
12.1 (c)

12.2 (c)

12.3 (a)

12.4 (a)

12.5 (a)

12.6 (a)

12.7 (a)

12.8 (a), (c)

12.9 (a), (b)

12.10 (a), (b)

12.11 (b), (d)

12.12 (b), (d)

12.13 (c), (d)

12.14 Einstein’s mass-energy equivalence gives E = mc2. Thus the mass

of a H-atom is 2p e

B
m m

c
+ −  where B ≈ 13.6eV is the binding energy.

12.15 Because both the nuclei are very heavy as compared to electron
mass.

12.16 Because electrons interact only electromagnetically.

12.17 Yes, since the Bohr formula involves only the product of the charges.

12.18 No, because accoding to Bohr model, 
2

13.6
–nE

n
= ,

and electons having different energies belong to different levels
having different values of n. So, their angular momenta will be

different, as .
2
nh

mvr
π

=

12.19 The ‘m’ that occurs in the Bohr formula 
4

2 2
0

–
8n

me
E

n hε
= is the

reduced  mass. For H-atom m ≈ me. For positronium /2em m≈  .

Hence for a  positonium E1≈ – 6.8eV.
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12.20 For a nucleus with charge 2e and electrons of charge –e, the levels

are 
4

2 2 2
0

4
–

8n

me
E

n hε
= . The ground state will have two electrons each

of energy E, and the total ground state energy would by –(4×13.6)eV.

12.21 v = velocity of electron

a
0
= Bohr radius.

∴Number of revolutions per unit time 02π
=

a

v

∴ Current 02π
=

a

v
e.

12.22  ν mn ( )
2

2 2

1 1
cRZ

nn p

 
−=  

+ 
,

where m = n + p, (p = 1, 2, 3, ...) and R is Rydberg constant.

For p << n.

–2
2

2 2

1 1
1mn

p
cRZ

n nn
ν

  = −+  
  

2
2 3 2

1 2 1
–mn

p
cRZ

n n n
ν  

= −  

2
2

3 3

2 2
mn

p cRZ
cRZ p

n n
ν

 
=  

 
;

Thus, νmn are approximately in the order 1, 2, 3...........

12.23 H γ in Balmer series corresponds to transition n = 5 to n = 2. So the

electron in ground state n = 1 must first be put in state n = 5.
Energy required = E1 – E5 = 13.6 – 0.54 = 13.06 eV.

If angular momentum is conserved, angular momentum of photon
= change in angular momentum of electron

–34
5 2– 5 – 2 3 3 1.06 10= = = = × ×L L h h h

= 3.18 × 10–34 kg m2/s.

12.24 Reduced mass for 1 –
1

e e
H e

e

m m
H m

m M
M

µ  
= =  

 +
;



Reduced mass for 1 – 1 – 1
2 2 2

µ     = = +    
    

e e e
D e e

m m m
D m m

M M M
;

( – ) .ij i jh E E=ν α µ Thus, 
1

λ α
µij

If for Hydrogen/Deuterium the wavelength is /λ λH D

–1 1
1 –1

2 18402

λ µ

λ µ
  

= +   
×   

D H e

H D

m

M
; ;

(0.99973)λ λ= ×D H

Thus lines are 1217.7 Å , 1027.7 Å, 974.04 Å, 951.143 Å.

12.25 Taking into account the nuclear motion, the stationary state

energies shall be, 
2 4

2 2 2
0

1
–

8n

Z e
E

h n

 
=  

 

µ

ε
. Let Hµ be the reduced mass

of Hydrogen and µD that of Deutrium. Then the frequency of the

1st Lyman line in Hydrogen is 
4 4

2 2 2 2
0 0

31
.1 –

8 4 84

µ µ
ν

ε ε
 

= = 
 

H H
H

e e
h

h h
Thus

the wavelength of the transition is 
4

2 3
0

3
.

4 8
H

H

e

h c
=

µ
λ

ε
The wavelength

of the transition for the same line in Deutrium is 
4

2 3
0

3
4 8

D
D

e

h c
=

µ
λ

ε
.

–λ λ λ∴ ∆ = D H

Hence the percentage difference is

– –
100 100 100

λ λ λ µ µ

λ λ µ

∆
× = × = ×D H D H

H H H

–
( ) ( )

100
/( )

e D e H

e D e H

e H e H

m M m M

m M m M

m M m M

+ +
= ×

+

– 1 100e H D

e D H

m M M

m M M

+  
= ×  +  

Since me << M
H
 < M

D



1 /
100 –1 100

1 /
e HH D

e DH D H

m MM M

m MM M

λ

λ

+ ∆  
× = × ×  +  

= –1 100(1 / )(1 / ) –1 × + + e H e Dm M m M

(1 – –1 100e e

H D

m m

M M

 
+ × 

 
;

e
H D

m
M M

1 1
– 100

 
≈ × 

 

–31
–27 –27

1 1
9.1 10 100–

1.6725 10 3.3374 10
 

= × × × × 

[ ]–49.1 10 1000.5979 – 0.2996= × ×

= 2.714 × 10–2 %

12.26 For a point nucleus in H-atom:

Ground state:
2 2

2
0

1
, – .

4
B B

mv e
mvr

r r πε
= =h

2 2

2 2 2
0

1 1
.

4πε

 
∴ = + 

 B B B

e
m

m r r r

h

2
0

2

4
. 0.51ABr

m e

°πε
∴ = =

h

Potential energy

2 22

2 2 2
0

1 1
– . –27.2 ; . . 13.6eV

2 24 2B B B

mve
eV K E m

rr m r mr

 
= = = = = + 

π 

h h

For an spherical nucleus of radius R,

If R < rB, same result.

If R >> rB: the electron moves inside the sphere with radius

Br ′ ( Br ′ = new Bohr radius).

Charge inside 
3

4

3
B

Br
r

e
R

 ′
′ =  

 



2 3
0

32

4
B

B

R
r

m re

πε ′∴ =  
′ 

h

4 3(0.51A). .Br R
°

′ = 10
°

=R A

4510(A)
°

=

1/4(510) A .Br R
°

′∴ ≈ <

2
2 2 2

1 1
. . .

2 2 2
= = =

′ ′
B B

m
K E mv

m r m r

h h

22 2

1/22 2

(0.51) 3.54
. (13.6eV) 0.16eV

(510) 22.62
B

B B

r

mr r

   
= = = =   

′   

h

2 2 2

3
0

– 3. .
4 2πε

   ′
= +    

  

B
e r R

P E
R

B B

B

e r r R

r R

2 2 2

3
0

1 ( – 3..
4πε

   ′
= +    

  

0.51( 510 – 300)(27.2eV)
1000

 
= +  

 

–141
(27.2eV). –3.83eV.

1000
= + =

12.27 As the nucleus is massive, recoil momentum of the atom may be
neglected and the entire energy of the transition may be considered
transferred to the Auger electron. As there is a single valence electron
in Cr, the energy states may be thought of as given by the Bohr model.

The energy of the nth state 2
2

1
–nE Z R

n
= where R is the Rydberg

constant and Z = 24.

The energy released in a transition from 2 to 1

is 2 231
.1 –

44
 ∆ = = 
 

E Z R Z R The energy required to eject a n = 4

electron is 2
4

1
16

=E Z R .



Thus the kinetic energy of the Auger electron is

2 3 1
. –

4 16
 

=  
 

K E Z R 2

16
1

= Z R

11
16

24 24 13.6eV= × × ×

= 5385.6 eV

12.28 mpc
2 = 10–6 × electron mass × c2

–610 0.5MeV≈ ×

–6 –1310 0.5 1.6 10≈ × × ×

–190.8 10 J≈ ×

–34 8

2 –19

10 3 10
0.8 10

× ×
= =

×p p

c

m c m c

h h
–74 10 m Bohr radius.≈ × >>

2

2
0

1
exp(– )

4
e

r
r r

λ
λ

πε
 

= +  
F

where –1 –74 10 m B

p

r
m c

λ = ≈ × >>
h

1
. 1λ λ∴ << <<B

B

i e r
r

2

0

exp(– )
( ) – .

4
λ

πε
=

e r
U r

r

=mvr h∴ =v
mr

h

2 2

2
0

1
Also :

4
mv e

r r r

λ

πε

   =≈ +     

2 2

3 2
0

1
4

λ

πε

   ∴ = +     

e

mr r r

h

2 2
2

0

[ ]
4

λ
πε

 
∴ = + 

 

e
r r

m

h



If 0
2

4
0; .

πε
λ = = =Br r

m e

h

2 2

0

.
4πε

= B

e
r

m

h

Since –1 ,putλ δ>> = +B Br r r

2 2 2( 2 );negectδ λ δ δ δ∴ = + + + +B B B Br r r r

or 20 (1 2 )λ δ λ= + +B Br r

2
2 2–
(1 – 2 ) – since 1

1 2
B

B B B B

B

r
r r r r

r

λ
δ λ λ λ λ

λ
= ≈ = <<

+

2

0

exp(– – )
( ) – .

4
λδ λ

πε δ
∴ =

+
B

B

e r
V r

r

2

0

1 1 –( ) – .(1 – )
4

δ
λ

πε

  
∴ =   

  
B

BB

e
V r r

rr

(–27.2eV)≅ remains unchanged.

21
. –

2
=K E mv

2

2

1
.=

2
m

mr

h 2

22( )Br δ
=

+

h 2

2

2
1 –

2 BB
rr

δ 
=  

 

h

[ ](13.6eV) 1 2 Brλ= +

Total energy = [ ]
2 2

2
0

– 1 2
4 2 B

B B

e
r

r r
λ

πε
+ +

h

[ ]–27.2 13.6 1 2 eVBrλ= + +

Change in energy 13.6 2 eV 27.2 eVB Br r= × =λ λ

12.29 Let 2ε δ= +

1 2 0 0
2 2

0

.
4
q q R R

F
r r

δ δ

δ δπε + +
= = ∧ , where 1 2

0

,
4
q q

π ε
= ∧ –19 2 9(1.6 10 ) 9 10∧ = × × ×

–2923.04 10= ×



2

=
mv

r

2 0
1

δ

δ+

∧
=

R
v

mr

(i) mvr n= h , 
1/2

1/2 /2

0

mn n
r r

Rmv m

+ 
= =  ∧ 

δ
δ

h h

Solving this for r, we get 

1
2 2 1–

0
n

n
r

m R

δ

δ

 
=  

∧ 

h

For n = 1 and substituting the values of constant, we get

1
2 1–

1
0

r
m R

δ

δ

 
=  

∧ 

h

1
2 –68 2.9

1 –31 –28 19

1.05 10
9.1 10 2.3 10 10

r
+

 ×
=  

× × × × 
= 8 × 10–11 = 0.08 nm

(< 0.1 nm)

(ii) n

n

n
v

mr
=

h
= 

1
1–

0
2 2

m R
n

n

δ δ ∧
 


h
h

. For n = 1, 1
1

v
mr

=
h

= 1.44 × 106 m/s

(iii) K.E. =
2 –19
1

1
9.43 10 J=5.9eV

2
mv = ×

P.E. till 0
0

–R
R

∧
=

P.E. from R0 to r
00

0
0 2 1

1
–1 –

r r

RR

dr R
R

r r

δ
δ

+δ +δ

∧  
= + ∧ = +  δ  ∫

0
1 1

0

1 1
––

1
R

r R

δ

+δ +δ

∧  
=  + δ  

0
1

0

1
– –
1

R

Rr

δ

+δ

 ∧
=  

+ δ  

0
1

0 0

1 1
. . – –

1
R

P E
R Rr

δ

+δ

 ∧ + δ
= + 

+ δ  



–1.9
0
–0.9

0

1.9
. . – –

–0.9
R

P E
Rr

 ∧
=  

 

–18 0.92.3 10 [(0.8) –1.9]= 0.9 ×  J = – 17.3 eV

Total energy is (–17.3 + 5.9) = –11.4 eV.


