

				1	Area of Bounded Region
		B	Pasic Level		
1.	Area under the curve $y = x^2$	2 – 4x within the x-axis and the li	ne $x=2$, is		[SCRA 1991]
	(a) $\frac{16}{3}$ sq. units	(b) $-\frac{16}{3}$ sq. units	(c) $\frac{4}{7}$ sq. units	(d)	Cannot be calculated
2.	The area bounded by the cu	arve $y = 4x - x^2$ and the x-axis is	3		[MP PET 1999, 2003]
	20	(b) $\frac{31}{7}$ sq. units	(c) $\frac{32}{3}$ sq. units	(d)	$\frac{34}{3}$ sq. units
3.	The area between the curve	$y = 4 + 3x - x^2$ and x-axis is			[Rajasthan PET 2001]
	(a) $\frac{125}{6}$	(b) $\frac{125}{3}$	(c) $\frac{125}{2}$	(d)	None of these
4.	Area under the curve $y = $	$\overline{3x+4}$ between $x=0$ and $x=4$	4 , is		[Al CBSE 1979,1980]
	(a) $\frac{56}{9}$ sq. units	(b) $\frac{64}{9}$ sq. units	(c) 8 sq. units	(d)	None of these
5.	The area bounded by the cu	arve $y = x^3$, x- axis and two ordin	nates $x = 1$ to $x = 2$ equal to		[MP PET 1999]
		(b) $\frac{15}{4}$ sq. units		(d)	$\frac{17}{4}$ sq. units
6.	If the area above the <i>x</i> -axis,	bounded by the curves $y = 2^{kx}$ a	and $x = 0$ and $x = 2$ is $\frac{3}{\ln 2}$, then the	e value of k	is [Orissa JEE 2003]
	(a) $\frac{1}{2}$	(b) 1	(c) -1	(d)	2
7.	Area bounded by curve $y =$	x^3 , x-axis and ordinates $x = 1$ a	and $x = 4$, is		
	(a) 64 sq. units	(b) 27 sq. units	(c) $\frac{127}{4}$ sq. units	(d)	$\frac{255}{4}$ sq. units
8.		= c, x-axis between $x = 1$ and $x = 1$			
9.	(a) c log 3 sq. units The measurement of the area	(b) 2 log c sq. units a bounded by the coordinate axes	(c) $2c \log 2$ sq. units and the curve $y = \log_e x$ is	(d)	2c log5 sq. units [MP PET 1998]
10	(a) 1	(b) 2	(c) 3	(d)	
10.	(a) e	rve $y = \log x$, the x- axis and ord (b) 1	inate $x = e$ is (c) ∞	(d)	[MP PET 1994] None of these
11.	• •	$y = \log x$, x-axis and the ordinate	. ,	(u)	Trone of these
	(a) log 4 sq. units	(b) log 4+1 sq. units	(c) log 4-1 sq. units	(d)	None of these
12.	Area bounded by the curve	$y = x e^{x^2}$, x-axis and the ordinate	es $x=0$, $x=a$ is		
	(a) $\frac{e^{a^2}+1}{2}$ sq. units	(b) $\frac{e^{a^2}-1}{2}$ sq. units	(c) $e^{a^2} + 1$ sq. units	(d)	e^{a^2} –1 sq. units
13.	If area bounded by the curv	tes $y^2 = 4ax$ and $y = mx$ is $\frac{a^2}{3}$, then the value of m is		
	(a) 2	(b) -2	(c) 1/2	(d)	None of these
14.	The area of the region (in the	e square units) bounded by the cu	rve $x^2 = 4y$, line $x = 2$ and x-axis is		[MP PET 2002]

386 Area Under Curves (b) $\frac{2}{3}$ Area bounded by the parabola $y = 4x^2$, y-axis and the lines y = 1, y = 4 is 15. (b) $\frac{7}{5}$ sq. units (c) $\frac{7}{3}$ sq. units (d) None of these Area bounded by parabola $y^2 = x$ and straight line 2y = x is 16. **IMP PET 19961** Area enclosed by the parabola $ay = 3(a^2 - x^2)$ and x-axis is 17. (a) $4a^2$ sq. units (b) $12a^2$ sq. units (c) $4a^3$ sq. units (d) None of these The area enclosed by the curve $y = \sin x$, y = 0, x = 0 and $x = \frac{\pi}{2}$ is 18. [MP PET 1995] (d) 2 19. Area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$ is (b) 4 sq. units (c) 8 sq. units (d) None of these 20. Area bounded by the curve $y = k \sin x$ between $x = \pi$ and $x = 2\pi$, is (c) $\frac{\kappa^2}{2}$ sq. units (a) 2κ sq. units (b) 0 (d) κ sq. units The area of the region bounded by the x-axis and the curves defined by $y = \tan x \left(-\frac{\pi}{3} \le x \le \frac{\pi}{3} \right)$ is 21. [Kurukshetra CEE 1998] (b) $-\log\sqrt{2}$ (a) $\log \sqrt{2}$ (d) 0 The area between the curve $y = \sin^2 x$, x-axis and the ordinates x=0 and $x = \frac{\pi}{2}$ is 22. [Rajasthan PET 1996] (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (d) π Area of the region bounded by the curve $y = \tan x$, tangent drawn to the curve at $x = \frac{\pi}{4}$ and the x-axis is 23. [DCE 2002] (b) $\log \sqrt{2} - \frac{1}{4}$ (c) $\log \sqrt{2} + \frac{1}{4}$ (d) None of the above The ratio of the areas bounded by the curves $y = \cos x$ and $y = \cos 2x$ between x = 0, $x = \frac{\pi}{3}$ and x-axis, is [MP PET 1997] 24. (b) 1:1 (c) 1:2 (d) 2:1 The area bounded by the curve $y = \sec x$, the x-axis and the lines x=0 and $x = \frac{\pi}{4}$ is 25. [Tamilnadu PCEE 2002] (c) $\frac{1}{2} \log 2$ (a) $\log(\sqrt{2} + 1)$ (b) $\log(\sqrt{2}-1)$ (d) $\sqrt{2}$ The area bounded by y = [x] and the two ordinates x=1 and x=1.7 is 26.

(b) $\sqrt[3]{8-\sqrt{17}}$

The value of k for which the area of the figure bounded by the curve $y = 8x^2 - x^5$, the straight line x = 1 and x = k and the x-axis is equal to

(c) 3

(d) - 1

27.

3

(a) 2

(d) 1

[AIEEE 2004]

[IIT Screening 1994]

	(a) 2	(b) 1	(c) 1/2	(d) None of these
30.		2 + x, $y = 2 - x$ and $x = 2$ is		[MP PET1996]
	(a) 3	(b) 4	(c) 8	(d) 16
31.	Area enclosed between the	curve $y^2(2a-x) = x^3$ and line $x = x^2$	= 2a above x-axis is	[MP PET 2001]
	(a) πa^2	(b) $\frac{3\pi a^2}{2}$	(c) $2\pi a^2$	(d) $3\pi a^2$
32.	Area bounded by the curve	xy - 3x - 2y - 10 = 0, x-axis and	the lines $x = 3$, $x = 4$ is	[AI CBSE 1991]
	(a) $16 \log 2 - 3$	(b) $16 \log 2 - 13$	(c) $16 \log 2 + 3$	(d) None of these
33.	The area of the triangle form	med by the tangent to the hyperbola	$xy = a^2$ and coordinate axes is	[Rajasthan PET 2000]
	(a) a^2	(b) $2a^2$	(c) $3a^2$	(d) $4a^2$
34.	If a curve $y = a\sqrt{x} + bx$ p	asses through the point (1, 2) and th	the area bounded by the curve, line $x = x$	
	(a) $a = 3, b = -1$	(b) $a = 3, b = 1$	(c) $a = -3, b = 1$	[MP PET 2002] (d) $a = -3, b = -1$
35.	The area bounded by the cu	arve $y = f(x)$, x-axis and ordinates	$x = 1 \text{ and } x = b \text{ is } (b-1)\sin(3b+4) \text{ t}$	then $f(x)$ is
	(a) 2(n 1) ang(2 n + 4) +	ain(2 m + 4)	$(h) (h-1) \sin(2n+4) + 2 c$	[Rajasthan PET 2000]
	(a) $3(x-1)\cos(3x+4) +$ (c) $(b-1)\cos(3x+4) + 3$		(b) $(b-1)\sin(3x+4) + 3c$ (d) None of these	$\cos(3x+4)$
26		arabola $y^2 = 4ax$ and the straight li	• •	IMD DET 10021
36.	2			[MP PET 1993]
	(a) $\frac{a}{3}$ sq. units	(b) $\frac{1}{3a^2}$ sq. units	(c) $\frac{1}{3a}$ sq. units	(d) $\frac{2}{3a}$ sq. units
37.	The area bounded by the cu	arve $x = at^2$, $y = 2at$ and the x-axis	in $1 \le t \le 3$ is.	[Pb. CET 1998]
	(a) $26a^2$	(b) $8a^2$	(c) $\frac{26a^2}{3}$	(d) $\frac{104 a^2}{3}$
38.	If A_n be the area bounded	by the curve $y = (\tan x)^n$ and the l	ines $x=0$, $y=0$ and $x=\frac{\pi}{4}$, then for n	>2 [IIT 1996, Him. UCET 2002]
			-	
	(a) $A_n + A_{n-2} = \frac{1}{n-1}$	(b) $A_n + A_{n-2} < \frac{1}{n-1}$	(c) $A_n - A_{n-2} = \frac{1}{n-1}$	(d) None of these
39.	The area between the curve	$y = 2x^4 - x^2$, the axis and the ord	linates of two minima of the curve is	
	(a) $\frac{7}{120}$	(b) $\frac{9}{120}$	(c) $\frac{11}{120}$	(d) None of these
40.	The slope of the tangent to	o a curve $y = f(x)$ at $(x, f(x))$ is 2	2x + 1. If the curve passes through the	ne point (1, 2), then the area of the region
	bounded be the curve, the x	x-axis and the line x =1 is		[HT 1995]
	(a) $\frac{5}{6}$	(b) $\frac{6}{5}$	(c) 6	$(d) \frac{1}{6}$
				Symmetrical Area
		$\bigcirc B$	asic Level	
41.	The area bounded by the <i>x</i> -	axis and the curve $y = \sin x$ and x		[Kerala (Engg.)2002]
41.	The area bounded by the <i>x</i> -(a) 1			[Kerala (Engg.)2002] (d) 4
41.	(a) 1	axis and the curve $y = \sin x$ and x	$=0$, $x=\pi$ is	
	(a) 1	axis and the curve $y = \sin x$ and x (b) 2	$=0$, $x=\pi$ is	(d) 4

The area of the region bounded by the curves y = |x - 2|, x = 1, x = 3 and the x-axis is

(b) 2

The area of the region bounded by y = |x-1| and y = 1 is

28.

29.

388 Area Under Curves

200	Thea ender earves			
43.	The area bounded by the p	arabola $y^2 = 4ax$, its axis and to	wo ordinates $x = 4$, $x = 9$ is	
	(a) $4a^2$	(b) $4a^2.4$	(c) $4a^2(9-4)$	(d) $\frac{152\sqrt{a}}{3}$
44.	Area bounded by the parab	pola $y^2 = 2x$ and the ordinates x	x = 1, $x = 4$ is	
	(a) $\frac{4\sqrt{2}}{3}$ sq. units	(b) $\frac{28\sqrt{2}}{3}$ sq. units	(c) $\frac{56}{3}$ sq. units	(d) None of these
45.	Area bounded by the parab	pola $y^2 = 4ax$ and its latus rectu	m is	[Rajasthan PET 1997, 2000, 2002]
	(a) $\frac{2}{3}a^2$ sq. units	(b) $\frac{4}{3}a^2$ sq. units	(c) $\frac{8}{3}a^2$ sq. units	(d) $\frac{3}{8}a^2$ sq. units
46.	The area between the curve	e $y^2 = 4ax$, x-axis and the ordin	nates $x = 0$ and $x = a$ is	[Rajasthan PET 1996]
	(a) $\frac{4}{3}a^2$	(b) $\frac{8}{3}a^2$	(c) $\frac{2}{3}a^2$	(d) $\frac{5}{2}a^2$
47.	Area of the ellipse $\frac{x^2}{a^2} + \frac{y}{b^2}$	$\frac{v^2}{r^2} = 1 \text{ is}$		[Karnataka CET 1993]
	(a) πab sq. units	(b) $\frac{1}{2}\pi ab$ sq. units	(c) $\frac{1}{4}\pi ab$ sq. units	(d) None of these
48.	The area of the smaller seg	ement cut off from the circle x^2	$+y^2 = 9$ by $x = 1$ is	[Rajasthan PET 2002]
	(a) $\frac{1}{2}$ (9 sec ⁻¹ 3 – $\sqrt{8}$)	(b) $9 \sec^{-1}(3) - \sqrt{8}$	(c) $\sqrt{8} - 9 \sec^{-1} 3$	(d) None of these
49.	The area of the upper half	of the circle whose equation is ()	$(x-1)^2 + y^2 = 1$ is given by	[Kurukshetra CEE 1995]
	$(a) \int_0^2 \sqrt{2x - x^2} dx$	$\text{(b)} \int_0^1 \sqrt{2x - x^2} dx$	$\text{(c)} \int_{1}^{2} \sqrt{2x - x^2} dx$	(d) $\frac{\pi}{4}$
			Advance Level	
50.	The area bounded by the co	urves $y = \ln x, y = \ln x , y = 1$	$\ln x$ and $y = \ln \ x $ is	[AIEEE 2002]
51.	(a) 4 sq. units Ratio of the area cut off a distance from the vertex is		(c) 10 sq. units the is that of the corresponding rectangle	(d) None of these contained by that double ordinate and its
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{2}{3}$	(d) 1
52.	The area bounded by the co	urves $x = a\cos^3 t$, $y = a\sin^3 t$	is	
	(a) $\frac{3\pi a^2}{8}$	(b) $\frac{3\pi a^2}{16}$	(c) $\frac{3\pi a^2}{32}$	(d) $3\pi a^2$
				Area between Two curves
			Basic Level	
53.	The area bounded by the co	urves $y = \sqrt{x}$, $2y + 3 = x$ and x -	axis in the 1st quadrant is	[IIT 2003]
	(a) 9	(b) $\frac{27}{4}$	(c) 36	(d) 18
54.	The area of region $\{(x, y)\}$	$x^2 + y^2 \le 1 \le x + y$ is		[Kerala (Engg.) 2002]

(c) $\frac{\pi^2}{3}$

[Rajasthan PET 2001]

The area bounded by the curve y = x, x-axis and ordinates x = -1 to x = 2 is

55.

56.	(a) 0 The area bounded by the cu	(b) $1/2$ arves $y = x - 1$ and $y = -1$	(c) $3/2$	(d)	5/2 [IIT Screening 2002]
	(a) 1	(b) 2	(c) $2\sqrt{2}$	(d)	4
57.	* /	* /	and the curves $y = 2^x$, $y = 2x - x^2$ is	(4)	[AMU 2001]
		(b) $\frac{3}{\log 2} + \frac{4}{3}$		(d)	$\frac{3}{\log 2} - \frac{4}{3}$
58.	The area of figure bounded	by $y = e^{x}, y = e^{-x}$ and th	e straight line $x = 1$ is		[Karnataka CET 1999]
	(a) $e + \frac{1}{2}$	(b) $e - \frac{1}{a}$		(4)	$e + \frac{1}{a} + 2$
	e	ě	(c) $e + \frac{1}{e} - 2$	(u)	e + - + 2 e
59.	The area bounded by the cu	$\text{irves } y = \log_e x \text{ and } y = 0$	$(\log_e x)^2$ is		[Rajasthan PET 2000]
	(a) $3 - e$	(b) $e - 3$	(c) $\frac{1}{2}(3-e)$	(d) $\frac{1}{2}(e-3)$	
60.	The area bounded by the cu	$y^2 - x = 0 \text{ and } y - x$	$c^2 = 0$ is		[MP PET 1997]
	(a) $\frac{7}{3}$	(b) $\frac{1}{3}$	(c) $\frac{5}{3}$	(d)	1
<i>(</i> 1	The area enclosed by the pa	3	3		FANTI 10001
61.	1	2	4		[AMU 1999] 8
	(a) $\frac{1}{3}$	(b) $\frac{2}{3}$	(c) $\frac{4}{3}$	(d)	$\frac{6}{3}$
62.	The area bounded by curve	$y^2 = x$, line $y = 4$ and y	v-axis is	[Roorkee 199	5; Rajasthan PET 2003]
	(a) $\frac{16}{3}$	(b) $\frac{64}{3}$	(c) $7\sqrt{2}$	(d)	None of these
	3	3		(=)	
63.	Area included between the	two curves $y^2 = 4ax$ and		1084: Daiacthan	PET 1999; Kerala (Engg.)2002]
	(a) $\frac{32}{3}a^2$ sq. units	(h) 16 ag unita	22		16
	3	3	(c) $\frac{32}{3}$ sq. units	(u)	$\frac{16}{3}a^2$ sq. units
64.	Area bounded by the curve	$x^2 = 4y$ and the straight 1	line $x = 4y - 2$, is		[SCRA 1986; IIT 1981]
	(a) $\frac{8}{9}$ sq. units	(b) $\frac{9}{8}$ sq. units	(c) $\frac{4}{3}$ sq. units	(d)	None of these
65.	What is the area bounded b	by the curves $x^2 + y^2 = 9$	and $y^2 = 8x$		[DCE 1999]
	(a) 0	(b) $\frac{2\sqrt{2}}{3} + \frac{9\pi}{2} - 9 \sin \theta$	$n^{-1} \left(\frac{1}{3}\right)$ (c) 16π	(d)	None of these
66.	The area bounded by the ci	rcle $x^2 + y^2 = 4$, line $x = $	$\sqrt{3}y$ and x- axis lying in the first quadran	nt, is	
					Kurukshetra CEE 1998]
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d)	π
67.	The area in the first quadran	$\int_{0}^{\pi} dt dt = \int_{0}^{\pi} dt dt dt = \int_{0}^{\pi} dt dt dt = \int_{0}^{\pi} dt dt dt dt = \int_{0}^{\pi} dt dt dt dt dt dt dt dt $	and $v = \sin x$ is		[MP PET 199 7]
•.•					
	(a) $\frac{(\pi^3 - 8)}{4}$	(b) $\frac{\pi^3}{3}$	(c) $\frac{(\pi^3 - 16)}{4}$	(d)	$\frac{(\pi^3-8)}{2}$
68.	For $0 \le x \le \pi$, the area bo	unded by $y = x$ and $y = x$	$+\sin x$, is		[Roorkee Quqalifying 1998]
	(a) 2	(b) 4	(c) 2π	(d)	4π
69.	Area bounded by $y = x \sin x$		$= 0$ and $x = 2\pi$, is	[Roorkee 1981; F	Rajasthan PET 1995]
	(a) 0	(b) 2π sq. units	(c) π sq. units	(d)	4π sq. units
70.	The area bounded by curve	s $y = \cos x$ and $y = \sin x$	and ordinates $x = 0$ and $x = \frac{\pi}{4}$ is	[Karn	ataka CET 2002]
	(a) $\sqrt{2}$	(b) $\sqrt{2} + 1$	(c) $\sqrt{2}-1$	(d)	$\sqrt{2}(\sqrt{2}-1)$
71					
71.	The area formed by triangu	lar shaped region bounded	by the curves $y = \sin x$, $y = \cos x$ and $x = \cos x$	= 0 is	[MP PET 2000]

390 Area Under Curves

72. Area between the curve $y = \cos x$ and x-axis when $0 \le x \le 2\pi$, is [MP PET 1997]

AOB is the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where OA = a, OB = b. Then area between the arc AB and chord AB of the ellipse is **73.**

(a) πab

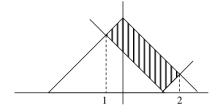
(b) $(\pi - 2)ab$

(c) $\frac{ab(\pi-2)}{4}$

(d) $\frac{ab(\pi+2)}{4}$

Advance Level

For which of the following values of m, the area of the region bounded by the curve $y = x - x^2$ and the line y = mx equals $\frac{9}{2}$ 74.


[IIT 1999]

(a) -4

(d) 4

The area of the figure bounded by the curves y = |x - 1| and y = 3 - |x|, is 75.

[AIEEE 2003; Orissa JEE 2003]

(a) 2 sq. units

(b) 3 sq. units

(c) 4 sq. units

(d) 1 sq. units

If the ordinate x = a divides the area bounded by the curve $y = \left(1 + \frac{8}{x^2}\right)$, x-axis and the ordinates x = 2, x = 4 into two equal parts, then **76.**

(a) 8

(b) $2\sqrt{2}$

(d) $\sqrt{2}$

The area of the region lying inside $x^2 + (y-1)^2 = 1$ and out side $c^2x^2 + y^2 = c^2$, where $c = (\sqrt{2} - 1)$ is 77. [Roorkee 1999]

- (a) $(4-\sqrt{2})\frac{\pi}{4} + \frac{1}{\sqrt{2}}$ (b) $(4+\sqrt{2})\frac{\pi}{4} \frac{1}{\sqrt{2}}$ (c) $(4+\sqrt{2})\frac{\pi}{4} + \frac{1}{\sqrt{2}}$
- (d) None of these
- The area enclosed between the curves $y = \log_e(x + e)$, $x = \log_e(x + e)$, $x = \log_e(\frac{1}{v})$ and the x-axis, is **78.**

[Roorkee 1990; Pb. CET 2002]

(d) None of these

The area of the region formed by $x^2 + y^2 - 6x - 4y + 12 \le 0$, $y \le x$ and $x \le \frac{5}{2}$ is 79.

[Roorkee 1996; PUCET 2002]

(a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$

(b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$

(c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$

(d) None of these

If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where b > 0 is maximum, then b =80.

[IIT 1997]

(d) None of these

Let f(x) = Maximum $[x^2, (1-x^2), 2x(1-x)]$ where $0 \le x \le 1$. The area of the region bounded by the curves y = f(x), x-axis, x = 0 and 81. [IIT 1997; IIIT Hydrabad 2002]

(b) $\frac{14}{27}$

(d) None of these

The area of the closed figure bounded by x = -1 and x = 2 and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is 82.

(a) $\frac{16}{3}$ sq. units

(b) $\frac{10}{3}$ sq. units

(c) $\frac{13}{3}$ sq. units

(d) $\frac{7}{3}$ sq. units

83.	The	volume of the solid formed	l by r	otating the area enclosed between	the	curve $y = x^2$ and the line $y = 1$	abo	out $y = 1$ is (in cubic units)
		$\frac{9\pi}{5}$		$\frac{7\pi}{3}$		$\frac{8\pi}{3}$	(d)	None of these
84.	The	volume of the solid obtained	ed by	rotating the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	abo	but the axis of x is		[MNR 1995]
	(a)	$\pi a^2 b$	(b)	$\pi - b^2$	(c)	$\frac{4}{3}\pi a^2 b$	(d)	$\frac{4}{3}\pi ab^2$
85.	The	part of the parabola between	en the	parabola $y^2 = 4ax$ and the line	<i>x</i> =	c is revolved about x-axis. The	voluı	me of the resulting solid is
	(a)	$2\pi ac^2$	(b)	πac^2	(c)	$\frac{\pi c^2}{4}$	(d)	$4\pi ac^2$
86.	The	volume of the solid genera	ted by	y revolving about the y- axis the f	figure	e bounded by the parabola $y = x$	² an	$d x = y^2 is$
						_		[UPSEAT 2002]
	(a) ·	$\frac{21}{5}\pi$	(b)	$\frac{24}{5}\pi$	(c)	$\frac{5}{24}\pi$	(d)	None of these
87.				e of height 6 cm., and radii are 5 c				
00		258 cc	` /	250 cc	` /	268 cc		275 cc
88.				etween $x = 1$ and $x = 2$ is revol				
	(a)	2π	(b)	4π	(c)	6π	(a)	8π
				Advance	Lev	el		
89.		volume of a solid obtained quadrant is	l by r	evolving about y-axis enclosed b	etwe	en the ellipse $x^2 + 9y^2 = 9$ and	l the	straight line $x + 3y = 3$ in the [MNR 1994]
	(a)	3π	(b)	4π	(c)	6π	(d)	9π
90.	The is	volume of the frustum of a	right	circular cone. The radii of whos	e end	ds are respectively 10 cms and 10	6 <i>cm</i> .	s and thickness is 4 <i>cms</i> ,
	(a)	1232π	(b)	332π	(c)	1032π	(d)	1132π
91.		line segment joining the p 4π then the value of m is e		(1, m) and $(2, 2m)$ is revolved roto	ound	the y-axis to form a frustum of a	a con	e of the volume of the frustum
92.		rustum of sphere is made by		4 ing two parallel planes of any sp of frustum when the distance of the stance of the		. If radius of sphere is 5 cm and		ance between the plane is 1cm,
	(a)	$5\pi cm^2$	(b)	$10\pi cm^2$	(c)	$15 \pi cm^2$	(d)	$40\pi cm^2$

Answer Sheet

Assignment (Basic and Advance Level)

1	2	2	1	E	(7	O	0	10	11	10	12	1.4	15	16	17	10	10	20
1	2	3	4	5	0	1	8	9	10	11	12	13	14	15	16	17	18	19	20
a	c	a	d	b	b	d	c	d	b	c	b	a	b	c	a	a	c	b	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
c	b	d	d	a	d	b	d	b	b	b	c	b	a	a	c	d	a	a	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	a	d	b	c	b	a	b	a	a	c	a	a	d	d	b	d	c	a	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	b	d	b	b	c	a	a	d	c	a	b	c	b	c	b	a	a	c	b
81	82	83	84	85	86	87	88	89	90	91	92								
a	а	d	d	а	d	а	b	а	c	C	b								