PASCAL'S LAW

The intensity of fluid at any point in a stationary fluid is same in all directions.

$$p_x = p_y = p_z$$

- Pressure varies only with depth in stationary fluids, whereas if fluids is in motion pressure may vary in horizontal direction also.
- Fluid pressure is measured in Force/Area and it is expressed in Pascal (N/m²) or Bar.

1 Bar =
$$10^5$$
 N/m²
1 MPa = 10 Bar

- Barometer shows atmospheric pressure.
- 1 kgf = 9.81 Newton.
- Pressure is a scalar quantity.

ABSOLUTE PRESSURE

Pressure measured with reference to absolute zero. Absolute pressure cannot be negative

Absolute pressure = gauge pressure + local atmospheric pressure

•
$$P_{gauge} = \rho gh$$

Here,

 ρ = Density of fluid

g = Acceleration due to gravity

h = Height

- Gauge pressure can be positive, negative or zero.
- Atmospheric pressure varies with altitude, temperature and local conditions.
- At mean sea level atmospheric pressure is 1.01 x 10⁵
 Pascal or 1 Bar or 10.3 mts. of height of water or 76 cm height of mercury.

HYDROSTATIC LAW

For downward 'h'

For upward 'h'

$$\frac{dP}{dh} = -\omega$$

CONVERSION OF ONE FLUID COLUMN TO ANOTHER FLUID COLUMN

$$\rho_1 h_1 = \rho_2 h_2$$
 $s_1 h_1 = s_2 h_2$

Here, ρ = Density of fluid s = Relative density

- Piezometer is suitable for small and positive pressure measurement.
- The manometric liquid should have high density and vapour pressure.
- Simple manometer/U-tube manometer can measure both positive and negative pressure.
- Aneroid/Mercury barometer used to measure *local* atmospheric pressure on *absolute* scale.
- Density of mercury = 13.6 x 10³ kg/m³
 Density of air = 1.24 kg/m³