Equations in One Variable

Exercise 38:

Solution 1(1):

y - 2 = 9

[Addition Property of Equality: If the same number is added to both sides of the equality, the sums so obtained are equal.]

∴ y - 2 + 2 = 9 + 2∴ y = 11

Solution 1(2):

p + 3 = 12 [Subtraction Property of Equality: If the same number is subtracted from both sides of an equality the sums so obtained are equal] ∴ p + 3 - 3 = 12 - 3 ∴ p = 9

Solution 1(3):

3x = 18

[Division Property of Equality : If two sides of equality are divided by the same number, then the quotients so obtained are equal.]

$$\therefore \frac{3x}{3} = \frac{18}{3}$$
$$\therefore x = 6$$

Solution 1(4):

 $\frac{m}{4} = 8$

[Multiplication property of an Equality: If two sides of a given equality are multiplied by the same number, the products so obtained are equal.]

$$\therefore \frac{m}{4} \times 4 = 8 \times 4$$

$$\therefore m = 32$$

Solution 1(5):

11y - 4 = 7 [Addition Property of Equality: If the same number is added to both sides of an equality the sums so obtained are equal.] $\therefore 11y - 4 + 4 = 7 + 4$ $\therefore 11y = 11$ [Division Property of Equality: If two sides of an equality are divided by the same number, then the quotients so obtained are equal.] $\therefore \frac{11y}{11} = \frac{11}{11}$

ii 11 11 ∴y=1

Solution 1(6):

7n + 5 = 19

[Subtraction Property of Equality: If the same number is subtracted from both sides of an equality the sums so obtained are equal.]

∴ 7n + 5 - 5 = 19 - 5

∴ 7n = 14

[Division Property of Equality: If two sides of an equality are divided by the same number, then the quotients so obtained are equal.]

 $\therefore \frac{7n}{7} = \frac{14}{7}$ $\therefore n = 2$

Solution 1(7):

13 = 5x - 2

[Addition Property of Equality: If the same number is added to both sides of an equality, the sums so obtained are equal.]

∴ 13+2= 5x-2+2

∴ 15 = 5×

: 5x = 15

[Division Property of Equality: If two sides of an equality are divided by the same number, then the quotients so obtained are equal.]

$$\frac{5 \times 5}{5} = \frac{15}{5}$$
$$\frac{5 \times 5}{5} = 3$$

Solution 1(8):

 $6 = 3 + \frac{y}{8}$

[Subtraction Property of Equality: If the same number is subtracted from both sides of an equality, the sums so obtained are equal.]

$$\therefore 6 - 3 = 3 - 3 + \frac{\sqrt{8}}{8}$$
$$\therefore 3 = \frac{\sqrt{8}}{8}$$

[Multiplication property of an Equality: If two sides of a given equality are multiplied by the same number, the products so obtained are equal.]

$$\therefore 3 \times 8 = \frac{y}{8} \times 8$$
$$\therefore y = 24$$

Solution 1(9):

41 = 5q + 11

[Subtraction Property of Equality: If the same number is subtracted from both sides of an equality the sums so obtained are equal.] $\therefore 41 - 11 = 5q + 11 - 11$ $\therefore 30 = 5q$ [Division Property of Equality: If two sides of an equality are divided by the same number, then the quotients so obtained are equal.] $\therefore \frac{30}{5} = \frac{5q}{5}$ $\therefore q = 6$

Solution 1(10):

5 = 5q + 5

[Subtraction Property of Equality : If the same number is subtracted from both sides of an equality, the sums so obtained are equal.]

∴ 5 – 5 = 5q + 5 – 5

∴ 0 = 5q

[Division Property of Equality: If two sides of an equality are divided by the same number, then the quotients so obtained are equal.]

$$\frac{0}{2} = \frac{5q}{2}$$

∴ q=0

Exercise 39:

Solution 1(1):

2p = p + 7 $\therefore 2p - p = p + 7 - p$ $\therefore p = 7$

Solution 1(2):

8q - 2 = 3q + 18 8q - 2 - 3q = 3q + 18 - 3q 5q - 2 = 18 5q - 2 + 2 = 18 + 2 5q = 20 $\frac{5q}{5} = \frac{20}{5}$ q = 4

Solution 1(3):

y - 9 = 6y + 16
∴ 6y + 16 = y - 9
∴ 6y + 16 - y = y - 9 - y
∴ 5y + 16 - 16 = -9 - 16
∴ 5y = -25
∴
$$\frac{5y}{5} = \frac{-25}{5}$$

∴ y = -5

Solution 1(4):

4x - 5 = 3(x + 2) $\therefore 4x - 5 = 3x + 6$ $\therefore 4x - 5 - 3x = 3x + 6 - 3x$ $\therefore x - 5 = 6$ $\therefore x - 5 + 5 = 6 + 5$ $\therefore x = 11$

Solution 1(5):

7a+2= 26+3a \therefore 7a+2-3a= 26+3a-3a \therefore 4a+2= 26 \therefore 4a+2-2= 26-2 \therefore 4a= 24 $\therefore \frac{4a}{4} = \frac{24}{4}$ \therefore a= 6

Solution 1(6):

5 - 5p = 2p + 9

$$\therefore 2p + 9 = 5 - 5p$$

 $\therefore 2p + 9 + 5p = 5 - 5p + 5p$
 $\therefore 7p + 9 = 5$
 $\therefore 7p + 9 - 9 = 5 - 9$
 $\therefore 7p = -4$
 $\therefore \frac{7p}{7} = \frac{-4}{7}$
 $\therefore p = -\frac{4}{7}$

Solution 1(7):

$$6y - 8 = 2 - 5y$$

$$\therefore 6y - 8 + 5y = 2 - 5y + 5y$$

$$\therefore 11y - 8 = 2$$

$$\therefore 11y - 8 + 8 = 2 + 8$$

$$\therefore 11y = 10$$

$$\therefore \frac{11y}{11} = \frac{10}{11}$$

$$\therefore y = \frac{10}{11}$$

Solution 1(8):

12 + a = 4a + 6 $\therefore 4a + 6 = 12 + a$ $\therefore 4a + 6 - a = 12 + a - a$ $\therefore 3a + 6 = 12$ $\therefore 3a + 6 - 6 = 12 - 6$ $\therefore 3a = 6$ $\therefore \frac{3a}{3} = \frac{6}{3}$ $\therefore a = 2$

Solution 1(9):

$$6(x-1) = x + 11$$

$$\therefore 6x - 6 = x + 11$$

$$\therefore 6x - 6 - x = x + 11 - x$$

$$\therefore 5x - 6 = 11$$

$$\therefore 5x - 6 + 6 = 11 + 6$$

$$\therefore 5x = 17$$

$$\therefore \frac{5x}{5} = \frac{17}{5}$$

$$\therefore x = \frac{17}{5}$$

Solution 1(10):

3b + 5 = 5(b + 1) $\therefore 3b + 5 = 5b + 5$ $\therefore 5b + 5 = 3b + 5$ $\therefore 5b + 5 - 3b = 3b + 5 - 3b$ $\therefore 2b + 5 - 5 = 5 - 5$ $\therefore 2b + 5 - 5 = 5 - 5$ $\therefore 2b = 0$ $\therefore \frac{2b}{2} = \frac{0}{2}$ $\therefore b = 0$

Solution 1(11):

$$10 - 2x = 17 - 7x$$

$$\therefore 10 - 2x + 7x = 17 - 7x + 7x$$

$$\therefore 10 + 5x = 17$$

$$\therefore 10 + 5x - 10 = 17 - 10$$

$$\therefore 5x = 7$$

$$\therefore \frac{5x}{5} = \frac{7}{5}$$

$$\therefore x = \frac{7}{5}$$

Solution 1(12):

$$5(8 - y) = 3y + 13$$

$$\therefore 40 - 5y = 3y + 13$$

$$\therefore 3y + 13 = 40 - 5y$$

$$\therefore 3y + 13 + 5y = 40 - 5y + 5y$$

$$\therefore 8y + 13 = 40$$

$$\therefore 8y + 13 - 13 = 40 - 13$$

$$\therefore 8y = 27$$

$$\therefore \frac{8y}{8} = \frac{27}{8}$$

$$\therefore y = \frac{27}{8}$$

Exercise 40:

Solution 1(1):

Let x be the given number. 4 less than another number = x - 4It is given that 4 less than one number is equal to 11. $\therefore x - 4 = 11$

Solution 1(2):

Let Soham's age be x years. Sagar is 2 years younger than Soham. \therefore Sagar's age = (x - 2) years It is given that the sum of their ages is 38. \therefore x + (x - 2) = 38

Solution 1(3):

Let x be the given number. Now, twice the number = 2x9 less than twice the number = 2x - 9It is given that, 9 less than twice the number is 15. $\therefore 2x - 9 = 15$

Solution 1(4):

Let the breadth of the given rectangle be x cm. So the length of the rectangle = (x + 3) cm Perimeter of the rectangle = 2(Length + Breadth) \therefore Perimeter of the rectangle = 2(x + 3 + x)It is given that the perimeter of the rectangle is 30 cm. $\therefore 2(x + 3 + x) = 30$

Solution 1(5):

Let x be the amount with Kiran. \therefore Amount with Sultana = x - 5 It is given that the two of them together have Rs. 51. \therefore (x - 5) + x = 51

Exercise 41:

Solution 1:

Let Rakesh's age be x years. :. Kasim's age = (x + 6) years The sum of their age is 54 years. :. x + (x + 6) = 54 :. x + x + 6 = 54 :. 2x + 6 = 54 :. 2x + 6 - 6 = 54 - 6 :. 2x = 48 :. $\frac{2x}{2} = \frac{48}{2}$:. x = 24 :. Rakesh's age = 24 years. And, Kasim's age = (x + 6) = (24 + 6) = 30 years

Solution 2:

Let sal man have Rs. x. Supriva has Rs. (x - 6): Together they have Rs. 44. $\therefore x + (x - 6) = 44$ $\therefore 2x - 6 = 44$ $\therefore 2x - 6 = 44$ $\therefore 2x - 6 + 6 = 44 + 6$ $\therefore 2x = 50$ $\therefore \frac{2x}{2} = \frac{50}{2}$ $\therefore x = 25$ \therefore Salman has Rs. 25. And, Supriya has Rs. (25 - 6) = Rs. 19.

Solution 3:

Let x be the number of mango trees in the garden. Then, the number of coconut trees = x Total number of trees = x + x = 2xIf there are 50 trees altogether, then 2x = 50 $\therefore \frac{2x}{2} = \frac{50}{2}$ $\therefore x = 25$ The number of mange trees in the garden 25

The number of mango trees in the garden = 25The number of coconut trees in the garden = 25

Solution 4:

Let x be the natural number. : Number following x = x + 1 Sum of a natural number and the number following it is 69. : x + (x + 1) = 69 : x + x + 1 = 69 : 2x + 1 = 69 : 2x + 1 - 1 = 69 - 1 : 2x = 68 : $\frac{2x}{2} = \frac{68}{2}$: x = 34 The required natural number is 34 and number following it is (34 + 1) = 35.

Solution 5:

Let x be the length of side of an equilateral triangle. :. Perimeter of an equilateral triangle = $3 \times \text{side} = 3 \times \text{x} = 3 \times$ It is given that the perimeter of the equilateral triangle is 57 cm. 3x = 57 $\frac{3x}{3} = \frac{57}{3}$ x = 19The length of side of an equilateral triangle is 19 cm.

Solution 6:

Let Khanduji have x buffaloes.

🔬 Khanduji has 2x cows.

The total number of cows and buffaloes = x + 2x

If the total number of cows and buffaloes he has is 15, then

x + 2x = 15 $\therefore 3x = 15$ $\therefore \frac{3x}{3} = \frac{15}{3}$ $\therefore x = 5$ $\therefore 2x = 2 \times 5 = 10$ Khanduji has 5 buffaloes and 10 cows.

Solution 7:

Let us assume that John gets x litres of milk. Then, Saurabh gets (x + 2) litres of milk. Ten litres of milk was shared between John and Saurabh. $\therefore x + (x + 2) = 10$ $\therefore x + x + 2 = 10$ $\therefore 2x + 2 = 10$ $\therefore 2x + 2 = 10 = 2$ $\therefore 2x = 8$ $\therefore \frac{2x}{2} = \frac{8}{2}$ $\therefore x = 4$ $\therefore x + 2 = 4 + 2 = 6$ John gets 4 litres of milk and Saurabh get 6 litres of milk.