How do Logarithms Work?

Logarithms

"The Logarithm of a given number to a given base is the index of the power to which the base must be raised in order to equal the given number."

Logarithm of a number is the exponent by which another fixed number (the base) must be raised to produce that number.

If $x = \ell^{g}$, then

$$y = \log_{\delta}(x)$$

(y is the logarithm of x to base ℓ)

 $1000 = 10 \times 10 \times 10 = 10^3$, its written in logarithm as $3 = \log_{10} (1000)$

The Logarithmic Function

The logarithmic function of x is defined as $f(x) = \log_a x$ where a > 0, $a \neq 1$

Laws of LogarithmsNote:Logarithm of a product (Product Law): $\log_a xy = \log_a x + \log_a y$ $\log_a 1 = 0$ Logarithm of a quotient (Quotient Law): $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$ $\log_a a = 1$ Logarithm of a power (Power Law): $\log_a x^m = m \log_a x$ $\log_a x^m = m \log_a x$

If a > 0 and \neq 1 then logarithm of a positive number N is defined as the index x of that power of `a' which equals N i.e.,

 $\log_a N = x \, i\!f\!f a^x = N \Longrightarrow a^{\log_a N} = N, a > 0, a \neq 1 \text{ and } N > 0$

It is also known as fundamental logarithmic identity.

Its domain is $(0, \infty)$ and range is R. a is called the base of the logarithmic function.

When base is 'e' then the logarithmic function is called **natural** or **Napierian logarithmic function** and when base is 10, then it is called common logarithmic function.

Characteristic and mantissa

1. The integral part of a logarithm is called the characteristic and the fractional part is called mantissa.

 $\log_{10} N = integer + fraction(+ve)$ Characters tics Mantissa

- 2. The mantissa part of log of a number is always kept positive.
- 3. If the characteristics of log_{10} N be n, then the number of digits in N is (n+1).
- If the characteristics of log₁₀ N be (− n) then there exists (n − 1) number of zeros after decimal part of N.

Properties of logarithms

Let *m* and *n* be arbitrary positive numbers such that $a > 0, a \neq 1, b > 0, b \neq 1$ then (1) $\log_a a = 1$, $\log_a 1 = 0$ (2) $\log_a b \cdot \log_b a = 1 \implies \log_a b = \frac{1}{\log_b a}$ (3) $\log_c a = \log_b a \cdot \log_c b \text{ or } \log_c a = \frac{\log_b a}{\log_b c}$ (4) $\log_a(mn) = \log_a m + \log_a n$ (5) $\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$ (6) $\log_a m^n = n\log_a m$ (7) $a^{\log_a m} = m$ (8) $\log_a\left(\frac{1}{n}\right) = -\log_a n$ (9) $\log_{a^\beta} n = \frac{1}{\beta}\log_a n$ (10) $\log_{a^\beta} n^\alpha = \frac{\alpha}{\beta}\log_a n$, $(\beta \neq 0)$ (11) $a^{\log_c b} = b^{\log_c a}$, $(a, b, c > 0 \text{ and } c \neq 1)$

Logarithmic inequalities

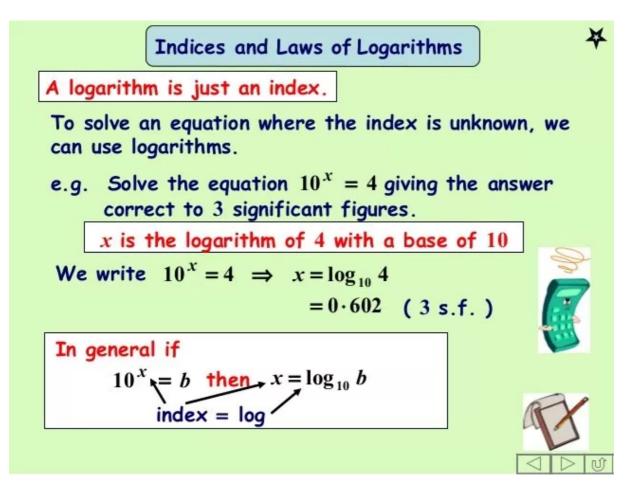
(1) If
$$a > 1, p > 1 \implies \log_a p > 0$$

(2) If $0 < a < 1, p > 1 \implies \log_a p < 0$
(3) If $a > 1, 0
(4) If $p > a > 1 \implies \log_a p > 1$
(5) If $a > p > 1 \implies 0 < \log_a p < 1$
(6) If $0 < a < p < 1 \implies 0 < \log_a p < 1$
(7) If $0 1$
(8) If $\log_m a > b \implies \begin{cases} a > m^b, \text{ if } m > 1 \\ a < m^b, \text{ if } 0 < m < 1 \end{cases}$
(9) $\log_m a < b \implies \begin{cases} a < m^b, \text{ if } m > 1 \\ a > m^b, \text{ if } 0 < m < 1 \end{cases}$$

(10) $\log_p a > \log_p b \Rightarrow a \ge b$ if base p is positive and >1 or $a \le b$ if base p is positive and < 1 *i.e.*, 0 < p < 1.

In other words, if base is greater than 1 then inequality remains same and if base is positive but less than 1 then the sign of inequality is reversed.

Logarithmic Expressions



A logarithm is an exponent.

answer

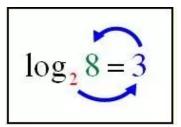
$$\log_2 8 = 3$$

 \uparrow exponent
base

In the example shown above, 3 is the exponent to which the base 2 must be raised to create the answer of 8, or $2^3 = 8$. In this example, 8 is called the anitlogarithm base 2 of 3.

How to convert logarithms to exponents

 $\log_{2} 16 = 4$ This is asking for an exponent. What exponent do you put on the base of 2 to get 16? (2 to the what is 16?) $\log_{3} \frac{1}{9} = -2$ What exponent do you put on the base of 3 to get 1/9? (hint: think negative) $\log_{4} 1 = 0$ What exponent do you put on the base of 4 to get 1? $\log_{3} 3^{\frac{1}{2}} = \frac{1}{2}$ When working with logs, re-write any radicals as rational exponents. What exponent do you put on the base of 3 to get 3 to the 1/2? (hint: think rational) Try to remember the "spiral" relationship between the values as shown at the right. Follow the arrows starting with base 2 to get the equivalent exponential form.



Logarithms with base 10 are called common logarithms. When the base is not indicated, base 10 is implied.

Logarithms with base e are called natural logarithms. Natural logarithms are denoted by In.

Operation Laws of exponents		Laws of logs	
Multiplication	$x^m \cdot x^n = x^{m+n}$	log(a·b) = log(a) + log(b)	
Division	$\frac{x^m}{x^n} = x^{m-n}$	$\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$	
Exponentiation	$(x^m)^n = x^{mn}$	One of the most useful properties of logs	
Zero property	x ⁰ = 1	log(1) = 0	
Inverse	$x^{-1} = \frac{1}{x}$	$\log(x^{-1}) = \log\left(\frac{1}{x}\right) = -\log(x)$	

On the graphing calculator:

Origins of Change of Base Formula:

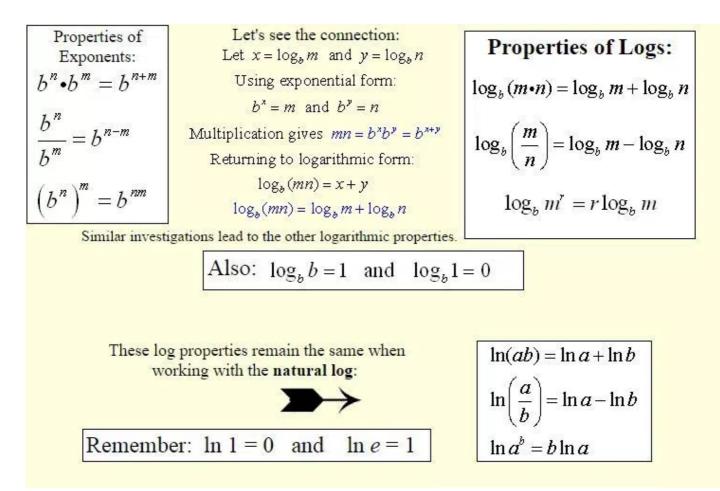
$$\log_b a = x$$
Set = x. $b^x = a$ Convert to
exponential form. $\log b^x = \log a$ Take common log
of both sides. $x \log b = \log a$ Use power rule. $x = \frac{\log a}{\log b}$ Divide by log b.Change of Base Formula:
 $\log_b a = \frac{\log a}{\log b} = \frac{\ln a}{\ln b}$

The base 10 logarithm is the log key. The base e logarithm is the ln key. To enter a logarithm with a different base, use the Change of Base Formula:

$$\log_b x = \frac{\log x}{\log b}$$

Properties of Logs:

Using the properties of exponents, we can arrive at the properties of logarithms.



Examples:

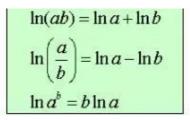
1.	Write in exponential form: $\log_2 64 = 6$	Answer: $2^6 = 64$	
2.	Write in logarithmic form: $3^{-1} = \frac{1}{3}$	Answer: $\log_3\left(\frac{1}{3}\right) = -1$	
3.	Evaluate: log ₄ 1	Answer: $4^{\square}=1$; $?=0$ If using your calculator, remember to use the change of base formula and enter log 1 / log 4.	
4.	What is the value of x? $\log_2 x = 5$	Answer: $2^5 = x$; $x = 32$	
5.	Write in expanded form:	Answer: $\log(a\sqrt{b}) - \log c^6$	
	$\log \frac{a\sqrt{b}}{c^6}$	$\log a + \log \sqrt{b} - \log c^6$	
	(Apply the "properties of logs" rules.)	$\log a + \log b^{\frac{1}{2}} - \log c^{6}$	
		$\log a + \frac{1}{2}\log b - 6\log c$	
6.	Write in expanded form: ln√sin x•cosx	Answer: $\ln(\sin x \cdot \cos x)^{\frac{1}{2}}$	
		$\frac{1}{2}\ln(\sin x \cdot \cos x)$	
		$\frac{1}{2} \left(\ln(\sin x) + \ln(\cos x) \right)$	
7.	Express as a single logarithm: $(\log x + 4\log y) - 5\log z$	Answer: $\log\left(\frac{xy^4}{z^5}\right)$	
	(Apply the "properties of logs" rules in reverse.)		
8.	Express as a single logarithm:	Answer: $\ln \sqrt{\frac{a^4b}{c^4}}$	
	$\frac{1}{2} \left[(4\ln a + \ln b) - 4\ln c \right]$	Answer: $\ln \sqrt{\frac{c^4}{c^4}}$	
9.	Using properties of logs, show that	Answer: $\ln\left(\frac{1}{4}\right)^{-1}$	
	$\ln 4 = \ln \left(\frac{1}{4}\right)^{-1}$		
	(4)	$= -1(\ln 1 - \ln 4)$	
		$= -(0 - \ln 4)$ $= \ln 4$	
10.	Using properties of logs, solve for x:	Answer: $\log_3 4 + \log_3 7$	
	$\log_3 x = \log_3 4 + \log_3 7$	$= \log_3(4.7) = \log_3 28$	
		x = 28	

Logarithmic Equations

A logarithmic equation can be solved using the properties of logarithms along with the use of a common base.

Properties of Logs:

$$\log_{b} (m \cdot n) = \log_{b} m + \log_{b} n$$
$$\log_{b} \left(\frac{m}{n}\right) = \log_{b} m - \log_{b} n$$
$$\log_{b} m^{r} = r \log_{b} m$$



To solve most logarithmic equations: 1. Isolate the logarithmic expression. (you may need to use the properties to create one logarithmic term) 2. Rewrite in exponential form (with a common base) 3. Solve for the variable.

Things to remember about logs:		
$\log_b 1 = 0$	$\ln 1 = 0$	
$\log_b b = 1$	$\ln e = 1$	
$\log_b b^x = x$	$\ln e^x = x$	

Examples:

	Solve for x:	Answer:
1.	$3\log(x+4) = 6$	ANSWER: $3\log(x+4) = 6$ · Isolate the log expression $\log(x+4) = 2$ · Choose base 10 to $10^{\log(x+4)} = 10^2$ · Choose base 10 to correspond with log (base 10) x+4=100 · Apply composition of x = 96 · Isolate the log expression x = 96 · Isolate the log expression x = 96 · Isolate the log expression · Apply composition of inverses and solve.
2.	$\ln x = 4$	ANSWER: $\ln x = 4$ • Remember that e^x and $\ln x$ are inverse functions. $e^{\ln x} = e^4$ $\ln x$ are inverse functions. $x = e^4$ e^{4}
3.	$\log_5(x+1) = 2$	ANSWER: $log_5(x+1) = 2$ $5^{log_6(x+1)} = 5^2$ x+1 = 25 x = 24
4.	$2\ln(3x) = 18$	ANSWER: $2\ln(3x) = 18$ · Isolate the logarithmic $\ln(3x) = 9$ $e^{\ln(3x)} = e^9$ $3x = e^9$ $x = \frac{e^9}{3}$

-		A BIOTETER	
5.	$\log_9 x + \log_9 (x-8) = 1$	ANSWER: $\log_9 x + \log_9 (x - 8) = 1$	
		$\log_{9} [x(x-8)] = 1$	Use the log property to express
			property to express the two terms on the
		$9^{\log_{2}[x(x-8)]} = 9^{1}$	left as a single term.
		$x(x-8) = 9$ $x^2 - 8x - 9 = 0$	• Remember that
		$x^2 - 8x - 9 = 0$	log of a negative value is not a real
		(x-9)(x+1) = 0	number and is not considered a
		$x - 9 = 0 \qquad x + 1 = 0$	solution.
		x=9 $x=1$	
		x=9 $x=-1$	
6.	$\ln(2x-3) + \ln(x+4) = \ln(2x^2+11)$	ANSWER:	
0.	$\ln(2x-3) + \ln(x+4) - \ln(2x+11)$	$\ln(2x - 3) + \ln(x + 4) = 1$	$\ln(2x^2+11)$
		$\ln(2x - 3)(x + 4) = \ln(2x)$	$x^{2} + 11$
		$e^{\ln(2x-3)(x+4)} = e^{\ln(2x^2+11)}$	100 m ×
			1
		$(2x-3)(x+4) = 2x^2 + 1$	
		$2x^2 + 5x - 12 = 2x^2 + 1$	11
		5x - 12 = 11	
		5x = 23	
		$x = \frac{23}{2}$	
		$x = \frac{1}{5}$	
7.	Using your graphing calculator, solve for x to the	ANSWER:	
	nearest hundredth.	Method 1: Rewrite so the equal $\ln(2x+4) - x^2 = 0$	tion equals zero.
	$\ln(2x+4) = x^2$	Find the zeros of the function.	
		$f(x) = \ln(2x+4) - x^2$	
		Plot1 Plot2 Plot3	
	Method 2: Place the left side of the equation into Y ₁ and the right	\Y1∎ln(2X+4)-X2 \Y2=	
	side into Y2. Under the CALC menu, use #5 Intersect to	\Y3= \Y4= -0.89	1.38
	find where the two graphs intersect.		
	and the	¥7= /	
	x =89		
	x = 1.38		1
		Both values are solutions, since the ln of a positive value.	both values allow for
	•	the in or a positive value.	