

${\mathcal A}$ ssignment

Electromagnetic waves

Basic Level

		Zuste 1	evec .						
ı.	•	netic wave in vacuum depends	-						
		e from γ -rays to radio waves	(b) Decreases as we move from γ -rays to radio waves						
	(c) Is same for all of the		(d) None of these						
2.	•	adiations has the least waveler	•	[AIEEE 2003]					
	(a) γ -rays	(b) β -rays	(c) α -rays	(d) X-rays					
3.	-	oto which TV transmission fror	n a TV tower of height h can						
	(a) $h^{1/2}$	(b) <i>h</i>	(c) h	(d) h^2					
Į.	In short wave communi	cation, waves of which of the	he following frequencies w	vill be reflected back by the					
	ionospheric layer having	electron density 10^{11} per m^3		[AIIMS 2003]					
	(a) 2.8 MHz	(b) 10 <i>MHz</i>	(c) 12 MHz	(d) 18 <i>MHz</i>					
;.	Which of the following an	re not electromagnetic waves	[AIE	EEE 2002; CBSE PMT/PDT 2003					
	(a) Cosmic rays	(b) Gamma rays	(c) β -rays	(d) X-rays					
5.	Ozone is found in			[DPMT 2002]					
	(a) Stratosphere	(b) Ionosphere	(c) Mesosphere	(d) Troposphere					
•	The electromagnetic wav	es travel with a velocity		[J & K CET 2002]					
	(a) Equal to velocity of s light	ound (b) (d) None of these	Equal to velocity of light	(c) Less than velocity of					
	The ozone layer absorbs			[Kerala PET 2002					
	(a) Infrared radiations	(b) Ultraviolet radiations	(c) X-rays	(d) γ-rays					
•	Electromagnetic radiation	n of highest frequency is		[Kerala PMT 2002]					
	(a) Infrared radiations	(b) Visible radiation	(c) Radio waves	(d) γ-rays					
ο.	Which of the following sl	nows green house effect		[CBSE PMT 2002]					
	(a) Ultraviolet rays	(b) Infrared rays	(c) X-rays	(d) None of these					
1.	Which of the following w	aves have the maximum wave	length	[AFMC 2002]					
	(a) X-rays	(b) I.R. rays	(c) UV rays	(d) Radio waves					
2.	Electromagnetic waves a	re transverse in nature is evid	ent by	[AIEEE 2002					
	(a) Polarization	(b) Interference	(c) Reflection	(d) Diffraction					
3.	If \vec{E} and \vec{B} are the elect wave is along the direction	ric and magnetic field vectors		rection of propagation of e.m BSE PMT 1992, 2002; DCE 2002					
		→	→ →						
_	(a) \vec{E}	(b) <i>B</i>	(c) $E \times B$	(d) None of these					
4.	Biological importance of		[CBSE PM/PD 2001						
	(a) It stops ultraviolet ra		(b) Ozone rays reduce gro						
	(c) Ozone layer reflects in O_2/H_2 radio in atmospheration		(d)	Ozone layer controls					

172 Electromagnetic Waves

15.	What is ozone hole					[AFI	MC 2001]
	(a) Hole in the ozone layer	r	(b)	Formation of ozone lay	er		
	(c) Thinning of ozone laye	er in troposphere	(d)	Reduction in ozone thic	kness ii	n stratosphe:	re
16.	Which rays are not the por	rtion of electromagnetic spect	rum			[Haryana CEI	ET 2000]
	(a) X-rays	(b) Microwaves	(c)	α -rays	(d) Rad	lio waves	
17.	Radio wave diffract aroun	d building although light wave	es do	not. The reason is that	radio w	aves [AM	IU 2000]
	(a) Travel with speed larg	er than c		(b)	Have	much	larger
	wavelength than light						
_	(c) Carry news			Are not electromagneti			
18.	=	γ-rays and ultraviolet rays are		=		[CBSE PN	IT 2000]
	(a) $a < b, b > c$	(b) $a > b, b > c$	(c)	a > b, b < c	(d) a <	b, b < c	
19.	Radio waves and visible lig						ET 2000]
	(a) Same velocity but diffe	_	(b)	Continuous emission sp			
	(c) Band absorption spect			(d)		nission spect	
20.	••	agnetic oscillations is in the fo				[Haryana CE]	ET 2000]
	(a) Electrical energy	(b) Magnetic energy	(c)	Both (a) and (b)	(d) Noi	ne of these	
21.	Heat radiations propagate	-				_	IU 2000]
	(a) α -rays	(b) β -rays	(c)	Light waves	(d) Sou	ınd waves	
22.		tting electromagnetic wave nsmitted from the source will		frequency $8.2 \times 10^6 Hz$,	then	_	of the MT 1999]
	(a) 36.6 <i>m</i>	(b) 40.5 m	(c)	42.3 m	(d) 50.	9 m	
23.	In an apparatus, the elect oscillating magnetic field	ric field was found to oscilla will be	te w	rith an amplitude of 18	<i>V/m</i> . T	•	e of the MT 1999]
	(a) $4 \times 10^{-6} T$	(b) $6 \times 10^{-8} T$	(c)	$9 \times 10^{-9} T$	(d) 11×	$< 10^{-11} T$	
24.	According to Maxwell's hy	pothesis, a changing electric f	ield	gives rise to		[AIII	MS 1998]
	(a) An e.m.f.	(b) Electric current	(c)	Magnetic field	(d) Pre	ssure radian	ıt
25.	In an electromagnetic wa	ve, the electric and magnetis	ing	fields are $100 V m^{-1}$ and	l 0.265 A	Λm^{-1} . The m	aximum
_	energy flow is	,	Ü				
						[Pb. PMT 1	1997, 98]
	(a) $26.5 W/m^2$	(b) $36.5 W/m^2$	(c)	$46.7 W / m^2$	(d) 765		
26.	• •	itted by hydrogen in interstel	` ,		` ,		monfino
20.	interaction is atomic hydro	ogen. the energy of the emitte	d wa	ave is nearly		[CBSE PI	-
	(a) 10 ⁻¹⁷ Joule	(b) 1 Joule		7×10^{-8} Joule	(d) 10 ⁻¹	²⁴ Joule	
27.	_	gth range of 1-10 <i>meter</i> . Their i	-				ET 1998]
	(a) 30-300	(b) 3-30	(c)	300-3000	(d) 3-3	000	
28.	The velocity of all radio wa	aves in free space is $3 \times 10^8 m / s$	s.Th	ne frequency of a radio w	vave of v	wavelength 1	50 m, is[CPM
	(a) 45 MHz	(b) 2 <i>MHz</i>	(c)	2 KHz	(d) 20	KHz	
29.		ribe the fundamental laws of				[CPI	MT 1996]
	(a) Electricity only	(b) Magnetism only	(c)	Mechanics only	(d) Bot	h (a) and (b)
30.	An electric charge moving	with a uniform velocity has				[CBSE PI	MT 1996]
	(a) Only an electric field a around it			(b)	Only	a magneti	
	(c) Both electric and magnaround it	netic field around it	(d)	Neither an electric f	ield no	r a magnet	ric field
31.	Which of the following ray	s has minimum frequency				[CBSE PI	MT 1995]
_	(a) U.V. rays	(b) X-rays	(c)	Microwaves	(d) Infi	rared rays	
	•	•				-	5TT 400 : 3
32.		g electromagnetic radiations h		_			MT 1994]
	(a) Ultraviolet waves	(b) X-rays	(c)	γ-rays	(d) Mic	crowaves	

33.	•	ric and magnetic vectors of an ele	•	•						
		on but differ in phase by 90° dicular directions and are in phas	(b) The same direction(c) Mutually perpendic	-						
34.	Energy of E.M. wave	s is due to their		[AFMC 1994]						
34.	(a) Wavelength	s is the to then	(b) Frequency	[Armc 1994]						
	(c) Electric and mag	notic field	(d)	None of these						
25	_	following regions of the electrom								
35.	give rise to absorption		agnetic spectrum win the	violational motion of molecules						
				[SCRA 1994]						
	(a) Ultraviolet	(b) Microwaves	(c) Infrared	(d) Radio waves						
36.	An electromagnetic would generate such	wave travels along z-axis. Which a wave	n of the following pairs of	space and time varying fields [CBSE PMT 1994]						
	(a) E_x, B_y	(b) E_y, B_x	(c) E_z, B_x	(d) E_y, B_z						
37.	Which of the following	ng rays has the maximum frequer	ncy	[CBSE PMT 1994]						
	(a) Gamma rays	(b) Blue light	(c) Infrared rays	(d) Ultraviolet rays						
38.	Radio waves of const	tant amplitude can be generated v	with	[CPMT 1993]						
	(a) FET	(b) Filter	(c) Rectifier	(d) Oscillator						
39.	A signal emitted by a of	an antenna from a certain point c	an be received at another	[CPMT 1993]						
	(a) Sky wave	(b) Ground wave	(c) Sea wave	(d) Both (a) and (b)						
40.	_	es through vacuum is given by	_	[CBSE PMT 1993]						
	(a) $c = \sqrt{\mu_0 \varepsilon_0}$	(b) $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$	(c) $c = \sqrt{\frac{\mu_0}{\varepsilon_0}}$	(d) $c = \sqrt{\frac{\varepsilon_0}{\mu_0}}$						
41.	Approximate height	of ozone layer above the ground i	s	[CBSE PMT 1991]						
	(a) 60 to 70 km	(b) 59 km to 80 km	(c) 70 km to 100 km	(d) 100 km to 200 km						
42.	The electromagnetic	waves do not transport		[Pb. CET 1991]						
_	(a) Energy	(b) Charge	(c) Momentum	(d) Information						
43.	An electromagnetic i	radiation of wavelength λ and fre ransmitted through. Which of the	equency ν propagating in ai	r with velocity c, is incident on						
	(a) The velocity of w	vave remains c but wavelength ch	anges							
	(b) The frequency ν and wavelength λ remain unchanged but the velocity changes									
	(c) The wavelength λ remain unchanged but frequency changes									
	(d) The frequency v :	remains unchanged but the wavel	length changes							
44.	An electric charge o wavelength	scillating with a frequency of 1	kilo cycles/second can rad	liate electromagnetic waves of						
	(a) 100 km	(b) 200 km	(c) 300 km	(d) 400 <i>km</i>						
45.	If a free electron is p	placed in the path of a plane electr	romagnetic wave, it will sta	art moving along						
	(a) Centre of earth	(b) Equator of earth	(c) Magnetic field	(d) Electric field						
46.	A plane electromagnethen	etic wave is incident on a materia		-						
	(a) $p = 0, E = 0$	(b) $p \neq 0, E \neq 0$	(c) $p \neq 0, E = 0$	(d) $p = 0, E \neq 0$						
47.	then the electromagn		egion. If these fields are n	ot perpendicular to each other,						
	(a) Will not pass thr	_	(b)	Will pass through region						
	(c) May pass through	h the region	(d)	Nothing is definite						

	Electromagnetic Way		mlana alaatuurus a								
48.	(a) Kinetic energy	has zero average value in a (b) Magnetic field	(c) Electric field	(d) Both (b) and (c)							
49.	In a plane E.M. wave $48 V m^{-1}$. The waveleng		es sinusoidal at a frequenc	y of $2.0 \times 10^{10} Hz$ and amplitude							
	(a) $24 \times 10^{-10} m$	(b) $1.5 \times 10^{-2} m$	(c) $4.16 \times 10^8 m$	(d) $3 \times 10^8 m$							
50.	Beyond which frequent towards the earth	cy, the ionosphere bends any	incident electromagnetic ra	adiation but do not reflect it back							
	(a) 50 <i>MHz</i>	(b) 40 <i>MHz</i>	(c) 30 <i>MHz</i>	(d) 20 MHz							
51.	Radio waves with freq	uencies higher than televisio	n signals are								
	(a) Ultrasonic waves	(b) Sound waves	(c) Light waves	(d) Microwaves							
52.	Radio waves do not per	netrate in the band of									
	(a) Ionosphere	(b) Mesosphere	(c) Troposphere	(d) Stratosphere							
53.	A radar sends the wave	es towards a distant object a	nd receives the signal reflec	ted by object. These waves are							
	(a) Sound waves	(b) Light waves	(c) Radio waves	(d) Microwaves							
54.	In electromagnetic way	ve, the average energy densi	ty is associated to								
	(a) Electric field only		(b) Magnetic field onl								
	(c) Equally with electr	ric and magnetic fields	(d) Average energy de	ensity is zero							
55.		the moon and reflected bac n from earth, how long does		d on the moon by an astronaut. In round trip							
	(a) 5 minutes	(b) 2.5 minutes	(c) 2.5 s	(d) 500 <i>s</i>							
56.	An electromagnetic wa	ave, going through vacuum	is described by $E = E_0 \sin(kx)$	$(-\omega t)$. Which of the following is							
	independent of wavele			_							
	(a) <i>k</i>	(b) ω	(c) k/ω	(d) $k\omega$							
57.		in a small volume through w	· · · ·	ve is passing, oscillates with							
-,	(a) Zero frequency	5	(b) One-fourth freque								
	(c) One-third frequence	cv of wave	(d)	Double frequency of wave							
58.		-		$= E_0 \sin(kx - \omega t); B = B_0 \sin(kx - \omega t)$							
•	Which of the following			20 511(11 127), 2 20 511(11 127)							
	(a) $E_0 k = B_0 \omega$	· •	(c) $E_0 B_0 = \omega k$	(d) None of these							
	0	0 0	0 0								
59.	antenna. The waveleng	gth of the radiated electroma	gnetic waves is	set into oscillation coupled to ar							
	(a) 377 mm	(b) 377 metre	(c) 377 cm	(d) 3.77 cm							
60.	is		0 W to a 1 cm^2 absorber. Th	e force due to radiation pressure							
	(a) $3.3 \times 10^{-4} N$	(b) $16.5 \times 10^{-7} N$	(c) $3.3 \times 10^{-6} N$	(d) $3.3 \times 10^{-7} N$							
61.	Waves used for telecor	nmunication are									
	(a) Visible light	(b) Infrared	(c) Ultraviolet	(d) Microwaves							
62.	To double the covering	range of a TV transmitter to	ower, its height should be ma	ade							
	(a) Two times	(b) Four times	(c) $\sqrt{2}$ times	(d) 8 times							
63.	A radio receiver anter	nna that is 2 m long is ori	ented along the direction o	of the electromagnetic wave and tential difference across the two							
	(a) 1.23 μV	(b) 1.23 <i>mV</i>	(c) 1.23 V	(d) 12.3 <i>mV</i>							
64.	The transmitting anter		nted vertically. At a point 10	0~km due north of the transmitter							
	(a) 3.33×10^{-10} Tesla	(b) 3.33×10^{-12} Tesla	(c) 10^{-3} Tesla								
	(a) 3.33×10 Testa	(U) 3.33×10 Testa	(c) 10 Testa	(d) 3×10 ⁵ <i>Tesla</i>							

(b) E.M. radiations behave as photons when interacting with material substances

(a) E.M. radiations act as waves when they move place to place

65. Tick the correct statement

			Erectromagnetic waves 1/5
(c) The main factor v nature of e.m. radiatio (d) All of the above		range unsuitable for visio	on is associated with corpuscular
• •	adcast from the moon can be	e received on the earth w	hile the TV broadcast from Delhi
cannot be received at	places about 100 <i>km</i> distant fr	om Delhi. This is because	
	phere around the moon		
(b) Of strong gravity 6			
=	traight and cannot follow the	curvature of the earth	
(d) There is atmosphe			
wave generated is nea	rly		ne wavelength of electromagnetic
(a) 0.5 m	(b) 5 m	(c) 188 m	(d) 30 m
The ratio of electric fie	eld vector E and magnetic field	d vector H i.e., $\left(\frac{E}{H}\right)$ has th	e dimensions of
(a) Resistance		(b) Inductance	
(c) Capacitance		(d) Product of induct	ance and capacitance
The frequency modula	ted waves are		
(a) Reflected by atmos	-	Absorbed by atmosph	_
_	nt of 100 <i>m</i> . The average popu <i>m</i> . the population covered by	_	tower is 1000 per km^2 . The radius
(a) 2×10^6	(b) 3×10^6	(c) 4×10^6	(d) 6×10^6
The ionosphere			
(a) Reflects back radio	waves in the AM band	(b) Reflects back rad	io waves in the FM band
(c) Absorbs radio way	res in the AM band	(d) Absorbs radio wa	ves in the FM band
The wavelength 21 cm	emitted by atomic hydrogen i	n interstellar space belong	s to
(a) Radio waves	(b) Infrared waves	(c) Microwaves	(d) γ-rays
			Electromagnetic waves
	Advan	ce Level	
	tor of plate separation 2 mm is 60 cm^2 , then the value of displaying m^2 .		circuit having source voltage 400 ec will be
(a) 1.062 amp	(b) 1.062×10^{-2} amp	(c) 1.062×10^{-3} amp	(d) 1.062×10^{-4} amp
-	of resistance R, radius a and	•	stant current I . The Poynting

(c) $\frac{I^2R}{al}$

(c) 3.3×10^{-13}

(c) $2 \times 10^4 V/s$

(c) $3.5 \times 10^{17} W/m^2$

In an electromagnetic wave, the amplitude of electric field is 1 V/m. the frequency of wave is $5 \times 10^{14} Hz$. The

To establish an instantaneous displacement current of 2A in the space between two parallel plates of 1µF

A laser beam can be focussed on an area equal to the square of its wavelength A He-Ne laser radiates energy at

wave is propagating along z-axis. The average energy density of electric field, in $Joule/m^3$, will be

capacitor, the potential difference across the capacitor plates will have to be changed at the rate of

the rate of 1mW and its wavelength is 632.8 nm. The intensity of focussed beam will be

(d) $\frac{I^2R}{2\pi al}$

(d) 4.4×10^{-14}

(d) $2 \times 10^6 V/s$

(d) None of these

(b) $\frac{IR^2}{al}$

(b) 2.2×10^{-12}

(b) $4 \times 10^6 V/s$

(b) $2.5 \times 10^9 W/m^2$

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

(a) 1.1×10^{-11}

(a) $4 \times 10^4 V/s$

(a) $1.5 \times 10^{13} W/m^2$

176 Electromagnetic Waves

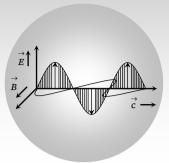
The wave impedance of free space is

82.

electrical power to electromagnetic waves and consumes $100W$ of power. The amplitude of the electric field associated with the electromagnetic radiation at a distance of $10m$ from the lamp will be (a) $1.34 \ V/m$ (b) $2.68 \ V/m$ (c) $5.36 \ V/m$ (d) $9.37 \ V/m$				
	(a) $1.85 \times 10^{-15} T$	(b) $1.85 \times 10^{-16} T$	(c) $1.85 \times 10^{-17} T$	(d) $1.85 \times 10^{-18} T$
79.	electrical power to	electromagnetic waves and co	onsumes $100W$ of power. T	he amplitude of the electric field
	(a) 1.34 V/m	(b) 2.68 V/m	(c) 5.36 V/m	(d) 9.37 V/m
80.	•	ē	0 1	f 800 <i>W</i> . The maximum value of
	(a) 64.7 <i>V/m</i>	(b) 57.8 <i>V/m</i>	(c) 56.72 <i>V/m</i>	(d) 54.77 V/m

81. A lamp radiates power P_0 uniformly in all directions, the magnitude of electric field strength E_0 at a distance r from it is

(a)
$$E_0 = \frac{P_0}{2\pi\varepsilon_0 cr^2}$$
 (b) $E_0 = \sqrt{\frac{P_0}{2\pi\varepsilon_0 cr^2}}$ (c) $E_0 = \sqrt{\frac{P_0}{4\pi\varepsilon_0 cr^2}}$


(a) Zero (b) $376.6~\Omega$ (c) $33.66~\Omega$ (d) $3.76~\Omega$ 83. The transmitting antenna of a radio-station is mounted vertically. At a point 10 km due north of the transmitter

the peak electric field is
$$10^{-3}$$
 Vm^{-1} . The magnitude of the radiated magnetic field is

(a) 3.33×10^{-10} T (b) 3.33×10^{-12} T (c) 10^{-3} T (d) 3×10^{5} T

84. A wave is propagating in a medium of electric dielectric constant 2 and relative magnetic permeability 50. The wave impedance of such a medium is

(a) 5
$$\Omega$$
 (b) 376.6 Ω (c) 1883 Ω (d) 3776 Ω

${\cal A}$ nswer Sheet

Assignments

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	a	a	a	С	a	b	b	d	b	d	a	С	a	d	С	b	a	a	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	a	b	c	a	d	a	b	d	c	c	С	С	С	b	a	a	d	d	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
a	b	d	с	d	b	С	d	b	b	c,	a	d	С	С	С	d	a	b,d	d
										d									
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	b	a	b	d	С	С	a	С	С	a	a	d	d	b	d	b	d	a	d
81	82	83	84																
b	b	b	С																