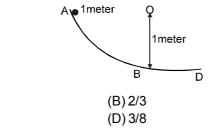
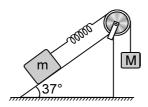
PHYSICS

DPP No. 37

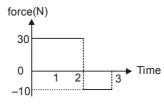

Total Marks: 27

Max. Time: 29 min.

Topics: Work, Power and Energy, Friction

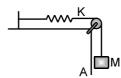

Type of Questions		M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.5	(3 marks, 3 min.)	[15, 15]
Multiple choice objective ('-1' negative marking) Q.6	(4 marks, 4 min.)	[4, 4]
Subjective Questions ('-1' negative marking) Q.7 to Q.8	(4 marks, 5 min.)	[8, 10]

1. In the track shown in figure section AB is a quadrant of a circle of 1 metre radius. A block is released at A and slides without friction until it reaches B. After B it moves on a rough horizontal floor and comes to rest at distance 3 metres from B. What is the coefficient of friction between floor and body?


- (A) 1/3 (C) 1/4
- 2. A block of mass m is attached with a massless spring of force constant k. The block is placed over a fixed rough inclined surface for which the coefficient of friction is $\mu = \frac{3}{4}$. The block of mass m is initially at rest.

The block of mass M is released from rest with spring in unstretched state. The minimum value of M required to move the block up the plane is (neglect mass of string and pulley and friction in pulley.)

- (A) $\frac{3}{5}$ m
- (B) $\frac{4}{5}$ m
- (C) $\frac{6}{5}$ m
- (D) $\frac{3}{2}$ m


3. Starting at rest, a 10 kg object is acted upon by only one force as indicated in figure. Then the total work done by the force is

- (A) 90 J
- (C) 245 J

- (B) 125 J
- (D) 490 J

4. Block A in the figure is released from rest when the extension in the spring is x_0 ($x_0 < mg/k$). The maximum downward displacement of the block is (ther is no friction):

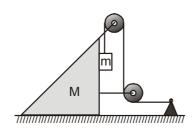
(A) $\frac{2Mg}{K} - 2x_0$

(B) $\frac{Mg}{2K} + x_0$

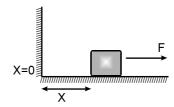
(C) $\frac{2Mg}{\kappa} - x_0$

- (D) $\frac{2Mg}{K} + x_0$
- 5. The minimum work done required to accelerate a truck on a horizontal road from rest to speed v
 - (A) is less than that required to accelerate it from v to 2v.
 - (B) is equal than that required to accelerate it from v to 2v.
 - (C) is more than that required to accelerate it from v to 2v.
 - (D) may be any one of the above since it depends on the force acting on the truck and the distance over which it acts.
- Which of the following relations are always true? 6.

 \vec{v} = velocity, \vec{a} = acceleration, K = $\frac{1}{2}$ mv² = Kinetic energy


(A)
$$\frac{dK}{dt} = m\vec{v} \cdot \vec{a}$$

(B)
$$\frac{d|\vec{v}|}{dt} = \frac{\vec{a} \cdot \vec{v}}{|\vec{v}|}$$


(C)
$$\frac{d|\vec{v}|}{dt} = \left| \frac{d\vec{a}}{dt} \right|$$

(A)
$$\frac{dK}{dt} = m\vec{v} \cdot \vec{a}$$
 (B) $\frac{d|\vec{v}|}{dt} = \frac{\vec{a} \cdot \vec{v}}{|\vec{v}|}$ (C) $\frac{d|\vec{v}|}{dt} = \left| \frac{d\vec{a}}{dt} \right|$ (D) $|\Delta \vec{v}| = \left| \int_{t_1}^{t_2} \vec{a} \, dt \right|$

7. In the arrangement shown in Fig. the masses of the wedge M and the body m are known. The appreciable friction exists only between the wedge and the body m, the friction coefficient being equal to μ . The masses of the pulley and the thread are negligible. Find the acceleration of the body m relative to the horizontal surface on which the wedge Slides.

The block of mass m initially at x = 0 is acted upon by a horizontal force at any position x is given as F = a8. $-bx^2$ (where a > μ mg), as shown in the figure. The co-efficient of friction between the surfaces of contact is μ. The net work done on the block is zero, if the block travels a distance of

nswers Kev

DPP NO. - 37

- **1.** (A)
- **2**. (A)
- **3**. (B) **4**. (A) **5**. (A)

8.
$$x = [3(a - \mu mg)/b]^{\frac{1}{2}}$$

DPP NO. - 37

1.
$$mg \times 1 = \frac{1}{2}mu^2 \Rightarrow u^2 = 2g$$
(1)

$$v^2 = u^2 + 2as$$
 $\Rightarrow 0 = 2g - 2a(3)$

$$\Rightarrow$$
 a = $\frac{g}{3}$ $\Rightarrow :: \mu_k g = a$

$$\therefore \mu_k g = \frac{g}{3} \therefore u_k = \frac{1}{3}$$

2. As long as the block of mass m remains stationary, the block of mass M released from rest comes down

by $\frac{2Mg}{V}$ (before coming it rest momentantly again).

Thus the maximum extension in spring is

$$x = \frac{2Mg}{\kappa}$$
(1)

for block of mass m to just move up the incline $kx = mg \sin \theta + \mu mg \cos \theta$ (2)

$$2Mg = mg \times \frac{3}{5} + \frac{3}{4} mg \times \frac{4}{5}$$

or
$$M = \frac{3}{5} \text{ m}$$
 Ans.

3. Change in velocity = $\frac{\text{area under } F - T \text{ graph}}{\text{mass}}$

$$= \frac{60 + (-10)}{10} = 5 \text{ m/s}$$

$$W_F = \Delta K.E. = \frac{1}{2} (10) 5^2 = 125 J$$

4.
$$\frac{1}{2} k x_0^2 + Mgh = \frac{1}{2} k (x_0 + h)^2 + 0$$

$$\Rightarrow h = \frac{2Mg}{k} - 2x_0$$

Maximum downward displacement

$$= \left[\frac{2Mg}{k} - 2x_0 \right]$$

5. Minimum work done to accelerate the truck from speed 0 to v and from v to 2v are

$$\Delta W_1 = \frac{1}{2} m v^2 - \frac{1}{2} m (0)^2 = \frac{1}{2} m v^2$$

and
$$\Delta W_2 = \frac{1}{2} m(2v)^2 - \frac{1}{2} m(v)^2 = \frac{3}{2} mv^2$$

$$\Delta W_1 < \Delta W_2$$

Sol. For W to be maximum; $\frac{dW}{dx} = 0$;

i.e.
$$F(x) = 0$$
 $\Rightarrow x = \ell$, $x = 0$

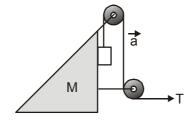
Clearly for d = ℓ , the work done is maximum.

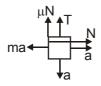
Alternate Solution:

External force and displacement are in the same direction

.. Work will be positive continuosly so it will be maximum when displacement is maximum.

6.
$$\vec{a} = \frac{d\vec{v}}{dt} \implies d\vec{v} = \vec{a} dt$$


$$\Rightarrow \Delta \vec{v} = \int_{t_1}^{t_2} \vec{a} dt$$


Rate of change of speed = component of acceleration along velocity

$$\Rightarrow \frac{d|\vec{v}|}{dt} = \vec{a} \cdot \frac{\vec{v}}{v}$$

$$K = \frac{1}{2} m \vec{v} \cdot \vec{v} \implies \frac{dK}{dt} = m \vec{v} \cdot \vec{a}$$

7.

$$N = ma \qquad T = (M + m)a$$

$$mg - T - \mu ma = ma$$

$$mg - (M + m)a - \mu ma = ma$$

$$a = \frac{g}{\mu + 2 + (M/m)}$$

$$a_m = \sqrt{2} a = \frac{\sqrt{2}g}{\mu + 2 + (M/m)}.$$

8.
$$W_f + W_F = -\mu mgx + \int_0^x (a - bx^2) dx$$

$$0 = (-\mu mg + a) x - \frac{bx^3}{3}$$

$$\Rightarrow x = \sqrt{\frac{3(a - \mu mg)}{b}}$$