5c

ALKYL HALIDES

LEVEL- Z

1. One eq. NaCN
$$\frac{1. \text{ One eq. NaCN}}{2 \text{ LiAlH}_4} (A); \text{ Product } (A) \text{ is :}$$

(c)
$$Br$$
 CH_2NH_2

2. In the reactions given below,

$$R - Cl \xrightarrow{\text{(i) KCN, (ii) LiAlH}_4} \text{Product } A$$

$$R - Cl \xrightarrow{\text{(i) AgCN, (ii) LiAlH}_4} \text{Product } B$$

the compounds A and B are:

(a) chain isomers

(b) position isomers

(c) functional isomers

(d) metamers

3. Which is the major product expected from the following S_{N^2} reaction?

4. Consider the following E_1/S_{N^1} reaction:

- (a) 1, 2 and 3 (b) 3 and 4
- (2) H CH₃
- (4) H₃C H
- (c) 2 and 3
- (d) 1, 2, 3 and 4

ALKYL HALIDES 331

5. What is the product of the following S_{N^2} reaction?

OTS O NaBr Product

OMe
$$S_{N^2}$$
 Product

OMe S_{N^2} Product

- **6.** Select the reagent that will yield the greater amount of substitution on reaction with $CH_3 CH_2 Br$:
 - (a) CH₃CH₂OK in dimethyl sulfoxide (DMSO)
 - (b) (CH₃)₃COK in dimethyl sulfoxide (DMSO)
 - (c) Both (a) and (b) will give comparable amounts of substitution
 - (d) Neither (a) nor (b) will give any amount of substitution
- 7. Under the specified conditions, substrate X undergoes substitution and elimination reactions to give products A D. A and B are stereoisomers, but not enantiomers. C and D are enantiomers. A is not an isomer of C. Which of the following could be the starting material X?

Compare rate of E2 reaction:

(a)
$$c > b > a$$
 (b) $a > b > c$ (c) $b > a > c$ (d) $c > a > b$

9. Which reaction results in the formation of a pair of enantiomers?

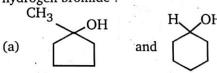
10. Rate limiting S_{N^1} follows the sequence

$$\stackrel{\delta \oplus}{R-} \stackrel{\delta \ominus}{R-} \stackrel{R^{\oplus}}{\longleftarrow} \stackrel{Br^{\ominus}}{\longleftarrow} \stackrel{R^{\oplus}}{\longleftarrow} \stackrel{Br^{\ominus}}{\longleftarrow} \stackrel{Br^{\ominus}}{\longrightarrow} \stackrel{Br^{\ominus}}$$

True statement about sequence on the basis of assumption that R contains 3 different groups is :

- (a) more stable carbocation, greater is in the proportion of racemization
- (b) the more nucleophilic the solvent greater in the proportion of inversion
- (c) In above sequence (b) represent separately solvated, pair of ions
- (d) All of these
- 11. Compare the two methods shown for the preparation of carboxylic acids :

Method 1:
$$RBr \xrightarrow{Mg} RMgBr \xrightarrow{1. CO_2} RCO_2H$$


Method 2: $RBr \xrightarrow{NaCN} RCN \xrightarrow{H_2O, HCl} RCO_2H$

Which one of the following statements correctly describes this conversion?

$$\bigoplus_{Br} \longrightarrow \bigoplus_{CO_2H}$$

- (a) Both method 1 and method 2 are appropriate for carrying out this conversion
- (b) Neither method 1 nor method 2 is appropriate for carrying out this conversion
- (c) Method 1 will work well, but method 2 is not appropriate
- (d) Method 2 will work well, but method 1 is not appropriate
- 12. Which of the following statements is true?
 - (a) CH₃CH₂S⁻ is both a stronger base and more nucleophilic than CH₃CH₂O⁻
 - (b) CH₃CH₂S⁻ is a stronger base but is less nucleophilic than CH₃CH₂O⁻
 - (c) CH₃CH₂S⁻ is a weaker base but is more nucleophilic than CH₃CH₂O⁻
 - (d) CH₃CH₂S⁻ is both a weaker base and less nucleophilic than CH₃CH₂O⁻

13. In the given pair of alcohols, in which pair second alcohol is more reactive than first towards hydrogen bromide?

(c)
$$\mathrm{CH_3}$$
 – CH – $\mathrm{CH_2}$ – $\mathrm{CH_3}$ and $\mathrm{CH_3}$ – $\mathrm{CH_2}$ – CH – $\mathrm{CH_2}$ – OH OH

(d)
$$CH_3 - CH - CH_2 - CH_3$$
 and $(CH_3)_2C - CH_2 - CH_3$ OH

14. Which product would be expected to predominate in the given reaction?

$$(a) \bigcirc OSO_2CF_3$$

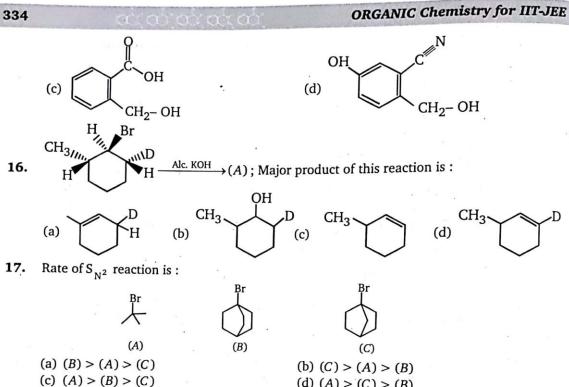
$$CH_3OH \longrightarrow \Delta(30^\circ C)$$

$$O-SO_2-CH_3$$

$$(b) \bigcirc O$$

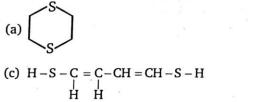
$$O-SO_2-CH_3$$

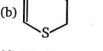
$$(c) \bigcirc O$$


$$O-SO_2-CH_3$$

$$O-SO_2-CH_3$$

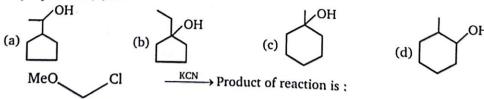
$$O-SO_2-CH_3$$


15. Which is the major product of the following reaction?


(a)
$$CH_{2}$$
- Br

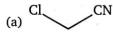
(d) (A) > (C) > (B)1-2-dichloro ethane + NaSCH₂CH₂SNa \longrightarrow C₄H₈S₂ + (P) 18.

Unknown product (P) of the above reaction is:



(d)
$$H - C = C - CH = CH - S - H$$

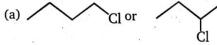
 $H \quad H$


19.
$$\xrightarrow{\text{Moist Ag}_2O}$$
 (A) product

Major product (A) is:

20.

(MOM chloride) (Methoxy methyl chloride)



(b) MeO CN

(c) $Me - O - CH_2 - CH_2 - CN$

(d) O < CN

21. In the given pair of compound, in which pair the second compound is more reactive than first toward S_{N^2} reaction?

(b) $CH_2 - Cl$ or Cl

(c)
$$\xrightarrow{Br}$$
 or \xrightarrow{Br}

 $(d) \qquad \bigvee_{Cl} \qquad or \qquad \bigvee_{Cl} \qquad (d)$

22. Which compound might be synthesized by the S_{N^2} displacement of an alkyl-halide?

(b) SCH₂CH₃

(c) Me₃C – OCH₃

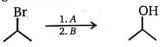
(d) All of these

23. Identify C in the following series $C_3H_7I \xrightarrow{KOH} A \xrightarrow{NBS} B \xrightarrow{KCN} C$.

(a)
$$(CH_3)_2CH-CN$$

(b)
$$CH_2 = CH - CH_2CN$$

(c)
$$Br - CH = CH - CN$$


(d)
$$CH_2 = CH - CHCN$$

24. What sequence of reagents is required to accomplish the following transformation?

- (a) (1) NBS, ROOR (2) $CH_3CH_2O^-$ (3) 2HBr (4) NH_2^- (5) disiamyl borane (6) H_2O_2 , OH^-
- (b) (1) $\mathrm{Cl_2}\,\mathrm{hv}$ (2) $\mathrm{OH^-}$, heat; (3) 2HCl (4) $\mathrm{OH^-}$, heat (5) $\mathrm{HgSO_4}$, $\mathrm{H_2SO_4}$
- (c) (1) NBS, ROOR; OH-, DMSO
- (d) (1) Br₂, hv (2) t-butoxide (3) BH₃, THF (4) H₂O₂, OH⁻

25. Which of the reagents shown below would accomplish the following transformations?

A

E

(a) H_3O^+

BH₃ -THF; H₂O₂/NaOH

(b) NaOH

BH₃ -THF; H₂O₂/NaOH

(c) HBr in ether

Hg(OAc)₂/H₂O; NaBH₄

(d) NaNH₂

Hg(OAc)₂/H₂O; NaBH₄

26. What are the products obtained from the following reaction?

$$\begin{array}{c}
\text{Br} \\
\xrightarrow{\text{HC} = \text{CNa}} \\
\xrightarrow{\text{Et}_2\text{O}}
\end{array}$$
 Product

(a)
$$C^{C}$$
 + C^{C} (b) C^{C} + C^{C} + C^{C} (c) C^{C} (d) C^{C} 100%

27. The back-side attack on 2-bromobutane by methoxide (CH₃O⁻) gives the product shown below. Which Fischer projection represents 2-bromobutane used as the reactant in this reaction?

- 28. Consider the following statements:
 - (1) Bridgehead halides are inert towards both S_{N^1} and S_{N^2} reactions (till one of the ring size is eight member ring)
 - (2) The first step in both S_{N^1} and E_1 reactions is the same
 - (3) S_{N^2} reactions proceed with total retention of configuration
 - (4) E₂ eliminations are by the use of a solvent of low polarity and high concentration of a strong base

Which of the above statements are correct?

(a) 1, 2 and 4

(b) 1 and 3

(c) 2, 3 and 4

- (d) 1, 2, 3 and 4
- 29. Consider the following alcohols:

$$\bigcirc \stackrel{CH_2OH}{\bigodot} \bigcirc \stackrel{CH_2OH}{\bigcirc} \bigcirc \stackrel$$

The order of decreasing reactivities of these alcohols towards substitution with HBr is:

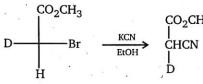
(a) III > I > IV > II

VI < II < I < II (d)

(c) I > III > IV > II

VI < II < III < I (b)

- In solvolysis of 1,2-dimethyl propyl p-toluene sulfonate in acetic acid at 75°C, how many (alkene + substitution) products will be formed?
- (b) 3 ·
- (d) 5
- Benzotrichloride reacts with milk of lime to form: 31.
 - (a) Benzal
- (b) Benzoic acid
 - (c) Benzyl alcohol
- (d) Phenol
- $Br CH_2 (CH_2)_2 CH_2 Br + CH_3NH_2 \longrightarrow Product of the reaction is :$



The configurations of the reactant and the product in the following reaction, respectively, 33.

- (a) R, R
- (b) R, S
- (d) S, S
- 1-4-dichlorohexane (1 mole) + NaI (1 mole) Acetone Product of the reaction is :

 - (a) $Cl CH_2 CH_2 CH_2 CH_3 CH_2 CH_3 CH_2 CH_2 CH_2 CH_3 CH_3$

 - (c) $H_2C = CH CH_2 CH_3$ (d) $I CH_2 CH_2 CH_2 CH_2 CH_3$
- Alkyl halides can be obtained by all methods except: 35.
 - (a) $CH_3CH_2OH + HCl/ZnCl_2 \longrightarrow$
- (b) $CH_3 CH_2 CH_3 CH_2 \xrightarrow{Cl_2/UV \text{ light}}$
- (c) $C_2H_5OH + NaCl \longrightarrow$
- (d) $CH_3COOAg + Br_2/CCl_4 \longrightarrow$
- In order to prepare 1-chloropropane, which of the following reactants can be employed? 36.
 - (a) Propene and HCl in the presence of peroxide
 - (b) Propene and Cl₂ followed by treatment with aq. KOH
 - (c) Propanol-1 and SOCl₂/pyridine
 - (d) Any of the above can be used
- Which alkyl halide has maximum density? 37.
 - (a) C₃H₇I
- (b) C_2H_5I
- (c) CH₃I
- (d) CH₃Br
- Which of the following molecules would have a carbon-halogen bond most susceptible to 38. nucleophilic substitution?
 - (a) 2-fluorobutane

(b) 2-chlorobutane

(c) 2-bromobutane

(d) 2-iodobutane

- **39.** When benzyl chloride is treated with ethanolic KCN, the major product formed is :
 - (a) benzyl ethyl ether (b) benzyl alcohol
- (c) benzyl cyanide
 - (d) benzyl isocyanide
- **40.** Which of the following is most reactive towards nucleophilic substitution reaction?
 - (a) $CH_2 = CH Cl$

(b) C_6H_5Cl

(c) $CH_3CH = CHCl$

- (d) $ClCH_2 CH = CH_2$
- **41.** Which of the following reaction will not give ether as a major product?
 - (a) $CH_3CH_2Cl + Ag_2O(dry) \longrightarrow$
- (b) $(CH_3)_3CCl + CH_3CH_2O^-Na^+$

(c)
$$CH_3CH_2Cl + Na^+O^-$$

(d)
$$CH_3Cl + Na^+O^- - C - CH_3 \longrightarrow$$

42.
$$0 - S - 0$$
 $C_{R_{2}}$ (A)

Product (A) and (B) in above reaction is:

(a)
$$O^{-} = S = O = H, O^{-} = S = O = CH_{3}$$
 (b) $O^{-} = S = O = H, O^{-} = S = CH_{3}$

(c)
$$O^{-} = S = O - CH_{3}$$
, $O = S = H$

$$(d) O^{-} - \overset{O}{\overset{\parallel}{=}} S - O, O^{-} - \overset{O}{\overset{\parallel}{=}} - O^{-}$$

						ANSW	ERS	— LE	VEL 1						
1.	(c)	2.	(c)	3.	(b)	4.	(a)	5.	(a)	6.	(a)	7.	(c)	8.	(b)
9.	(b)	10.	(d)	11.	(c)	12.	(c)	13.	(d)	14.	(a)	15.	(c)	16.	(c)
17.	(c)	18.	(a)	19.	(c)	20.	(b)	21.	(d)	22.	(d)	23.	(b)	24.	(d)
25.	(d)	26.	(b)	27.	(d)	28.	(a)	29.	(a)	30.	(d)	31.	(b)	32.	(b)
33.	(d)	34.	(d)	35.	(c)	36.	(c)	37.	(a)	38.	(d)	39.	(c)	40.	(d)
41.	(b)	42.	(b)	TERRO		NEO-		Huma		alas est			(6)		

LEVEL-2

1. The following organic halide derivatives (*A* to *J*) are reacted in ethanol solution with each of the nucleophiles: acetate, methylthiolate, cyanide and hydroxide anions. Six possible results from these combinations of reactants are designated (1) through (6) below:

Write the number corresponding to your best estimate of the outcome of each reaction in the appropriate answer box below.

Cl	CH ₂ -Cl	CH ₃ – I	H_3C H_3C H	CH ₃
A	В	С	D	Е
Br	cl	H H H	CH ₂ – Br H ₃ C	H ₃ C
F	G	Н	I	J

Possible Outcome:

- (1) No reaction
- (3) Elimination
- (5) No reaction or slow substitution
- (2) Substitution
- (4) Substitution and elimination
- (6) No reaction or slow elimination

	Compound	A	В	С	D.	E	F	G	H	I	J
(i)	CH ₃ CO ₂ Na										
(ii)	CH ₃ SNa						*				
(iii)	NaCN										
(iv)	NaOH										

2.	In each of the following sections three organic halogen compounds are listed. In the box
	given enter a number (1 to 3) indicating the order of reactivity of the designated (1 is most
	reactive and 3 is least).

(a) S _{N²} substitution by Na	OCOCH ₂ in methanol:			
1. CH ₃ CH ₂ CH ₂ Br □	2. (CH ₃) ₂ CHBr		3. $CH_2 = CHCH_2Br$	
(b) S _{N²} substitution by Na	I in acetone:			_
	2. C ₆ H ₅ CH ₂ Cl		3. C ₆ H ₅ CHClCH ₃	- 🔲
(c) S _{N²} substitution by N	aCN in methanol:			_
1. CH ₃ CH ₂ Cl	2. CH ₃ CH ₂ F	20	3. CH ₃ CH ₂ I	
(d) S _{N²} substitution by N	aSCH ₃ in methanol:			_
1. (CH ₃) ₂ CHCH ₂ CH ₂	Br□ 2. CH ₃ CH ₂ CHB ₁	$CH_2CH_3\square$	3. $(CH_3)_3CCH_2Br$	

3. Isobutyl alcohol (2-methyl-1-propanol), (CH₃)₂CHCH₂OH, can be transformed to each of the compounds (a through l) listed in the left-hand column. In each case the number of steps needed to accomplish the change is noted, and an answer box is provided for your reagent selections. Fourteen reagents (designated A through N) are listed in the right-hand column.

Write letters designating the reagent or reagents you believe will achieve the desired transformation in the box to the right of the product formula. In the case of a multi-step sequence write the reagents in the order they are to be used. In some cases you may wish to use a previously prepared compound as a reactant. If so, write the number (a to l) corresponding to the desired compound.

	Desired product	No. of Steps	Write Options		Reagent List			
a.	(CH ₃) ₂ CHCH ₂ Br	one	8 1	A.	Hg(OAc) ₂ in H ₂ O			
ь.	$(CH_3)_2C = CH_2$	one	100 to	В.	PBr ₃ & heat			
c.	$(CH_3)_2CHCH = O$	one		C.	NaBH ₄ in alcohol			
d.	(CH ₃) ₂ CHCO ₂ H	one	× .	D.	LiAlH ₄ in THF (aqueous workup)			
e.	(CH ₃) ₃ CBr	two		E.	NaCN in alcohol			
f.	$(CH_3)_2CHCH_2C \equiv N$	two		F.	PCC in CH ₂ Cl ₂			
g.	(CH ₃) ₂ CHCH ₂ OCOCH ₃	one		G.	Jones' reagent (CrO ₃ in H ₃ O ⁺)			
h.	(CH ₃) ₂ CHCO ₂ C ₂ H ₅	two	at the same of the	H.	HBr in CH ₂ Cl ₂			
i.	(CH ₃) ₂ CHCH ₂ OCH ₂ (CH ₃)	two		I.	H ₃ PO ₄ and heat			
j.	(CH ₃) ₃ COH	three		J.	(CH ₃ CO) ₂ O + pyridine			
k.	(CH ₃) ₂ CHCH ₂ NH ₂	three		K.	NaN ₃ in aqueous alcohol			
1.	(CH ₃) ₂ CHCH ₂ CH ₂ NH ₂	two		L.	C ₆ H ₅ CO ₃ H in CH ₂ Cl ₂ (peracid)			
	, , , , , , , , , , , , , , , , , , ,			M.	NaH in ether and heat			
				N.	C ₂ H ₅ OH + acid catalyst & heat			

SUBJECTIVE PROBLEMS

1.
$$CH_3$$
 CH_3OH
 $?$

X=Total number of substitution and elimination product(s). Find the value of X.

	ANSWERS — LEVEL 2											
1.		Α	В	C	D	E	F	G	Н	I	J	
	(i)	2	2	2	1	1	1	6	2	2	. 6	
	(ii)	2	2	2	1	1	5	6	2	2	6	
	(iii)	2	2	2	1	1	. 1	3	3	2	3	
	(iv)	4	2	. 2	1	1	5	3	3	4	3	
				- 0	-	0 . 1 .			- 1 <u>-</u>			

- **2.** a-3>1>2; b-2>3>1; c-3>1>2; d-1>2>3
- 3. a-B; b-I; c-F; d-G; e-I, H or 2 H; f-B, E or 1, E; g-J; h-G, N or 4N i-N, j-I, A, C or 2AC or ILD or 2LD; k-B, K, D or 1KD; l-B, E, D or 1ED or 6D

Subjective Problems

1. 4