CHAPTER 16 Lines and Angles

16-1. Lines, Segments, and Rays

A **line** is a straight arrangement of points and extends in two directions without ending.

A line is often named by a lower-case script letter. If the names of two points on a line are known, then the line can be named by those points.

A **segment** is a part of a line and consists of two endpoints and all points in between.

A **ray** is a part of a line. It has one endpoint and extends forever in one direction.

Two rays $\stackrel{\rightarrow}{RP}$ and $\stackrel{\rightarrow}{RQ}$ are called opposite rays if points R, P, and Q are collinear and R is between P and Q.

Written as: line ℓ , line PQ, or \overrightarrow{PQ} .

Written as: segment PQ, or \overline{PQ} .

Written as: ray \overrightarrow{PQ} or \overrightarrow{PQ} .

The length of \overline{PQ} , written as PQ, is the distance between the point P and point Q.

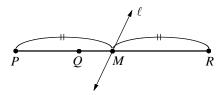
Segment Addition Postulate

If Q is between P and R, then PQ + QR = PR.

Definition of Midpoint

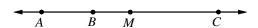
If *M* is the **midpoint** of \overline{PR} , then $PM = MR = \frac{1}{2}PR$.

A **segment bisector** is a line or a segment that intersects a segment at its midpoint.



Line ℓ is a segment bisector.

Example 1 \Box Points A, B, M and C lie on the line as shown below. Point M is the midpoint of \overline{AC} .



a. Which ray is opposite to ray BC?

b. If BM = 6 and $AB = \frac{2}{3}MC$, what is the length of AM?

Solution \Box a. Ray BA

b. Let
$$AB = x$$
.
 $AM = AB + BM = x + 6$
 $AM = MC$
 $x + 6 = \frac{3}{2}x$
 $x = 12$
 $AM = x + 6 = 12 + 6 = 18$

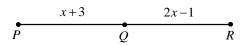
Segment addition postulate Definition of midpoint

Substitution. If
$$AB = \frac{2}{3}MC$$
, $MC = \frac{3}{2}AB = \frac{3}{2}x$.
Solve for x .

Substitute and simplify.

Exercises - Lines, Segments, and Rays

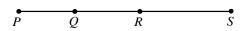
1



In the figure above, Q is the midpoint of PR. If PQ = x + 3 and QR = 2x - 1, what is the length of segment PR?

- A) 4
- B) 7
- C) 11
- D) 14

2

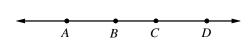


Note: Figure not drawn to scale.

On the segment *PS* above, PR = 12, QS = 16, and $QR = \frac{1}{3}PS$. What is the length of *PS*?

- A) 19
- B) 20
- C) 21
- D) 22

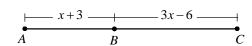
3



In the figure above, which of the following are opposite rays?

- A) Ray AB and Ray CD
- B) Ray CA and Ray CD
- C) Ray DA and Ray AD
- D) Ray CA and Ray BD

4



Note: Figure not drawn to scale.

In the figure above, $AB = \frac{2}{3}BC$. What is the length of AC?

- A) 15
- B) 18
- C) 21
- D) 25

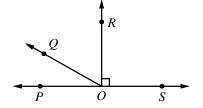
16-2. Angles

Angles are classified according to their measures.

An acute angle measures between 0 and 90. Ex. $\angle POQ$ and $\angle QOR$

A right angle measures 90. Ex. $\angle POR$ and $\angle SOR$

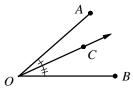
An **obtuse angle** measures between 90 and 180. Ex. ∠QOS A straight angle measures 180. Ex. $\angle POS$



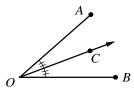
Angle Addition Postulate

If C is in the interior of $\angle AOB$, then $m\angle AOB = m\angle AOC + m\angle COB$.

An **angle bisector** divides an angle into two congruent angles.



 $m\angle AOB = m\angle AOC + m\angle COB$



If \overrightarrow{OC} is the angle bisector of $\angle AOB$, then $m \angle AOC = m \angle COB = \frac{1}{2} m \angle AOB$.

Special Pairs of Angles

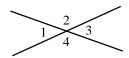
When two lines intersect, they form two pairs of vertical angles.

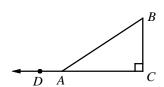
Vertical angles are congruent.

$$\angle 1 \cong \angle 3 \ (m \angle 1 = m \angle 3)$$
 $\angle 2 \cong \angle 4 \ (m \angle 2 = m \angle 4)$

Two angles whose measures have a sum of 180 are called supplementary angles.

Two angles whose measures have a sum of 90 are called complementary angles.

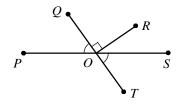




 $\angle DAB$ and $\angle BAC$ are supplementary. $\angle B$ and $\angle BAC$ are complementary.

Example 1 \Box In the figure shown at the right, $m \angle POQ = 55$. Find the each of the following.

a. $m \angle SOT$ b. $m \angle ROT$ c. $m \angle POT$ d. $m \angle POR$



Solution

$$\Box$$
 a. $m \angle SOT = m \angle POQ = 55$

b.
$$m \angle QOR + m \angle ROT = 180$$

 $90 + m \angle ROT = 180$

$$m\angle ROT = 90$$

c.
$$m \angle POQ + m \angle POT = 180$$

$$55 + m \angle POT = 180$$

$$m \angle POT = 125$$

d.
$$m \angle POR = m \angle POQ + m \angle QOR$$

$$m \angle POR = 55 + 90 = 145$$

Vertical angles are congruent.

Straight angle measures 180.

$$m \angle QOR = 90$$

Solve for $m \angle ROT$.

Straight angle measures 180.

$$m\angle POQ = 55$$

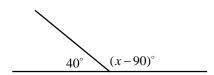
Solve for $m \angle POT$.

Angle Addition Postulate

Substitution

Exercises - Angles

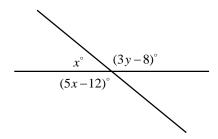
1



In the figure above, what is the value of x?

- A) 140
- B) 160
- C) 190
- D) 230

2

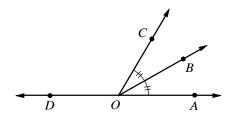


Note: Figure not drawn to scale.

In the figure above, what is the values of y?

- A) 52
- B) 60
- C) 68
- D) 76

3

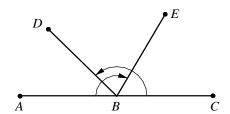


Note: Figure not drawn to scale.

In the figure above, ray *OB* bisects $\angle COA$. If $m\angle DOB = 11x + 6$ and $m\angle COA = 8x - 12$, what is the measure of $\angle DOC$?

- A) 92
- B) 96
- C) 102
- D) 108

4



Note: Figure not drawn to scale.

In the figure above, $m\angle ABE = 120^{\circ}$ and $m\angle CBD = 135^{\circ}$. What is the measure of $\angle DBE$?

- A) 63
- B) 68
- C) 75
- D) 79

16-3. Parallel and Perpendicular Lines

For two parallel lines ℓ and m which are cut by the transversal t:

1) Corresponding Angles are equal in measure.

$$m\angle 1 = m\angle 5$$
 $m\angle 2 = m\angle 6$
 $m\angle 3 = m\angle 7$ $m\angle 4 = m\angle 8$

2) Alternate Interior Angles are equal in measure.

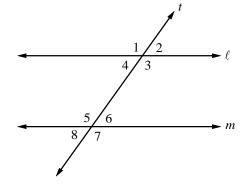
$$m \angle 3 = m \angle 5$$
 $m \angle 4 = m \angle 6$

3) Alternate Exterior Angles are equal in measure.

$$m \angle 1 = m \angle 7$$
 $m \angle 2 = m \angle 8$

4) Consecutive(Same Side) Interior Angles are supplementary.

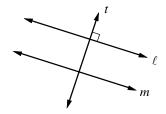
$$m \angle 3 + m \angle 6 = 180^{\circ}$$
 $m \angle 4 + m \angle 5 = 180^{\circ}$



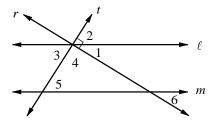
Theorem

In a plane, if a line is perpendicular to one of two parallel lines, it is also perpendicular to the other.

If $t \perp \ell$ and $\ell \parallel m$, then $t \perp m$.



Example 1 \Box In the figure below, $\ell \parallel m$, $r \perp t$ and $m \angle 1 = 32$. Lines ℓ , r, and t intersect at one point. Find $m \angle 2$, $m \angle 3$, $m \angle 4$, and $m \angle 5$.



Solution
$$m \angle 1 + m \angle 2 = 90$$

 $32 + m \angle 2 = 90$
 $m \angle 2 = 58$
 $m \angle 2 = m \angle 3 = 58$
 $m \angle 1 + m \angle 4 + m \angle 3 = 180$
 $32 + m \angle 4 + 58 = 180$
 $m \angle 4 = 90$
 $m \angle 3 = m \angle 5 = 58$
 $m \angle 1 = m \angle 6 = 32$

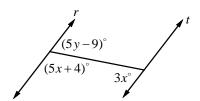
A right angle measures 90. Substitution Solve for $m \angle 2$. Vertical angles are \cong . A straight angle measures 180.

A straight angle measures 180 Substitution Solve for $m \angle 4$. Alternate Interior $\angle s$ are \cong .

Corresponding $\angle s$ are \cong .

Exercises - Parallel and Perpendicular Lines

1

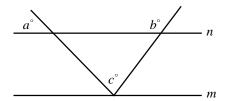


Note: Figure not drawn to scale

In the figure above, $r \parallel t$. What is the value of x + y?

- A) 37
- B) 40
- C) 43
- D) 46

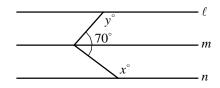
2



In the figure above, $m \parallel n$. If a = 50 and b = 120, what is the value of c?

- A) 50
- B) 60
- C) 70
- D) 80

3

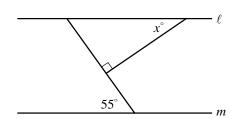


Note: Figure not drawn to scale.

In the figure above, lines ℓ , m, and n are parallel. What is the value of x + y?

- A) 160
- B) 200
- C) 230
- D) 290

4

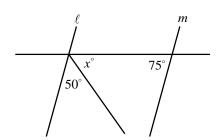


In the figure above, $\ell \parallel m$. What is the value of x?

- A) 30
- B) 35
- C) 40
- D) 45

Chapter 16 Practice Test

1

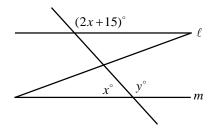


Note: Figure not drawn to scale.

In the figure above, $\ell \parallel m$. What is the value of x?

- A) 45
- B) 50
- C) 55
- D) 60

2

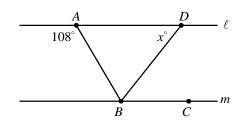


Note: Figure not drawn to scale.

In the figure above, $\ell \parallel m$. What is the value of y?

- A) 120
- B) 125
- C) 130
- D) 135

3

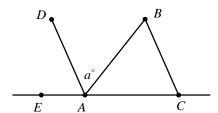


Note: Figure not drawn to scale.

In the figure above, lines ℓ and m are parallel and \overline{BD} bisects $\angle ABC$. What is the value of x?

- A) 54
- B) 60
- C) 68
- D) 72

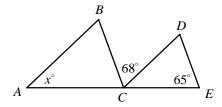
4



In the figure above, $\overline{DA} \parallel \overline{BC}$ and \overline{AB} bisects $\angle DAC$. What is the measure of $\angle BCA$ in terms of a?

- A) 180 a
- B) 2a-180
- C) 180 2a
- D) 2a 90

5

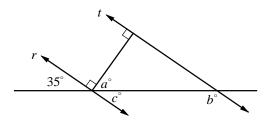


Note: Figure not drawn to scale.

In the figure above, $\overline{AB} \parallel \overline{CD}$ and $\overline{BC} \parallel \overline{DE}$. What is the value of x?

- A) 47
- B) 51
- C) 55
- D) 57

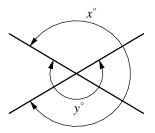
6



In the figure above, $r \parallel t$. What is the value of a + b?

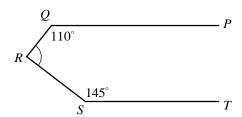
- A) 160
- B) 175
- C) 185
- D) 200

7



In the figure above, what is the value of x + y?

8



Note: Figure not drawn to scale.

In the figure above, \overline{PQ} is parallel to \overline{ST} . What is the measure of $\angle QRS$?

Answer Key

Section 16-1

1. D

2. C

3. B

4. D

Section 16-2

1. D

2. A

3. B

4. C

Section 16-3

1. A

2. C

3. D

4. B

Chapter 16 Practice Test

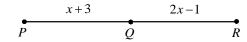
1. C 6. D 2. B 7.540 3. A 8.105 4. C

5. A

Answers and Explanations

Section 16-1

1. D



PQ = QR

Definition of Midpoint

x + 3 = 2x - 1

Substitution

x + 3 - x = 2x - 1 - x

Subtract *x* from each side.

3 = x - 1Simplify.

4 = x

PR = PQ + QR

Segment Addition Postulate

= x + 3 + 2x - 1

=3(4)+2=14

Substitution

= 3x + 2

x = 4

2. C

Note: Figure not drawn to scale.

Let
$$PS = x$$
, then $QR = \frac{1}{3}PS = \frac{1}{3}x$.

$$PR = PQ + QR$$

Segment Addition Postulate

$$12 = PQ + \frac{1}{2}x$$

 $12 = PQ + \frac{1}{3}x$ PR = 12 and $QR = \frac{1}{3}x$

$$PQ = 12 - \frac{1}{3}x$$

Solve for PQ.

$$QS = QR + RS$$

Segment Addition Postulate

$$16 = \frac{1}{2}x + RS$$

 $16 = \frac{1}{3}x + RS$ QS = 16 and $QR = \frac{1}{3}x$

$$RS = 16 - \frac{1}{3}x$$
 Solve for RS .

PS = PQ + QR + RS Segment Addition Postulate

$$x = (12 - \frac{1}{3}x) + \frac{1}{3}x + (16 - \frac{1}{3}x)$$
 Substitution

$$x = 28 - \frac{1}{3}x$$
 Simplify.

$$\frac{4}{2}x = 28$$

 $\frac{4}{2}x = 28$ Add $\frac{1}{3}x$ to each side.

$$\frac{3}{4} \cdot \frac{4}{3} x = \frac{3}{4} \cdot 28$$

 $\frac{3}{4} \cdot \frac{4}{3} x = \frac{3}{4} \cdot 28$ Multiply $\frac{3}{4}$ by each side.

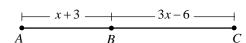
$$x = 21$$

Therefore, PS = x = 21.

3. B

Ray CA and Ray CD are opposite rays, because points A, C, and D are collinear and C is between A and D.

4. D



Note: Figure not drwan to scale.

$$AB = \frac{2}{3}BC$$

Given

$$x+3=\frac{2}{3}(3x-6)$$

Substitution

Solve for x.

$$x + 3 = 2x - 4$$

7 = x

Simplify.

$$AC = AB + BC$$

Segment Addition Postulate

$$= x + 3 + 3x - 6$$

Substitution

$$=4x-3$$

= 4(7) - 3

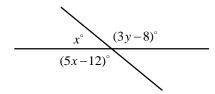
Simplify. x = 7

Section 16-2

1. D

$$40 + x - 90 = 180$$
 Straight \angle measures 180.
 $x - 50 = 180$ Simplify.
 $x - 50 + 50 = 180 + 50$ Add 50 to each side.
 $x = 230$

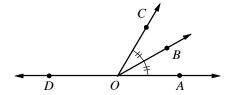
2. A



Note: Figure not drawn to scale.

$$x+5x-12=180$$
 Straight \angle measures 180.
 $6x-12=180$
 $6x=192$
 $x=32$
 $x+3y-8=180$ Straight \angle measures 180.
 $32+3y-8=180$ Straight \angle measures 180.
 $32+3y-8=180$ Simplify.
 $24+3y=180$ Simplify.
 $24+3y-24=180-24$
 $3y=156$
 $y=52$

3. B



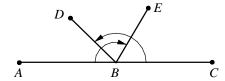
Note: Figure not drawn to scale.

$$m \angle BOA = \frac{1}{2}m \angle COA$$
 Definition of \angle bisector $m \angle BOA = \frac{1}{2}(8x-12)$ Substitution $m \angle BOA = 4x-6$ Simplify. $m \angle DOB + m \angle BOA = 180$ Straight \angle measures 180. $11x+6+4x-6=180$ Substitution $15x=180$ Simplify. $x=12$

Thus, $m \angle COA = 8x - 12 = 8(12) - 12 = 84$.

 $m\angle DOC + m\angle COA = 180$ Straight \angle measures 180. $m\angle DOC + 84 = 180$ $m\angle COA = 84$ $m\angle DOC = 96$

4. C



Note: Figure not drawn to scale.

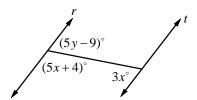
Let
$$m \angle DBE = x$$

 $m \angle ABE$
 $= m \angle ABD + m \angle DBE$ Angle Addition Postulate
 $120 = m \angle ABD + x$ Substitution
 $120 - x = m \angle ABD$
 $m \angle ABD + m \angle CBD = 180$ Straight \angle measures 180.
 $120 - x + 135 = 180$ Substitution
 $255 - x = 180$ Simplify.
 $x = 75$

Therefore, $m \angle DBE = x = 75$.

Section 16-3

1. A

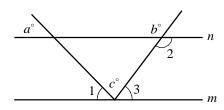


Note: Figure not drawn to scale

$$5x+4+3x=180$$
 If $r \parallel t$, consecutive interior ∠s are supplementary.
 $8x+4=180$ Simplify.
 $8x=176$ $x=22$ $5x+4+5y-9=180$ Straight ∠ measures 180.
 $5x-5+5y=180$ Simplify.
 $5(22)-5+5y=180$ Simplify.
 $105+5y=180$ Simplify.
 $105+5y=180$ Simplify.
 $5y=75$ Simplify.
 $y=15$

Therefore, x + y = 22 + 15 = 37.

2. C

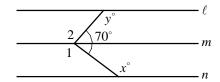


$$m \angle 1 = a$$
 If $m \parallel n$, corresponding $\angle s$ are \cong .
 $m \angle 1 = 50$ $a = 50$
 $m \angle 2 = b$ Vertical $\angle s$ are \cong .
 $m \angle 2 = 120$ $b = 120$

$$m\angle 2 + m\angle 3 = 180$$
 If $m \parallel n$, consecutive interior $\angle s$ are supplementary.
 $120 + m\angle 3 = 180$ $m\angle 2 = 120$
 $m\angle 3 = 60$ $m\angle 1 + c + m\angle 3 = 180$ Straight \angle measures 180.
 $50 + c + 60 = 180$ $m\angle 1 = 50$ and $m\angle 3 = 60$
 $c + 110 = 180$ Simplify.

3. D

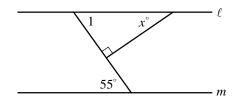
c = 70



Note: Figure not drawn to scale.

$$m \angle 1 = x$$
 If $m \parallel n$, alternate interior $\angle s$ are \cong .
 $m \angle 2 = y$ If $\ell \parallel m$, alternate interior $\angle s$ are \cong .
 $m \angle 1 + m \angle 2 + 70 = 360$ There are 360° in a circle.
 $x + y + 70 = 360$ $m \angle 1 = x$ and $m \angle 2 = y$
 $x + y = 290$

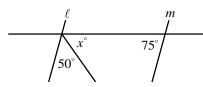
4. B



 $m \angle 1 = 55$ If $\ell \parallel m$, alternate interior $\angle s$ are \cong . $m \angle 1 + x = 90$ The acute $\angle s$ of a right triangle are complementary. 55 + x = 90 $m \angle 1 = 55$

Chapter 16 Practice Test

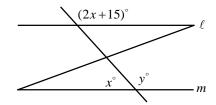
1. C



Note: Figure not drawn to scale.

$$50 + x + 75 = 180$$
 If $\ell \parallel m$, consecutive interior $\angle s$ are supplementary.
 $125 + x = 180$ Simplify.
 $x = 55$

2. B

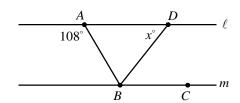


Note: Figure not drwan to scale.

$$y = 2x + 15$$
 If $\ell \parallel m$, consecutive interior $\angle s$ are supplementary.
 $x + y = 180$ Straight \angle measures 180.
 $x + (2x + 15) = 180$ $y = 2x + 15$
 $3x + 15 = 180$ Simplify.
 $3x = 165$
 $x = 55$

Therefore, y = 2x + 15 = 2(55) + 15 = 125.

3. A



Note: Figure not drawn to scale.

$$m \angle ABC = 108$$
 If $\ell \parallel m$, alternate interior $\angle s$ are \cong .

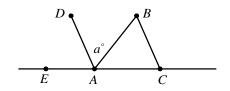
 $m \angle DBC = \frac{1}{2} m \angle ABC$ Definition of \angle bisector

 $m \angle DBC = \frac{1}{2} (108)$ $m \angle ABC = 108$
 $m \angle DBC = 54$ Simplify.

 $x = m \angle DBC$ If $\ell \parallel m$, alternate interior $\angle s$ are \cong .

 $x = 54$ $m \angle DBC = 54$

4. C



$$m\angle BAC = m\angle DAB$$

Definition of \angle bisector

$$m \angle BAC = a$$

 $m\angle DAB = a$

Since straight angles measure 180,

$$m\angle DAE + m\angle DAB + m\angle BAC = 180$$
.

$$m\angle DAE + a + a = 180$$

 $m\angle DAB = m\angle BAC = a$

 $m\angle DAE = 180 - 2a$

Subtract 2a.

 $m\angle BCA = m\angle DAE$

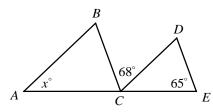
If $DA \parallel BC$, corresponding

 $\angle s$ are \cong .

$$m\angle BCA = 180 - 2a$$

 $m\angle DAE = 180 - 2a$

5. A



Note: Figure not drawn to scale.

$$m\angle BCA = m\angle DEC$$

If $DE \parallel BC$, corresponding

 $m\angle BCA = 65$

 $\angle s$ are \cong . $m\angle DEC = 65$

 $m \angle DCE = x$

If $AB \parallel CD$, corresponding

 $\angle s$ are \cong .

Since straight angles measure 180, $m\angle BCA + m\angle BCD + m\angle DCE = 180$.

$$65 + 68 + x = 180$$

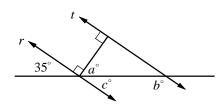
Substitution

133 + x = 180

Simplify.

x = 47

6. D



c = 35

Vertical $\angle s$ are \cong .

a + c = 90

 $\angle a$ and $\angle c$ are complementary.

a + 35 = 90

c = 35

a = 55

b+c=180

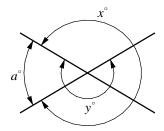
If $r \parallel t$, consecutive interior $\angle s$ are supplementary.

b + 35 = 180

c = 35

b = 145

Therefore, a+b = 55+145 = 200.



Draw $\angle a$.

$$x + a = 360$$

360° in a circle.

$$x = 360 - a$$
$$y - a = 180$$

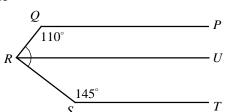
Subtract a from each side. Straight \angle measures 180.

$$y - a = 180$$
$$y = 180 + a$$

Add a to each side.

Therefore,
$$x + y = (360 - a) + (180 + a) = 540$$
.

8. 105



Note: Figure not drawn to scale.

Draw \overline{RU} , which is parallel to \overline{PQ} and \overline{ST} .

If two lines are parallel, then the consecutive interior angles are supplementary. Therefore, $m\angle PQR + m\angle QRU = 180$ and $m\angle RST + m\angle URS = 180$.

$$110 + m \angle QRU = 180$$
 $m \angle PQR = 110$
 $m \angle QRU = 70$
 Subtract 110.

 $145 + m \angle URS = 180$
 $m \angle RST = 145$
 $m \angle URS = 35$
 Subtract 145.

By the Angle Addition Postulate, $m\angle QRS = m\angle QRU + m\angle URS$.

Substituting 70 for $m \angle QRU$ and 35 for $m \angle QRU$ gives $m \angle QRS = 70 + 35 = 105$.