

No. of Questions — 26 No. of Printed Pages — 11 S—09—2—Maths. II

माध्यमिक परीक्षा, 2010

SECONDARY EXAMINATION, 2010

गणित — द्वितीय पत्र

(MATHEMATICS — Second Paper)

समय : $3\frac{1}{4}$ घण्टे

पूर्णांक: 40

परीक्षार्थियों के लिए सामान्य निर्देश:

GENERAL INSTRUCTIONS TO THE EXAMINEES:

- 1. परीक्षार्थी सर्वप्रथम अपने प्रश्न पत्र पर नामांक अनिवार्यत: लिखें। Candidate must write first his / her Roll No. on the question paper compulsorily.
- 2. सभी प्रश्न करने अनिवार्य हैं।

All the questions are compulsory.

- 3. प्रत्येक प्रश्न का उत्तर दी गई उत्तर-पुस्तिका में ही लिखें ।
 Write the answer to each question in the given answer-book
- 4. जिस प्रश्न के एक से अधिक समान अंक वाले भाग हैं, उन सभी भागों का हल एक साथ सतत् लिखें।
 - For questions having more than one part carrying similar marks, the answers of those parts are to be written together in continuity.
- 5. अपनी उत्तर-पुस्तिका के पृष्ठों के दोनों ओर लिखिए । यदि कोई रफ़ कार्य करना हो, तो उत्तर-पुस्तिका के अंतिम पृष्ठों पर करें और इन्हें तिरछी लाइनों से काटकर उन पर 'रफ़ कार्य' लिख दें ।

Write on both sides of the pages of your answer-book. If any rough work is to be done, do it on last pages of the answer-book and cross with slant lines and write 'Rough Work' on them.

S-09-2-Maths. II

S - 113-II

Turn over

6. प्रश्न क्रमांक 25 व 26 में आन्तरिक विकल्प हैं। There are internal choices in Question Nos. 25 and 26.

7. प्रश्न क्रमांक 2 से 7 तक अति लघूत्तरात्मक प्रश्न हैं। Question Nos. 2 to 7 are Very Short Answer type.

8. प्रश्न क्रमांक 1 के चार भाग (i, ii, iii, iv) हैं और प्रत्येक भाग में चार विकल्प **A, B, C** और **D** दिए गए हैं । सही उत्तराक्षर उत्तर-पुस्तिका में निम्नानुसार तालिका बना कर दें :

There are *four* parts (i, ii, iii, iv) in Question No. 1. Each part has *four* alternatives A, B, C and D. Write the letter of the correct alternative in the answer-book at a place by making a table as mentioned below:

प्रश्न क्रमांक Question No.		सही उत्तर का क्रमाक्षर Correct letter of the Answer	
1.	(i)		
1.	(ii)		
1.	(iii)		
1.	(iv)		

	1.	(iv)				
(i)	समान्तर चतुर्भुज	ABCD में ∠ A =	70° हो, तो	∠ <i>B</i> का मा	न है	
	(A) 20°		(B)	70°		
	(C) 110°		(D)	90°.		
	In a parallelo	gram ABCD,	∠ <i>A</i> = 70°	, then the	value of $\angle B$ is	
	(A) 20°		(B)	70°		
	(C) 110°		(D)	90°.		$\frac{1}{2}$
(ii)	यदि बिन्दु (x, 3	s) और (5, 7)	के बीच की	ो दूरी 5 हो, र	तो x का मान है	
	(A) 2		(B)	4		
		(A) 20° (C) 110° In a parallelo (A) 20° (C) 110° (ii) यदि बिन्दु (x, 3)	 (i) समान्तर चतुर्भुज ABCD में ∠ A = (A) 20° (C) 110° In a parallelogram ABCD, A (A) 20° (C) 110° (ii) यदि बिन्दु (x, 3) और (5, 7) 	 (i) समान्तर चतुर्भुज ABCD में ∠ A = 70° हो, तो (A) 20° (B) (C) 110° (D) In a parallelogram ABCD, ∠ A = 70° (A) 20° (B) (C) 110° (D) (ii) यदि बिन्दु (x, 3) और (5, 7) के बीच की 	 (i) समान्तर चतुर्भुज ABCD में ∠ A = 70° हो, तो ∠ B का मार्थ (A) 20° (B) 70° (C) 110° (D) 90°. In a parallelogram ABCD, ∠ A = 70°, then the (A) 20° (B) 70° (C) 110° (D) 90°. (D) 90°. (E) 110° (D) 90°. (E) 110° (D) 90°. 	 (i) समान्तर चतुर्भुज ABCD में ∠ A = 70° हो, तो ∠ B का मान है (A) 20° (B) 70° (C) 110° (D) 90°. In a parallelogram ABCD, ∠ A = 70°, then the value of ∠ B is (A) 20° (B) 70° (C) 110° (D) 90°. (E) 110° (D) 90°. (E) 110° (E) 110°<

If the distance between points (x, 3) and (5, 7) is 5, then the value of x is

(D)

 $(A) \quad 2$

(C) 0

(B) 4

3.

(C) 0

(D) 3.

 $\frac{1}{2}$

S-09-2-Maths. II

S – 113–II

- (iii) $\sin \theta \csc \theta + \cos \theta \sec \theta$ बराबर है
 - (A) 2

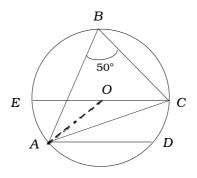
(B) 1

(C) 0

(D) -1.

 $\sin \theta \csc \theta + \cos \theta \sec \theta$ is equal to

(A) 2

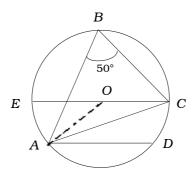

(B) 1

(C) 0

(D) -1.

 $\frac{1}{2}$

(iv) चित्र में व्यास EC जीवा AD के समान्तर एवं \angle ABC = 50° हो, तो \angle CAD का मान है


(A) 50°

(B) 40°

(C) 130°

(D) 25° .

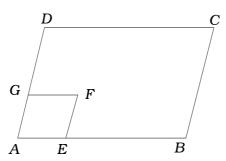
In figure, if the diameter *EC* is parallel to *AD* and \angle *ABC* = 50°, then the value of \angle *CAD* is

(A) 50°

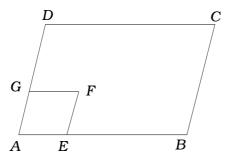
(B) 40°

(C) 130°

(D) 25°.


 $\frac{1}{2}$

S-09-2-Maths. II


S – 113–II

[Turn over

2. चित्र में ABCD और AEFG दो समान्तर चतुर्भुज हैं । यदि \angle C = 60° हो, तो \angle GFE का मान लिखिए ।

In figure, *ABCD* and *AEFG* are two parallelograms. If $\angle C = 60^{\circ}$, write the value of $\angle GFE$.

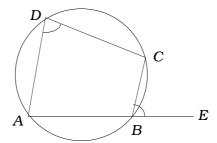
3. एक वृत्त के उस चाप का नाम लिखिए, जो वृत्त के शेष भाग पर समकोण बनाता है ।

Write the name of that arc of the circle which subtends a right angle on the remaining part of the circle. $\frac{1}{2}$

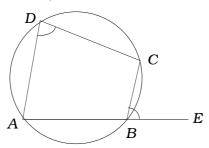
4. किसी वर्ग के सम्मुख शीर्ष (- 5, - 4) और (3, 2) हैं । इसके विकर्ण की लम्बाई लिखिए ।

The opposite vertices of a square are (– 5, – 4) and (3, 2). Write the length of its diagonal. $\frac{1}{2}$

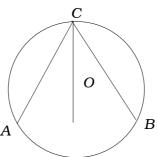
5.
$$\frac{\sin^4\theta - \cos^4\theta}{\sin^2\theta - \cos^2\theta}$$
 का मान लिखिए ।

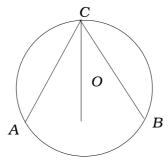

Write the value of
$$\frac{\sin^4 \theta - \cos^4 \theta}{\sin^2 \theta - \cos^2 \theta}$$
. $\frac{1}{2}$

6.	एक अर्द्धवृत्त का व्यास 8 सेमी है । उसका क्षेत्रफल का मान ज्ञात कीजिए ।
	Diameter of a semicircle is 8 cm. Find its area. $\frac{1}{2}$
7.	r त्रिज्या वाले वृत्त के केन्द्र पर 180° कोण अन्तरित करने वाले चाप की लम्बाई लिखिए ।
	Write the length of arc which subtends an angle of 180° at the centre of circle of radius r . $\frac{1}{2}$
8.	जिस त्रिभुज में लम्बकेन्द्र, परिकेन्द्र और अन्तःकेन्द्र एक ही हों, उस त्रिभुज का नाम लिखिए ।
	Write the name of the triangle, in which the orthocentre, the incentre
	and the circumcentre are the same.
9.	वृत्त में किन्हीं दो त्रिज्याओं और उनके अन्तिम बिन्दुओं से बनने वाले चाप से घिरे क्षेत्र का नाम
	लिखिए ।
	Write the name of area enclosed by any two radii and arc determined
	by the end points of the radii.
10.	एक समबाहु त्रिभुज ABC में, AD भुजा BC पर लम्बवत् हो, तो $AB^{2}:AD^{2}$ को ज्ञात कीजिए ।
	In an equilateral triangle ABC , AD is perpendicular to BC , then find
	$AB^2:AD^2$.
11.	$3 \sin 60^\circ$ – $4 \sin^3 60^\circ$ का मान ज्ञात कीजिए ।
	Find the value of $3 \sin 60^{\circ} - 4 \sin^3 60^{\circ}$.
12.	यदि समचतुर्भुज की भुजाओं के वर्गों का योग 64 वर्ग सेमी हो, तो उसके विकर्णों के वर्गों का
	योग ज्ञात कीजिए ।
	If sum of the squares of the sides of a rhombus is 64 sq.cm, then find


the sum of squares of its diagonals.

1


13. चित्र में यदि $∠ ADC = 80^\circ$ हो, तो ∠ CBE का मान लिखिए ।


In figure, if $\angle ADC = 80^{\circ}$, then write the value of $\angle CBE$.

14. चित्र में वृत्त का केन्द्र O और OC, \angle ACB का समद्विभाजक है । यदि AC = 4 सेमी हो, तो BC ज्ञात कीजिए ।

In figure, *O* is the centre of the circle and *OC* is the bisector of $\angle ACB$. If AC = 4 cm, then find BC.

S-09-2-Maths. II

S - 113-II

15. 5 सेमी त्रिज्याओं के दो वृत्त परस्पर A और B पर काटते हैं । यदि उभयनिष्ठ जीवा AB=6 सेमी हो, तो उनके केन्द्रों के बीच की दूरी ज्ञात कीजिए ।

Two circles of radii 5 cm intersect each other at A and B. If the common chord AB = 6 cm, then find the distance between their centres.

16. एक घनाभ की लम्बाई, चौड़ाई और ऊँचाई का योग 19 सेमी है तथा विकर्ण की लम्बाई 11 सेमी है । घनाभ का सम्पूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए ।

The sum of length, breadth and height of a cuboid is 19 cm and the length of its diagonal is 11 cm. Find the total surface area of the cuboid.

17. नीचे दी गई सारणी से फील्ड बुक का कच्चा चित्र बनाइए तथा क्षेत्रफल की गणना कीजिए:

	मीटर	
	D तक	
	150	
E तक 75	125	C तक 50
	100	B तक 25
	A से उत्तर की ओर	

From the table given below, prepare a rough diagram of the field book and calculate the area.

	Metre	
	• Upto D	
	150	
75 towards E	125	50 towards C
	100	25 towards B
	• From A towards north	

18. त्रिभुज ABC में $\angle A$ का समद्विभाजक AD है । AB एवं AC पर लम्ब क्रमश: DE तथा DF हैं । सिद्ध कीजिए कि DE = DF.

In a triangle ABC, AD is the bisector of $\angle A$. DE and DF are perpendiculars on AB and AC respectively. Prove that DE = DF.

19. चित्र में PQRS एक आयत है, भुजा PQ = 10 सेमी तथा QR = 7 सेमी हैं । आयत के प्रत्येक शीर्ष पर चित्रानुसार समान त्रिज्या के वृत्त खींचे गये हैं । छायांकित भाग का क्षेत्रफल ज्ञात कीजिए ।

dia.

In figure, PQRS is a rectangle. The side PQ = 10 cm and QR = 7 cm. As shown in figure circles of same radius are drawn at each vertex of the rectangle. Find the area of shaded portion.

dia

20. यदि $\sec \theta + \tan \theta = p$ हो, तो सिद्ध कीजिए कि

$$\frac{p^2 - 1}{p^2 + 1} = \sin \theta.$$

If
$$\sec \theta + \tan \theta = p$$
, then prove that $\frac{p^2 - 1}{p^2 + 1} = \sin \theta$.

21. यदि बिन्दु A (2,5) और B को मिलाने वाले रेखा खण्ड को बिन्दु P (-1,2), 3:4 के अनुपात में अन्त: विभाजित करता है, तो B के निर्देशांक ज्ञात कीजिए ।

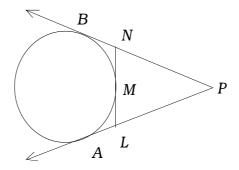
If the point P(-1, 2) divides the line segment joining A(2, 5) and B internally in ratio 3:4, find the coordinates of B.

22. यदि $\theta = 30^{\circ}$ हो, तो $\frac{3 \cot (90^{\circ} - \theta) - \tan^{3} \theta}{1 - 3 \cot^{2} (90^{\circ} - \theta)}$ का मान ज्ञात कीजिए ।

If
$$\theta = 30^{\circ}$$
, then find $\frac{3 \cot (90^{\circ} - \theta) - \tan^{3} \theta}{1 - 3 \cot^{2} (90^{\circ} - \theta)}$.

23. यदि किसी शंकु की ऊँचाई, वक्रपृष्ठ और आयतन क्रमश: h, c और v हों, तो सिद्ध कीजिए कि

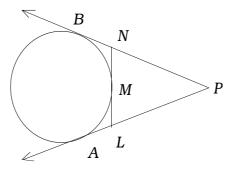
$$3\pi v h^3 - c^2 h^2 + 9v^2 = 0.$$


If h, c and v are the height, the area of the curved surface and the volume of a cone respectively, then prove that

$$3\pi v h^3 - c^2 h^2 + 9v^2 = 0.$$

24. किसी स्तम्भ की चोटी का उन्नतांश समतल पर स्थित एक बिन्दु से 15° है । स्तम्भ की ओर 100 मीटर चलने पर उन्नतांश 30° हो जाता है । स्तम्भ की ऊँचाई ज्ञात कीजिए ।

The angle of elevation of top of a pillar from a point on the ground is 15°. On walking 100 metre towards the pillar, the angle of elevation becomes 30°. Find the height of the pillar.


25. चित्र में PA तथा PB एक वृत्त की स्पर्श रेखाएँ हैं । वृत्त पर एक बिन्दु M हो, तो सिद्ध कीजिए कि PL + LM = PN + NM.

अथवा

एक वृत्त में PQ और PR दो समान जीवाएँ हैं । सिद्ध कीजिए कि बिन्दु P पर स्पर्श रेखा जीवा QR के समान्तर होगी ।

In figure, PA and PB are tangents to a circle. If M is a point on the circle, then prove that PL + LM = PN + NM.

OR

If PQ and PR are two equal chords of a circle, prove that the tangent at P is parallel to the chord QR.

S-09-2-Maths. II

S – 113–II

26. त्रिभुज ABC की रचना कीजिए , जिसमें BC = 5.8 सेमी, $\angle A = 65^\circ$ तथा लम्ब AD = 3.1 सेमी हो ।

अथवा

त्रिभुज ABC की रचना कीजिए, जबिक BC=4.8 सेमी, $\angle A=70^\circ$ तथा A से माध्यिका 3.2 सेमी हो ।

Construct a triangle *ABC*, in which *BC* = 5.8 cm, $\angle A = 65^{\circ}$ and altitude *AD* = 3.1 cm.

OR

Construct a triangle *ABC*, when BC = 4.8 cm, $\angle A = 70^{\circ}$ and the median from *A* is 3.2 cm.
