Model Question Paper Mathematics Class 10+2

Time Allowed: 3 hours Max. Marks 85

Special Instructions :-

- Write Question paper series in the circle at the top left side of title page of Answer Book. (i)
- While answering questions, indicate on the Answer-Book the same Question No. as (ii) appears in the question paper.
- (iii) Try to answer the questions in serial order as far as possible.
- (iv) All questions are compulsory.
- (v) Internal choices have been provided in some questions. Attempt only one of the choices in such questions.
- Question Nos. 1 to 10 are multiple choice questions of 1 mark each. Question no. (vi) 11 to 13 are of 3 marks each, 14 to 22 are of 4 marks each, 23 to 27 are of 6 marks each.
- Use of calculator is not allowed. (vii)
- $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ is equal to Q1.
 - (a)
- $\frac{7\pi}{6}$ (b) $\frac{5\pi}{6}$ (c) $\frac{\pi}{3}$
- (d)
- Q2. The number of all possible matrices of order 3×3 with each entry 00N 1 is
 - (a) 27
- (b) 18
- (c) 81
- 512 (d)

- The derivative of $\sin^{-1} x$ is Q3.

- (a) $\frac{1}{\sqrt{1-x^2}}$ (b) $-\frac{1}{\sqrt{1-x^2}}$ (c) $\frac{1}{1-x^2}$ (d) $\frac{1}{1+x^2}$ (1)
- The approximate change in volume V of a cube of side x metres caused by Q4. increasing the side by 2% is: (1)
 - $0.06 x^3 m^3$ (a)
- $0.002 \text{ x}^3\text{m}^3$ (c) (b)
- $0.6 x^3 m^3$
- (d) 0.006 x3m3
- $\int \sec x \, dx = ?$ Q5.
 - (a)
- tanx + c (b) $\frac{log}{sec x} + \frac{tanx}{+ c}$ (c) $\frac{log}{sec x} tanx$
- (1)(d) $\cot x + C$

Q6.	The d	legree of the	differe	ntial equation	$\left(\frac{d^2y}{dx^3}\right)^3$	$\frac{dy}{dx} + \left(\frac{dy}{dx}\right)^3 + 2$	y = 0	is	(1)
	(a)	3	(b)	1	(c)	2	(d)	Not de	efined
Q7.		and \vec{b} be the	two u	nit vectors an	dθis	the angle bet	ween	them. T	hen a+b (1)
	(A)	$\theta = \frac{\pi}{4}$	(B)	$\theta = \frac{\pi}{3}$	(C)	$\theta = \frac{\pi}{2}$	(D)	$\theta = \frac{2\pi}{3}$	
Q8.	a . a a (A)	= ? →² a	(B)	$ \overrightarrow{a} ^2$	(C)	0	(D)	$ \overrightarrow{a^2} $	(1)
Q9.	Distar	nce between	two pla	nes 2x+3y+4	z = 4 a	and 4x+6y+8z	z=12 is	6	(1)
	(A)	2 units	(B)	4 units	(C)	8 units	(D)	$\frac{2}{\sqrt{29}}$ un	nits
Q10.	The probability of obtaining an even prime number on each die when a pair of dice is rolled is: (1)								
	(A)	o o	(B)	1 / 3	(C)	<u>1</u> 12	(D)	<u>1</u> 36	(1)
Q11.		all points of d		nuity of f, whe	ere f is	defined by			(3)
	<i>f</i> (x) =	$\frac{1 \times 1}{x} \text{if } x \\ 0 \text{if } x$	< ≠ 0 < = 0						
Q12.	Find tl	he intervals in	which t	he function f, g	given b	$y f(x) = 2x^3 - 3x$	(²-36)	x + 7 is s	trictly

- increasing. (3)
- Q13. A die is tossed thrice. Find the probability of getting an odd number atleast once.(3)

Q14. Find gof and fog, if
$$f(x) = |x|$$
 and $g(x) = |5x-2|$. (4)

Q15. Prove that:
$$\cos^{1}\frac{4}{5} + \cos^{1}\frac{12}{13} = \cos^{1}\frac{33}{65}$$
 (4)

Q16. Express the following matrix as sum of a symmetric and skew symmetric matrix.

$$\begin{pmatrix}
3 & 5 \\
1 & -1
\end{pmatrix}

OR$$

By using properties of determinants show that

$$\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = (a-b)(b-c)(c-a)$$
(4)

Q18. Evaluate:
$$\int \sqrt{x^2 + 4x + 1} dx$$
 OR

Evaluate: $\int \frac{3x-1}{(x+2)^2} dx$

Q19. Using properties of definite integral evaluate
$$\int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) dx$$
 (4)

Q20. Find the general solution of differential equation:

$$x \frac{dy}{dx} +2y = x^2 (x \neq 0)$$
 OR

Solve the differential equation:

$$(1 + e^{\frac{x}{y}}) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$$

Q21. Show that the four points A, B, C and D with position vectors
$$4\hat{i} + 5\hat{j} + \hat{k}$$
, $-\hat{j} - \hat{k}$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $-4\hat{i} + 4\hat{j} + 4\hat{k}$ respectively are coplanar. (4)

- Q22. Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as "number greater than 4". (4)
- Q23. Solve the system of binear equations, using matrix method: (6)

$$2x+y+z=1$$

$$x-2y-z=\frac{3}{2}$$

$$3y-5z=9$$

Q24. Find the area enclosed by the ellipse
$$\frac{X^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (6)

Using integration, find the area bounded by the curve |x| + |y| = 1

Q25. Find the shortest distance between the lines

$$\vec{r} = (\hat{1} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{1} - 3\hat{j} + 2\hat{k})$$
and $\vec{r} = 4\hat{1} + 5\hat{j} + 6\hat{k} + \mu (2\hat{1} + 3\hat{j} + \hat{k})$

OR

Find the angle between the line

$$\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$$
and the plane $10x + 2y - 11z = 3$ (6)

Q26. Find the absolute maximum value and absolute minimum value of the function.

$$f(x) = x^3$$
 in the interval [-2, 2]

OR

Find the equations of tangent and normal to the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2 \text{ at } (1, 1)$ (6)

Q27. Minimize z = -3x + 4y subject to

$$x + 2y \leq 8$$

$$3x + 2y \leq 12$$

$$x, y \geqslant 0$$
 graphically. (6)

Distribution of Marks

Unit I (9 marks)

- 1. Relations and functions. 4
- 2. Inverse trigonometric function 1+4=5

Unit II (11 marks)

Matrices and determinants 1+4© + 6 = 11

Unit III (38 marks)

- 1. Continuity and differentiability 1+3+4=8
- 2. Applications of Derivatives $1+3+6 \odot = 10$
- 3. Integrals 1+4© +4=9
- 4. Application of integrals 6© = 6
- 5. Differential equations 1+4© = 5

Unit IV (13 marks)

- 1. Vectors 1+1+4=6
- 2. 3-D Geometry 1+6© = 7

Unit V (6 marks) Linear Programming 6

Unit VI (8 marks) Probability 1+3+4=8

- Note: (1) Total No. of Questions = 27
 - (2) Q.No. 1 to 10 of 1 mark each, 11 to 13 are of 3 marks each, 14 to 22 are of 4 marks each, 23 to 27 are of 6 marks each.

Choice:

Q.No. 16, 18, 20, 24, 25, 26

Marks 4, 4, 6, 6, 6 = 30 marks

Solutions Set

Mathematics 10+2

Q1. $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ is equal to

- (a) $\frac{7\pi}{6}$ (b) $\frac{5\pi}{6}$ © $\frac{\pi}{3}$

- (d) $\frac{\pi}{6}$

Solution 1 : Answer is $\frac{5\pi}{6}$ i.e. b

(1)

Q2. The number of all possible matrices of order 3×3 with each entry 00N 1 is

- 27
- 18 (b)
- (c) 81
- (d)

Solution 2: Answer is 512 i.e. d

(1)

The derivative of $\sin^{-1} x$ is Q3.

- (a) $\frac{1}{\sqrt{1-x^2}}$ (b) $-\frac{1}{\sqrt{1-x^2}}$ (c) $\frac{1}{1-x^2}$ (d) $\frac{1}{1+x^2}$

Solution 3: Answer is $\frac{1}{\sqrt{1-y^2}}$ i.e. a

(1)

The approximate change in volume V of a cube of side x metres caused by Q4. increasing the side by 2% is:

- (a) $0.06 \text{ x}^3\text{m}^3$
- (b) $0.002 \text{ x}^3\text{m}^3$ (c) $0.6 \text{ x}^3\text{m}^3$ (d)
- 0.006 x³m³

Solution 4: Answer is 0.06 x³m³ i.e. a

(1)

Q5. $\int \sec x \, dx = ?$

- (a) tanx + c (b) $\frac{log}{sec x} + \frac{tanx}{+ c}$ (c) $\frac{log}{sec x} tanx$ (d) cotx + C

Solution 5: Answer is $\frac{\log}{\sec x} + \frac{\tan x}{+ c}$ i.e. b

(1)

The degree of the differential equation $\left(\frac{d^2y}{dx^3}\right)^3 + \left(\frac{dy}{dx}\right)^3 + 2y = 0$ is Q6.

- (a) 3
- (b) 1
- © 2
- (d) Not defined

(1)

Solution 6: Answer is 3 i.e. a

Q7.	Let \vec{a} and \vec{b} be the two unit vectors and θ is the angle between them. The	าen a+b
	is a unit vector if	

(A)
$$\theta = \frac{\pi}{4}$$

(B)
$$\theta = \frac{\pi}{3}$$

(C)
$$\theta = \frac{\pi}{2}$$

(A)
$$\theta = \frac{\pi}{4}$$
 (B) $\theta = \frac{\pi}{3}$ (C) $\theta = \frac{\pi}{2}$ (D) $\theta = \frac{2\pi}{3}$ (1)

Solution 7 : Answer is $\theta = \frac{2\pi}{3}$ i.e. D

Q8.
$$\vec{a} \cdot \vec{a} = ?$$
 (1)
(A) \vec{a} (B) $|\vec{a}|^2$ (C) 0 (D) $|\vec{a}^2|$

Solution 8: Answer is $|\vec{a}|^2$ i.e. B

Q9. Distance between two planes
$$2x + 3y + 4z = 4$$
 and $4x + 6y + 8z = 12$ (1)

(C) 8 units (D)
$$\frac{2}{\sqrt{29}}$$
 units

Solution 9 : Answer is $\frac{2}{\sqrt{20}}$ units i.e. D.

Q10. The probability of obtaining an even prime number on each die when a pair of dice is rolled is: (1) (B) $\frac{1}{3}$ (c) $\frac{1}{12}$ (D) $\frac{1}{36}$ (A) 0

Solution 10 : Answer is $\frac{1}{36}$ i.e. D

Q11. Find all points of discontinuity of
$$f$$
, where f is defined by
$$f(x) = \begin{cases} \frac{1 \times 1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
(3)

Solution 11 : L.H.L. =
$$lt \int_{x\to 0}^{x} f(x) = \frac{lt}{x\to 0} \frac{(-x)}{x} = -1$$

R.H.L. =
$$lt f(x) = lt \frac{x}{x \rightarrow 0} = 1$$

L.H.L. ≠ R.H.L.

 \therefore f is discontinuous at x = 0

Q12. Find the intervals in which the function
$$f$$
, given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is strictly increasing. (3)

Solution 12: Let
$$f'(x) = 0$$

$$\Rightarrow 6(x-3)(x+2) = 0$$

$$x = 3 \text{ or } -2$$

$$f \text{ is strictly increasing in } (-\infty,-2) \cup (3,\infty)$$

Q13. Adie is tossed thrice. Find the probability of getting an odd number atleast once. (3)

Solution 13:
$$P(A) = \frac{3}{6} = \frac{1}{2}$$

Required probability = $P(\text{atleast an odd number})$
= $1 - P(\overline{A} \ \overline{A} \ \overline{A})$
= $1 - \left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{2}\right)$
= $\frac{7}{8}$

Q14. Find gof and fog, if f(x) = |x| and g(x) = |5x-2|. (4)

Solution 14:
$$f(x) = |x|, g(x) = |5x-2|$$

 $(gof)(x) = g(f(x)) = g(|x|) = |5|x|-2|$
 $(fog)(x) = f(g(x)) = f(|5x-2|) = ||5x-2||$

Q15. Prove that:
$$\cos^{1}\frac{4}{5} + \cos^{1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$

Solution 15: Let
$$\cos^{-1} \frac{4}{5} = x$$
 and $\cos^{-1} \frac{12}{13} = y$

We know that

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$= \frac{4}{5} \times \frac{12}{13} - \frac{3}{5} \times \frac{5}{13}$$

$$= \frac{33}{65}$$

$$x+y = \cos^{-1}\frac{33}{65}$$

$$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$

Q16. Express the following matrix as sum of a symmetric and skew symmetric matrix.

$$\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$$

Solution 16: $A = \begin{pmatrix} 3 & 5 \\ 1 & -1 \end{pmatrix}$ and $A' = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$

$$P = \frac{1}{2}(A + A')$$

$$= \frac{1}{2} \begin{pmatrix} 6 & 6 \\ 6 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 3 \\ 3 & -1 \end{pmatrix}$$

$$\Rightarrow$$
 P' = P

⇒ P is symmetric matrix.

$$Q = \frac{1}{2}(A - A')$$

$$Q = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$$

$$\Rightarrow$$
 Q' = $-$ Q

$$\Rightarrow P + Q = \begin{pmatrix} 3 & 3 \\ 3 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 1 & -1 \end{pmatrix} = A$$

A is sum of symmetric & skew symmetric Matrix.

OR

By using properties of determinants show that

$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

Solution16:

$$\Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$

Operate
$$R_2 \rightarrow R_2 - R_1$$

 $R_3 \rightarrow R_3 - R_1$

$$\Delta = \begin{vmatrix} 1 & a & a^2 \\ 0 & b-a & b^2-a^2 \\ 0 & c-a & c^2-a^2 \end{vmatrix}$$

Taking common & expanding

$$\Delta = (a-b)(b-c)(c-a) \tag{4}$$

Q17. Differentiate sin (cosx²) w.r.t. x

Solution 17: Let
$$y = Sin(Cos(x^2))$$

$$\frac{dy}{dx} = \cos(\cos x^2)(-\sin x^2)\frac{d}{dx} x^2$$
$$= -2x \sin x^2 \cos(\cos x^2)$$

Q18. Evaluate:
$$\int \sqrt{x^2 + 4x + 1} dx$$
 (4)

Solution 18: Let I =
$$\int \sqrt{x^2 + 4x + 1} dx$$

= $\int \sqrt{(x+2)^2 - (\sqrt{3})^2} dx$ using formula $\int \sqrt{x^2 - a^2}$

$$= \frac{(x+2)}{2} \sqrt{(x+2)^2 - (\sqrt{3})^2} - \frac{3}{2} \log \left[(x+2) + \sqrt{(x+2)^2 - (\sqrt{3})^2} \right] + C$$

$$= \frac{(x+2)}{2} \sqrt{x^2 + 4x + 1} - \frac{3}{2} \log \left[(x+2) + \sqrt{x^2 + 4x + 1} \right] + C$$

OR

Evaluate : $\int_{-(x+2)^2}^{2} dx$

Solution 18 : Let I =
$$\int \frac{3x-1}{(x-2)^2} dx$$

$$\frac{3x-1}{(x-2)^2} = \frac{A}{(x-2)} + \frac{B}{(x-2)^2}$$

$$I = \int \frac{3x-1}{(x-2)^2} dx = 3 \int \frac{dx}{(x-2)} + 5 \int \frac{dx}{(x-2)^2}$$

$$= 3 \log (x-2) - 5 \left(\frac{1}{(x-2)}\right) + C$$

Q19. Using properties of definite integral evaluate
$$\int_{-\pi}^{\frac{\pi}{4}} \log(1 + \tan x) dx$$
 (4)

Solution 19: Let I =
$$\int_{0}^{\frac{\pi}{4}} \log (1 + \tan x) dx$$
Using
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$$
We get

$$I = \int_{0}^{\frac{\pi}{4}} \log \left(\frac{2}{1 + \tan x} \right) dx$$

$$2I = \int_{0}^{\frac{\pi}{4}} \log 2 \, dx$$

$$I = \frac{1}{2} \log 2 \left[x \right]_{0}^{\frac{\pi}{4}}$$

$$I = \frac{\pi}{8} \log 2$$

Q20. Find the general solution of differential equation :

$$x \frac{dy}{dx} + 2y = x^2 (x \neq 0)$$

Solution 20: Given differential equation is

$$x \frac{dy}{dx} + 2y = x^2$$

$$\frac{dy}{dx} + \frac{2}{x}y = x$$

I.F. =
$$e^{\log x^2} = x^2$$

$$y.x^2 = \int x^3 dx + c$$

$$y = \frac{X^2}{4} + CX^{-2}$$

OR

Solve the differential equation:

$$(1 + e^{\frac{x}{y}}) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$$
OR
$$Solution : \frac{dx}{dy} = \frac{e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right)}{1 + e^{\frac{x}{y}}}$$

Put
$$x = vy \Rightarrow \frac{dx}{dy} = v + y \frac{dv}{dy}$$

 $v + y \frac{dv}{dy} = \frac{-e^{v}(1-v)}{1 + e^{v}}$
 $y \frac{dv}{dv} = \frac{-(e^{v} + v)}{e^{v} + 1}$

Integrating we get

$$\log (e^{v} + v) y = \log c$$
$$-x + ye^{x/y} = c$$

Q21. Show that the four points A, B, C and D with position vectors $4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} - \hat{k}$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $-4\hat{i} + 4\hat{j} + 4\hat{k}$ respectively are coplanar. (4)

Solution 21:

$$[AB \quad AC \quad AD] = \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix} = 0$$

Hence A, B, C and D are coplanar.

Q22. Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as "number greater than 4".

Solution 22: Sample space is $\{1, 2, 3, 4, 5, 6\}$

P(Success) =
$$\frac{1}{3}$$

$$x = 0, 1, 2$$

$$P(x=0)=P(\bar{S} \bar{S}) = \frac{4}{9}$$

$$P(x=1)=P(S \bar{S} \text{ or } \bar{S} S)=\frac{4}{9}$$

$$P(x=2) = P(SS) = \frac{1}{9}$$

Probability distribution

х	0	1	2
P(x)	<u>4</u>	<u>4</u>	<u>1</u>
	9	9	9

Q23. Solve the system of binear equations, using matrix method:

$$2x+y+z=1$$

$$x-2y-z=\frac{3}{2}$$

$$3y-5z=9$$

Solution 23: Let Ax = B

(A) =
$$34 \neq 0$$

Adj A = $\begin{vmatrix} 13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5 \end{vmatrix}$

$$\bar{A}^1 = \frac{Adj A}{|A|} = \frac{1}{34} \begin{vmatrix} 13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5 \end{vmatrix}$$

$$X = \begin{bmatrix} 1 \\ \frac{1}{2} \\ -\frac{3}{2} \end{bmatrix}$$
 $\Rightarrow x = 1, y = \frac{1}{2}, z = \frac{-3}{2}$

Q24. Find the area enclosed by the ellipse $\frac{X^2}{a^2} + \frac{y^2}{b^2} = 1$

Solution 24: Considering horizontal strips

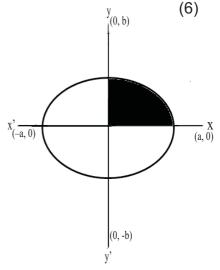
Area of Ellipse

$$= 4 \int_{0}^{b} x dy$$

$$= \frac{4a}{b} \left[\frac{y}{2} \sqrt{b^2 - y^2} + \frac{b^2}{2} \sin^{-1} \frac{y}{b} \right]_{0}^{b}$$

$$= \frac{4a \quad b^2 \pi}{b \cdot 2 \cdot 2} = \pi ab$$
OR

(8)



(6)

Using integration, find the area bounded by the curve |x| + |y| = 1

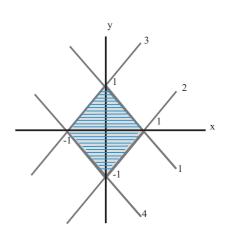
Solution: Given Curve
$$|x| + |y| = 1$$

$$x + y = 1 \rightarrow (1)$$
 $x - y = 1 \rightarrow (2)$

$$-x+y=1 \to (3)$$
 $-x-y=1 \to (4)$

Required area =
$$4 \int_{0}^{1} y dx = 4 \left[x - \frac{x^2}{2} \right]_{0}^{1}$$

= $4 \left[\frac{1}{2} \right] = 2$



Q25. Find the shortest distance between the lines

$$\vec{r} = (\hat{1} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{1} - 3\hat{j} + 2\hat{k})$$

and $\vec{r} = 4\hat{1} + 5\hat{j} + 6\hat{k} + \mu (2\hat{1} + 3\hat{j} + \hat{k})$

Solution 25:

Here
$$\vec{a}_1 = \hat{1} + 2\hat{j} + 3\hat{k}, \vec{b}_1 = \hat{1} - 3\hat{j} + 2\hat{k}$$

 $\vec{a}_2 = 4\hat{1} + 5\hat{j} + 6\hat{k}, \vec{b}_2 = 2\hat{1} + 3\hat{j} + \hat{k}$
 $\vec{a}_2 - \vec{a}_1 = 3\hat{1} + 3\hat{j} + 3\hat{k}$
 $\vec{b}_1 \times \vec{b}_2 = -9\hat{1} + 3\hat{j} + 9\hat{k}$
 $|\vec{b}_1 \times \vec{b}_2| = \sqrt{171}$
 $|\vec{b}_1 \times \vec{b}_2| = \sqrt{171}$

S.D. =
$$\left| \frac{\overrightarrow{(b_1 \times b_2)} \cdot \overrightarrow{(a_2 - a_1)}}{(\overrightarrow{b_1} \times \overrightarrow{b_2})} \right| = \left| \frac{-27 + 9 + 27}{\sqrt{171}} \right| = \frac{9}{\sqrt{171}}$$
 units

OR

Find the angle between the line

$$\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$$

and the plane 10 x + 2y - 11 z = 3

Solution:
$$\overrightarrow{r} = (-\overrightarrow{i} + 3\overrightarrow{k}) + \lambda (2\overrightarrow{i} + 3\overrightarrow{j} + 6\overrightarrow{k})$$

$$\sin \theta = \left| \frac{(2\hat{i} + 3\hat{j} + 6\hat{k}) \cdot (10\hat{i} + 2\hat{j} - 11\hat{k})}{\sqrt{2^2 + 3^2 + 6^2} \cdot \sqrt{10^2 + 2^2 + (11)^2}} \right|$$

$$= \frac{8}{21}$$

$$\theta = \sin^{-1} \frac{8}{21}$$

Q26. Find the absolute maximum value and absolute minimum value of the function.

 $f(x) = x^3$ in the interval [-2, 2]

Solution 26: $f(x) = x^3, x \in [-2, 2]$

$$f'(x) = 0$$

$$3x^2 = 0$$

$$x = 0 \in [-2, 2]$$

Absolute maximum value of f(x) = 8 at x = 2

Absolute minimum value of f(x) = -8, at x = -2

OR

Find the equations of tangent and normal to the curve

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2$$
 at (1, 1)

Solution 26: Differentiating $x^{\frac{2}{3}}$ $y^{\frac{2}{3}}$ = 2

$$\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{\frac{1}{3}}$$

Slope of tangent at (1, 1) $\frac{dy}{dx}\Big|_{(1,1)} = -1$

Equation of tangent y + x - 2 = 0

Equation of normal is y - x = 0

Q27. Minimize
$$z = -3x + 4y$$
 subject to

$$3x + 2y \leq 12$$

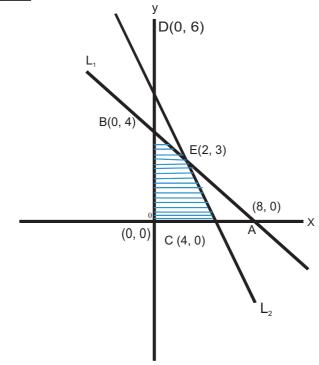
 $x, y \geqslant 0$ graphically.

Solution 27 :
$$L_1 : x + 2y = 8$$

Х	8	0
У	0	4

L	:	3x	+	2v	=	12
-2	•	0/1		— y		. —

Х	4	0
У	0	6



Corner Points	z = -3x + 4y	
0(0, 0)	0	
B (0, 4)	16	
C(4, 0)	-12	→ Minimum
E (2, 3)	6	

Z is minimum at C (4, 0), x = 4, y = 0