + 2x$$

$$+$$

$$x - 2$$

$$x - 2$$

$$-x - 2$$

$$-x - 1$$

$$x - 2$$

$$-x - 1$$

$$-x - 1$$

$$x - 2$$

$$-x - 1$$

$$-x - 1$$

$$x - 2$$

$$-x - 1$$

$$-x - 1$$

$$-x - 2$$

$$-x - 1$$

$$-x - 1$$

$$-x - 2$$

$$-x - 3$$

Q. 5 Give examples of polynomials and which satisfy the division algorithm and

(i)
$$\deg p(x) = \deg q(x)$$

(ii)
$$\deg q(x) = \deg r(x)$$

(iii)
$$\deg r(x) = 0$$

Degree of a polynomial is the highest power of the variable in the polynomial. For example if $f(x) = x^3 - 2x^2 + 1$, then the degree of this polynomial will be 3.

(i) By division Algorithm :
$$p(x) = g(x) x q(x) + r(x)$$

It means when P(x) is divided by g(x) then quotient is q(x) and remainder is r(x)We need to start with p(x) = q(x)This means that the degree of polynomial p(x) and quotient q(x) is same. This can only happen if the degree of g(x) = 0 i.e p(x) is divided by a constant. Let $p(x) = x^2 + 1$ and g(x) = 2

$$\frac{p(x)}{g(x)} = \frac{x^2 + 1}{2}$$

The,

$$p(x) = g(x) \times \left(\frac{x^2 + 1}{2}\right)$$

Clearly, Degree of p(x) = Degree of q(x)

2. Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x)$$

$$= 6x^2 + 2x + 2 = 3 (3x^2 + x + 1)$$

$$=6x^2+2x+2$$

Thus, the division algorithm is satisfied.

(ii) Let us assume the division of x^3+x by x^2 ,

Here,

$$p(x) = x^3 + x$$

$$g(x) = x^2$$

$$q(x) = x$$
 and $r(x) = x$

Clearly, the degree of q(x) and r(x) is the same i.e.,

Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x) x^3 + x$$

$$= (x^2) \times x + x x^3 + x = x^3 + x$$

Thus, the division algorithm is satisfied.

(iii) Degree of the remainder will be 0 when the remainder comes to a constant.

Let us assume the division of x^3+1 by x^2 .

Here,

$$p(x) = x^3 + 1 g(x) = x^2$$

$$q(x) = x$$
 and $r(x) = 1$

Clearly, the degree of r(x) is 0. Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x)x^3 + 1$$

$$= (x^2) \times x + 1 x^3 + 1 = x^3 + 1$$

Thus, the division algorithm is satisfied.