The Magic of Chemical Reactions

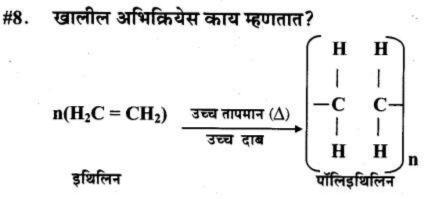
ग्वालील प्रश्नांची एका वाक्यात उत्तरे लिहा.

1. भौतिक बदल म्हणजे काय?

उत्तरः भौतिक बदल हा तात्पुरता असतो, ज्यामुळे पदार्थाच्या स्थितीत बदल होतो; परंतु रासायनिक गुणधर्म तसेच राहतात.

2. रासायनिक बदल म्हणजे काय?

उत्तरः रासायनिक बदल हे कायमस्वरूपी असतात, ज्यामुळे पदार्थाच्या स्थितीत व रासायनिक गुणधर्मातही बदल होतो.


शाब्दिक समीकरण जास्त अचूक व संक्षिप्त रूपात कसे लिहिता येईल?

- उत्तर:शाब्दिक समीकरणात अभिक्रियाकारके आणि उत्पादिते यांच्या भौतिक अवस्था, रासायनिक सूत्रे व विशिष्ट अटी यांचा उल्लेख केल्यास ती जास्त अचूक व संक्षिप्त रूपात लिहिता येतात.
- रासायनिक समीकरणात अभिक्रियाकारके कोणत्या बाजूस लिहितात?
- उत्तर: रासायनिक समीकरणात अभिक्रियाकारके डाव्या बाजूस लिहितात.
- रासायनिक अभिक्रियेच्या अनुषंगाने वस्तुमानाच्या अक्षय्यतेचा नियम सांगा.
- उत्तरः वस्तुमानाच्या अक्षय्यतेच्या नियमानुसार, 'रासायनिक अभिक्रियेत अभिक्रियाकारकांचे एकूण वस्तुमान आणि उत्पादितांचे एकूण वस्तुमान समान असते'.

रासायनिक अभिक्रिया म्हणजे काय?

उत्तरः ज्या अभिक्रियेत अभिक्रियाकारकांमध्ये घडून आलेल्या अभिक्रियेत उत्पादिते तयार होतात, त्यास रासायनिक अभिक्रिया म्हणतात. #7. खालील रासायनिक सूत्रातील अभिक्रियाकारके आणि उत्पादिते यांची नावे लिहा:

 $C_{12}H_{22}O_{11(s)}+H_2O_{(l)} \xrightarrow{$ संहत अल्कोहोलयुक्त HCl 323K $C_6H_{12}O_6 +C_6H_{12}O_6$ $+C_6H_{12}O_6$ उत्तर: अभिक्रियाकारके: $C_{12}H_{22}O_{11(s)}$ आणि $H_2O_{(l)}$ सुक्रोज पाणी उत्पादिते: $C_6H_{12}O_6$ आणि $C_6H_{12}O_6$ \overline{v}_{q} कोज फ्रक्टोज

- उत्तरः वरील अभिक्रियेतील प्रक्रियेस पॉलिमरायझेशन अभिक्रिया म्हणतात.
- कॅल्शिअम कार्बोनेटला 1000° से. पेक्षा जास्त तापमानास उष्णता दिल्यास काय घडून येईल?
- उत्तरः कॅल्शिअम कार्बोनेटला 1000° से. पेक्षा जास्त तापमानास उष्णता दिल्यास त्याचे अपघटन होऊन कॅल्शिअम ऑक्साइड (CaO) आणि कार्बन डायऑक्साइड (CO₂) वायू तयार होईल.
- विस्थापन अभिक्रियेत कोणत्या प्रकारचे मूलद्रव्य दुसऱ्या मूलद्रव्यास विस्थापित करते?
- उत्तरः विस्थापन अभिक्रियेत संयुगातील कमी क्रियाशील असलेल्या मूलद्रव्यास जास्त क्रियाशील असलेले मूलद्रव्य विस्थापित करते.

11. अवक्षेप म्हणजे काय?

उत्तरः रासायनिक अभिक्रियेत तयार होणारा पाण्यात अविद्राव्य असलेला पदार्थ म्हणजे अवक्षेप होय.

12. कॉंक्रीटचे रासायनिक सूत्र लिहा.

उत्तर: काँक्रीटचे रासायनिक सूत्र 3CaO.Al₂O₃.6H₂O हे आहे.

13. जिप्सम म्हणजे काय?

उत्तरः प्लॅस्टर ऑफ पॅरिस पाण्यात मिसळले असता तात्काळ तयार होणाऱ्या टणक पदार्थास जिप्सम म्हणतात.

 $2CaSO_4 \cdot H_2O + 3H_2O \longrightarrow 2CaSO_4 \cdot 2H_2O + उष्णता$ प्लॅस्टर ऑफ पॅरिस पाणी जिप्सम

- 14. तेल आणि तुपाचा वापर करून बनविलेले खाद्यपदार्थ कसे साठवितात?
- उत्तरः तेल किंवा तुपाचा वापर करून बनविलेल्या खाद्यपदार्थांत ऑक्सिडीकरण विरोधक वापरून आणि त्यांना हवाबंद डब्यात साठवून त्यांचे ऑक्सिडीकरण टाळता येते.

टीप: ऑक्सिडीकरण विरोधक हे दुसऱ्या पदार्थाच्या (किंवा रसायनाच्या) ऑक्सिडीकरण क्रियेचा वेग कमी करतात किंवा त्यांचे ऑक्सिडीकरण टाळतात.

खालील प्रश्नांची उत्तरे लिहा.

खालील प्रश्नांची उत्तरे लिहा.

- रासायनिक अभिक्रिया होताना कशा प्रकारचे रासायनिक बदल होतात?
- उत्तर: i. रासायनिक अभिक्रिया होताना होणारे रासायनिक बदल म्हणजे अभिक्रियाकारकांच्या स्थितीत आणि भौतिक अवस्थेत बदल होतो.
 - यामुळे अभिक्रियाकारकांची ओळख बदलते. पदार्थाचा रंग, तापमान, स्थिती यांत बदल होतो आणि काही वेळा वायू तसेच अवक्षेप तयार होतात.
- आपल्या सभोवताली आपण काही रासायनिक अभिक्रियांमुळे झालेले रासायनिक बदल अनुभवले आहेत का? पाहिले असल्यास उदाहरण द्या.

उत्तरः होय.

- रासायनिक अभिक्रियांमुळे अनेक रासायनिक बदल घडून येतात.
- ii. उदा. लोखंड गंजणे: लोखंडाची आई हवेबरोबर रासायनिक अभिक्रिया होऊन लोखंडाला गंज येतो, म्हणजेच त्यावर लालसर तपकिरी रंगाचा थर जमा होतो.
- *3. रासायनिक समीकरणांचे महत्त्व काय?
- उत्तरः रासायनिक समीकरणांमुळे खालील माहिती मिळतेः
 - रासायनिक अभिक्रियेत सहंभागी अभिक्रियाकारके आणि प्राप्त उत्पादिते.
 - ii. अभिक्रियेत सहभागी सर्व पदार्थांच्या संज्ञा आणि सूत्रे.
 - iii. अभिक्रियेतील अभिक्रियाकारके आणि उत्पादिते यांची अणुसंख्या.

- iv. अभिक्रियाकारके आणि उत्पादिते यांचे वस्तुमान.
- अभिक्रियाकारके आणि उत्पादिते यांची भौतिक स्थिती.
- vi. इतर अटी. उदा. वापरलेले उत्प्रेरक, तापमान आणि दाब इ.
- कार्बन डायऑक्साइडची वातावरणातील बाष्पाबरोबर अभिक्रिया होऊन काय तयार होते? त्याचे संतुलित रासायनिक समीकरण लिहा.
- उत्तरः वातावरणातील बाष्पाबरोबर कार्बन डायऑक्साइडची अभिक्रिया होऊन कार्बोनिक आम्ल तयार होते. रासायनिक समीकरणः

 $H_2O_{(g)} + CO_{2(g)} \longrightarrow H_2CO_{3(l)}$ बाष्प कार्बन कार्बोनिक आम्ल डायऑक्साइड

कॉंक्रीट म्हणजे काय?

उत्तरः काँक्रीटः

i. सिमेंट, रेती, वाळू आणि पाणी यांचे मिश्रण केल्यावर तयार होणाऱ्या कठीण पदार्थास कॉंक्रीट म्हणतात.

ii. रासायनिक समीकरण पुढीलप्रमाणे:

3CaO.Al₂O_{3(s)} + 6H₂O_(l) ट्रायकॅल्शिअम पाणी

ॲल्युमिनेट

→ 3CaO.Al₂O_{3.}6H₂O_(s) + उष्णता कॉकीट

iii. इमारतीस मजबुती येण्यासाठी काँक्रीटचा वापर करतात. प्लॅस्टर ऑफ पॅरिस पाण्याबरोबर मिसळला असता कोणता पदार्थ तयार होतो? तयार होणऱ्या नवीन पदार्थाचा उपयोग कशासाठी करतात? प्लॅस्टर ऑफ पॅरिसचे कोणतेही दोन उपयोग लिहा.

|मार्च 15|

उत्तर: i. प्लॅस्टर ऑफ पॅरिस पाण्याबरोबर मिसळला असता जिप्सम हा पदार्थ तयार होतो.

 $2CaSO_4 \cdot H_2O + 3H_2O \longrightarrow 2CaSO_4 \cdot 2H_2O + उष्णता$ एलंस्टर ऑफ पॅरिस पाणी जिप्सम

ii. जिप्समचा उपयोग सिमेंट तयार करण्यासाठी होतो.

- iii. प्लॅस्टर ऑफ पॅरिसचा उपयोग पुतळे तयार करण्यासाठी तसेच छप्परांचे सुशोभीकरण करण्यासाठी होतो. वैद्यकीय मलमपट्टीसाठीही याचा उपयोग होतो.
- 7. संज्ञा स्पष्ट करा.
 - *i. उष्माग्राही अभिक्रिया
 - іі. उष्मादायी अभिक्रिया
 - iii. अवक्षेपण अभिक्रिया
- उत्तरः i. उष्माग्राही अभिक्रियाः

ज्या रासायनिक अभिक्रियांमध्ये उष्णता शोषली जाते, त्यांना उष्माग्राही अभिक्रिया म्हणतात.

उदा. जेव्हा KNO3 ची पाण्याशी रासायनिक अभिक्रिया घडून येते, तेव्हा उष्णता शोषली जाते. त्यामुळे द्रावणाचे तापमान घटते.

 $KNO_{3(s)} + H_2O_{(l)} + उष्णता \longrightarrow KNO_{3 (aq)}$ पोटॅशिअम पाणी पोटॅशिअम नायट्रेट नायट्रेट i. उष्मादायी अभिक्रियाः

ज्या रासायनिक अभिक्रियांमध्ये उष्णता बाहेर टाकली जाते, अशा अभिक्रियांना उष्मादायी अभिक्रिया म्हणतात.

उदा. जेव्हा NaOH पाण्यात विरघळते तेव्हा उष्णता बाहेर पडते व द्रावणाचे तापमान वाढते.

 $NaOH_{(s)} + H_2O_{(l)} \rightarrow NaOH_{(aq)} + उष्णता$ सोडिअम पाणी सोडिअम हायड्रॉक्साइड हायड्रॉक्साइड

iii. अवक्षेपण अभिक्रियाः

ज्या रासायनिक अभिक्रियेत अवक्षेप तयार होतात, त्यांना अवक्षेपण अभिक्रिया म्हणतात. रासायनिक अभिक्रियेत अवक्षेप ↓ या चिन्हाने दाखवतात.

उदा.	CuCl ₂	+ 2KI \longrightarrow	CuI₂↓	+ 2KCl
	कॉपर	पोटॅशिअम	क्युप्रिक	पोटॅशिअम
	क्लोराइड	आयोडाइड	आयोडाइड	क्लोराइड
			(अवक्षेप)	

 औष्णिक अपघटन अभिक्रियेचे उदाहरणासहित वर्णन करा.

उत्तरः औष्णिक अपघटन अभिक्रियाः

- उष्णता दिल्यामुळे एखादचा पदार्थाचे दोन किंवा अधिक पदार्थांत अपघटन होण्याच्या क्रियेस औष्णिक अपघटन अभिक्रिया म्हणतात.
- ii. विविध पदार्थांचे पूर्ण अपंघटन होण्यासाठी विविध तापमानाची आवश्यकता असते.

उदा. साखर तापवली असता तिचे कार्बन आणि पाण्याच्या वाफेत रूपांतर होते.

 $\begin{array}{c} C_{12}H_{22}O_{11(s)} \xrightarrow[]{\operatorname{derm}(\Delta)} \\ \\ \quad & \operatorname{triest} \end{array} \xrightarrow[]{\operatorname{derm}(\Delta)} 12C_{(s)} + 11H_2O_{(g)} \\ \\ \\ \quad & \operatorname{triest} \end{array}$

ii.

- कृष्णधवल छायाचित्रणात कोणती अभिक्रिया वापरली जाते? या अभिक्रियेचा प्रकार कोणता?
- उत्तर: i. फिकट पिवळचा रंगाचे सिल्व्हर ब्रोमाइड सूर्यप्रकाशाच्या संपर्कात आल्याने राखाडी रंगाचे होते.

$$2AgBr_{(s)} \xrightarrow{R_{q}^{dyantri}} 2Ag_{(s)} + Br_{2(g)}$$

सिल्वहर सिल्वहर बोमीन
बोमाइड

- ii. $2AgCl_{(s)} \xrightarrow{\frac{1}{2}\sqrt{2}} 2Ag_{(s)} + Cl_{2(g)}$ Recevent to the set of the set o
- iii. वरील दोन्ही अभिक्रियांचा वापर कृष्णधवल छायाचित्रणात छायाचित्र बनविण्यासाठी होतो.
- iv. या अपघटन अभिक्रिया असून त्या घडून येण्यासाठी प्रकाशाची आवश्यकता असते.
- *10. जेव्हा हायड्रोजन सल्फाइड वायू कॅडमिअम क्लोराइडच्या द्रावणातून प्रवाहित करतात तेव्हा तुम्हांला काय आढळते? रासायनिक अभिक्रियेचा प्रकार लिहा.
- उत्तर: i. हायड्रोजन सल्फाइड (H₂S) वायू कॅडमिअम क्लोराइडच्या द्रावणातून सोडल्यास कॅडमिअम सल्फाइडचा पिवळ्या रंगाचा अवक्षेप उरतो आणि हायड्रोक्लोरिक आम्ल तयार होते.
 - ii. रासायनिक समीकरण:

 $H_2S_{(g)}$ + $CdCl_{2(aq)}$ \longrightarrow $CdS_{(s)} \downarrow$ + $2HCl_{(aq)}$ हायड्रोजनकॅडमिअमकॅडमिअमहायड्रोक्लोरिकसल्फाइडक्लोराइंडसल्फाइडआम्लiii.ही दुहेरी विस्थापन अभिक्रिया आहे.

- रासायनिक अभिक्रियेच्या वेगावर परिणाम करणारे घटक कोणते?
- उत्तरः रासायनिक अभिक्रियेच्या वेगावर परिणाम करणारे घटकः
 - i. अभिक्रियाकारकांच्या कणांचा आकार
 - ii. अभिक्रियाकारकांची संहती
 - iii. अभिक्रियाकारकांचे स्वरूप
 - iv. अभिक्रिया कोणत्या अटींखाली घडते इत्यादी.
 - ऑक्सिडीकरण अभिक्रिया म्हणजे काय? दोन उदाहरणे दचा.
 - उत्तरः ऑक्सिडीकरण अभिक्रियाः

ज्या रासायनिक अभिक्रियेमध्ये अभिक्रियाकारक ऑक्सिजन स्वीकारतो किंवा हायड्रोजन मुक्त होतो, अशा अभिक्रियेस ऑक्सिडीकरण म्हणतात.

उदा. i. $2Cu_{(s)} + O_{2(g)} \longrightarrow 2CuO_{(s)}$ कॉपर ऑक्सिजन कॉपर ऑक्साइड

> येथे, कॉपर ऑक्सिजन स्वीकारतो व कॉपर ऑक्साइड तयार होते, म्हणून ही ऑक्सिडीकरण अभिक्रिया आहे.

 ii. 2C₂H₅OH + 2Na → 2C₂H₅ONa + H₂ ↑ इथिल सोडिअम सोडिअम हायड्रोजन अल्कोहोल इथॉक्साइड येथे, इथिल अल्कोहोलमधून हायड्रोजन निघून जातो, म्हणून ही ऑक्सिडीकरण अभिक्रिया आहे. 13. नवजात ऑक्सिजन ही संज्ञा स्पष्ट करा.

उत्तरः नवजात ऑक्सिजनः

 ओझोन वायूचे प्रकाशात ज्वलन झाल्यास ऑक्सिजनच्या अणूसोबत ऑक्सिजन वायू मुक्त होतो. अशा नव्या ऑक्सिजनला 'नवजात ऑक्सिजन' म्हणतात.

- ii. रासायनिक अभिक्रियेत नवजात ऑक्सिजन नेहमी चौकोनी कंसात संज्ञेच्या स्वरूपात [O] दर्शवितात.
- *14. "रेडॉक्स अभिक्रिया" ही संज्ञा एका उदाहरणाच्या साहाय्याने स्पष्ट करा.

किंवा

"रेडॉक्स अभिक्रिया" म्हणजे काय? एक उदाहरण द्या. [मार्च 16]

उत्तरः रेडॅाक्स अभिक्रिया :

रेडॉक्स अभिक्रियेत ऑक्सिडीकरण आणि क्षपण अशा दोन्ही अभिक्रिया एकाच वेळी होतात.

वरील उदाहरणात, ऑक्सिजनचा अणू देऊन टाकल्याने BaSO4 चे क्षपण होऊन BaS तयार होते आणि कार्बनचे ऑक्सिडीकरण होऊन कार्बन मोनॉक्साइड तयार होतो.

15. गंज म्हणजे काय? तो कसा तयार होतो?

उत्तर: i. लोखंडाच्या वस्तू हवेतील आर्द्रतेच्या संपर्कात आल्यामुळे त्यांवर जमा होणारा लालसर तपकिरी रंगाचा थर म्हणजे गंज. ii. जेव्हा लोखंडाची वस्तू आई हवेत ठेवली जाते, तेव्हा हवेतील ऑक्सिजनची व लोखंडाची रासायनिक अभिक्रिया होऊन फेरीक ऑक्साइड (गंज) तयार होतो.
 4Fe + 3O₂ → 3¹/_(H2O) 2Fe₂O₃·H₂O आयर्न ऑक्सिजन फेरीक ऑक्साइड

1

- *16. क्षरण म्हणजे काय? सोन्याच्या दागिन्यांचे क्षरण होते का? कारणे द्या. |सप्टेंबर 14|
- उत्तर: i. हवा, आर्द्रता आणि आम्ल यांचा परिणाम होऊन धातूंची सावकाश झीज होते त्यालाच क्षरण म्हणतात.
 - ii. नाही, सोन्याच्या दागिन्यांचे क्षरण होत नाही, कारण सोने हा निष्क्रिय धातू आहे; त्यामुळे त्याची हवा, आर्द्रता आणि आम्लाबरोबर अभिक्रिया होत नाही.
- *17. खवटपणा ही संज्ञा स्पष्ट करा.
- उत्तरः खवटपणाः
 - i. तेल किंवा तुपाचे ऑक्सिडीकरण झाल्याने त्यास घाणेरडा वास येतो, त्याची चव बदलते म्हणजेच त्यास खवटपणा येतो.
 - ii. तेल किंवा तूप बराच काळ न वापरता ठेवल्यास त्यांची वातावरणातील ऑक्सिजनशी क्रिया होऊन ऑक्सिडीकरण होते; त्यामुळे त्यांस खवटपणा येतो व ते खाण्यासाठी निरुपयोगी होतात.

थोडक्यात उत्तरे दचा.

1.	रासायनिक समीकरण संतुलित करण्यासाठीच्या
	पायऱ्या स्पष्ट करा.
उत्तर:	रासायनिक समीकरण खालीलप्रकारे संतुलित
	करतात:
	पायरी ।:
	दिलेले समीकरण पुन्हा लिहा.
5	पायरी 11:
	समीकरणाच्या दोन्ही बाजूंना असलेल्या अणूंच्या संख्येची
	तुलना करा.
	पायरी III:
	अभिक्रियाकारक किंवा उत्पादित यांच्यापैकी ज्या
	मूलद्रव्याच्या अणूंची संख्या जास्त आह़े तो प्रथम निवडा व
	त्याची संख्या दोन्ही बाजूंना समान करा.
	पायरी IV:
	उर्वरित अभिक्रियाकारके आणि उत्पादिते यांची
10	अणुसंख्या समान करा.
	अणूंची संख्या समान करत असताना, संयुगाचे रासायनिक
	सूत्र न बदलता संपूर्ण रेणुसूत्राचा सहगुणक बदलावा.
	समीकरणात डाव्या किंवा उजव्या बाजूस ज्या सूत्रात अणू
	कमी संख्येने आहेत त्या अणूचा सहगुणक बदलावा.
	उदा. खालील समीकरण संतुलित करूयाः
	$SO_2 + H_2S \longrightarrow S + H_2O$
	पायरी I : दिलेले समीकरण,
	$SO_2 + H_2S \longrightarrow S + H_2O$ (i) uruati II : समीकरणाच्या दोन्ही बाजूंना असलेल्या
	अणूंच्या संख्येची तुलना करा.
	- Lander Brun and

मूलद्रव्ये	अभिक्रियाकारकांमधील अणूंची संख्या (डावी बाजू)	उत्पादितांमधील अणूंची संख्या (उजवी बाजू)	
S	2	1	
Н	2	2	
0	2	1 .	

पायरी III :

अभिक्रियाकारके किंवा उत्पादिते यांतील सर्वाधिक अणुसंख्या असलेला घटक निवडा.

डाव्या बाजूस SO₂ मधील सर्वाधिक (म्हणजेच 2) अणुसंख्या असलेले ऑक्सिजन हे मूलद्रव्य निवडा.

ऑक्सिजन अणूंचे संतुलनः

ऑक्सिजनचे अणू	अभिक्रियाकारकांत	उत्पादितात	
सुरुवातीस	2 (SO ₂ मध्ये)	1(H ₂ O मध्ये)	
संतुलित करताना	2	1 × 2	
. अर्धव	ट संतुलित झालेले	समीकरण (i)	

पुढीलप्रमाणे होईल:

SO₂ + H₂S — → S + 2H₂O...... (ii) समीकरण (ii) मधील सर्वाधिक अणुसंख्या असलेले अभिक्रियाकारक किंवा उत्पादित निवडा. उजव्या बाजूस हायड्रोजनची अणुसंख्या जास्त आहे.

पायरी IV:

हायड्रोजन अणूंचे संतुलनः

हायड्रोजन अणू	अभिक्रियाकारकांत	उत्पादितात	
सुरुवातीस	2 (H ₂ S मध्ये)	4(H ₂ O मध्ये)	
संतुलित करताना	2 × 2	4	

:. समीकरण (ii) पुढीलप्रमाणे लिहिता येईल:

 $SO_2 + 2H_2S \longrightarrow S + 2H_2O....$ (iii)

अद्यापही रासायनिक समीकरण असंतुलित आहे. डाव्या व उजव्या बाजूचे सल्फरचे अणू समान नाहीत. पायरी V:

सल्फर अणूंचे संतुलन :

सल्फरचे अणू	अभिक्रियाकारकांत	-	
सुरुवातीस	3(SO ₂ मधील 1 व H ₂ S मधील 2)		
संतुलित करताना	3	1×3	

∴ समीकरण (iii) पुढीलप्रमाणे लिहिता येईल:

SO₂ + 2H₂S → 3S + 2H₂O......(iv) समीकरण (iv) मधील डाव्या व उजव्या बाजूच्या घटक अणूंची तुलना करून

मूलद्रव्ये	डावी बाजू	उजवी बाजू	
S	3	3	
Н	4	4	
0	2	2	

डाव्या व उजव्या बाजूच्या प्रत्येक घटक अणूंची संख्या समान आहे.

∴ समीकरण (iv) हे संतुलित समीकरण आहे.

 संतुलित रासायनिक समीकरण लिहिताना कोणते महत्त्वाचे नियम पाळावेत?

उत्तरः संतुलित रासायनिक समीकरण लिहिताना पाळावयाचे नियमः

- अभिक्रियाकारके नेहमी डाव्या बाजूस दर्शविली जातात; तर उत्पादिते उजव्या बाजूस दर्शविली जातात.
- ii. अभिक्रियाकारके आणि उत्पादिते यांच्यातील बाण अभिक्रियेची दिशा दाखवितो.
- iii. दोन किंवा अधिक अभिक्रियाकारके किंवा उत्पादिते असल्यास त्यांच्यात (+) चिन्ह लिहितात.
- iv. अभिक्रियेत काही अटी असल्यास उदा. उष्णता, दाब, उत्प्रेरक इ. अभिक्रियाकारकांकडून उत्पादितांकडे जाणऱ्या दिशादर्शक बाणावर लिहितात.
- v. अभिक्रियाकारके आणि उत्पादिते यांची भौतिक स्थिती रासायनिक समीकरण अधिक स्पष्ट होण्यासाठी गरज असल्यास लिहितात. वायू, द्रव आणि स्थायू स्थिती अनुक्रमे (g), (l) आणि (s) अशी दर्शवितात. जलीय द्रावणाच्या स्वरूपात असलेली अभिक्रियाकारके व उत्पादिते (aq) या अक्षूरांनी दर्शवितात.
 - vi. अभिक्रियाकारके आणि उत्पादिते यांतील मूलद्रव्यांची अणुसंख्या समान असावी.
 - vii. दोन्ही बाजूंच्या मूलद्रव्यांची अणुसंख्या असमान असल्यास ते समीकरण संतुलित करणे आवश्यक असते.

टिपा लिहा.

1. संयोग अभिक्रिया

- उत्तर: i. जेव्हा दोन किंवा अधिक पदार्थांचा एकच उत्पादित तयार होण्यासाठी संयोग होतो, तेव्हा अशा अभिक्रियेस संयोग अभिक्रिया म्हणतात.
 - उदा. $Fe_{(s)} + S_{(s)} \longrightarrow FeS_{(s)}$ आयर्न सल्फर आयर्न सल्फाइड
 - ii. संयोग अभिक्रिया घडत असताना दोन किंवा अधिक अभिक्रियाकारके उत्पादिते तयार करण्यासाठी उष्णता शोषून घेतात किंवा बाहेर टाकतात.
 - iii. त्यामुळे, संयोग अभिक्रिया उष्माग्राही (उष्णता शोषून घेणाऱ्या) किंवा उष्मादायी (उष्णता बाहेर टाकणाऱ्या) असू शकतात.
 - iv. KNO_{3(s)} + H₂O_(l) + उष्णता → KNO_{3(aq)} पोर्टोशिअम पाणी पोर्टेशिअम नायट्रेट नायट्रेट वरील अभिक्रियेत, उष्णता शोषली गेली असल्याने द्रावणाचे तापमान घटते.

 v. NaOH_(s) + H₂O_(l) → NaOH_(aq) + उष्णता सोडिअम पाणी सोडिअम हायड्रॉक्साइड हायड्रॉक्साइड जेव्हा NaOH पाण्यात विरघळते, तेव्हा उष्णता बाहेर टाकली जाते व द्रावणाचे तापमान वाढते.

2. अपघटन अभिक्रिया

उत्तर: i. ज्या रासायनिक अभिक्रियेत एका अभिक्रियाकारकाचे विभाजन होऊन त्यापासून दोन किंवा अधिक उत्पादिते मिळतात, अशा अभिक्रियेस अपघटन अभिक्रिया म्हणतात.

$$Gaco_{3(s)}$$
 $Gaco_{3(s)} + Co_{2(g)}$

 कॅल्शिअम
 कॅल्शिअम कार्बन

 कॉबोनेट
 ऑक्साइड डायऑक्साइड

iii. ज्या अपघटन अभिक्रिया घडून येण्यासाठी उष्णता पुरवावी लागते, त्या अभिक्रियांना औष्णिक अपघटन अभिक्रिया म्हणतात.

विस्थापन अभिक्रिया

- उत्तर: i. संयुगातील कमी क्रियाशील असलेल्या मूलद्रव्यास जास्त क्रियाशील असलेले मूलद्रव्य काढून टाकते (किंवा विस्थापित करते), तेव्हा त्या अभिक्रियेस विस्थापन अभिक्रिया म्हणतात.
 - उदा. कॉपरपेक्षा झिंक अधिक क्रियाशील असल्याने ते कॉपर सल्फेटमधून कॉपर वेगळे करते.

 $CuSO_{4(aq)} + Zn_{(s)} \longrightarrow ZnSO_{4(aq)} + Cu_{(s)}$ कॉपर सल्फेट झिंक झिंक सल्फेट कॉपर

लोखंड व शिसेसुद्धा कॉपरला त्याच्या संयुगातून विस्थापित करते.

4. दुहेरी विस्थापन अभिक्रिया

- उत्तर: i. ज्या रासायनिक अभिक्रियांमध्ये अभिक्रियाकारकांतील आयनांची अदलाबदल होऊन नवीन उत्पादित तयार होते, अशा अभिक्रियांना 'दुहेरी विस्थापन अभिक्रिया' म्हणतात.
 - उदा. AgCl चा पांढरा अवक्षेप अभिक्रियाकारकांतील Ag⁺ आणि Cl⁻ या आयनांच्या अदलाबदलीमुळे तयार होतो.

AgNO _{3(aq}	$+ \text{NaCl}_{(aq)} -$	$\rightarrow \text{AgCl}_{(s)} \downarrow +$	NaNO _{3(aq)}
सिल्कर	सोडिअम	सिल्व्हर	सोडिअम
नायट्रेट	क्लोराइड	क्लोराइड़	नायट्रेट
		(अवक्षेप)	

5. क्षरण

- उत्तर: i. हवा, आर्द्रता आणि आम्लांच्या परिणामांमुळे धातूची सावकाश झीज होणे यालाच क्षरण म्हणतात.
 - ii. क्षरणामुळे इमारती, पूल, स्वयंचलित वाहने, जहाजे तसेच मुख्यत: लोखंडापासून तयार केलेल्या वस्तू यांचे नुकसान होते.
 - iii. गंजरोधक द्रावणांचा वापर करून क्षरण रोखता येते. त्याकरिता त्या वस्तूवर जस्ताचा थर देऊन (galvanising) किंवा दुसऱ्या धातूचे विलेपन करून क्षरण टाळता येते.

*6. खवटपणा

उत्तर: कृपया खालील प्रश्नांची उत्तरे लिहा मधील प्र.17 (i) आणि (ii) प्राहा.

- iii. अशा तेलात किंवा तुपात पदार्थ शिजविल्यास त्याची चव बदलते. तेलाच्या ऑक्सिडीकरणामुळे असे घडते.
- iv. तेल किंवा तूप असलेल्या पदार्थांत ऑक्सिडीकरण विरोधक वापरल्यास त्यांचें ऑक्सिडीकरण होत नाही.
- ए. हवाबंद डब्यात अन्नपदार्थ साठविल्यानेही
 ऑक्सिडीकरणाची क्रिया मंदावते.

7. उदासिनीकरण

- उत्तर: i. आम्ल आणि आम्लारी यांच्यात अभिक्रिया होऊन क्षार व पाणी तयार होतात, या अभिक्रियेस उदासिनीकरण अभिक्रिया म्हणतात.
 - ii. उदासिनीकरण पुढीलप्रमाणे दाखविता येते:
 आम्ल + आम्लारी → क्षार + पाणी
 - iii. उदा. हायड्रोक्लोरिक आम्लाची सोडिअम हायड्रॉक्साइडबरोबर अभिक्रिया:

iv. खाद्यतेले ही अल्कोहोल आणि कार्बोक्सिलिक आम्ल यांची सेंद्रिय संयुगे आहेत. त्यांना इस्टर असे म्हणतात. खाद्यतेलातील संयुगांचे साबण किंवा डिटर्जंटमुळे उदासिनीकरण होते. ही अभिक्रिया पिवळ्या रंगाच्या हळदीचे लाल किंवा नारिंगी रंगात रूपांतर होऊन दर्शविली जाते. शास्त्रीय कारणे लिहा.

- *1. रासायनिक समीकरणे लिहिताना अभिक्रियाकारक व उत्पादितांच्या भौतिक अवस्था दर्शवितात.
- उत्तर: i. रासायनिक समीकरण लिहिताना अभिक्रियाकारके आणि उत्पादिते यांच्या भौतिक अवस्था म्हणजेच स्थायू, द्रव आणि वायू या अनुक्रमे (s), (l) आणि (g) या अक्षरांनी दर्शविल्या जातात.
 - ii. जलीय द्रावणाच्या स्वरूपात असलेली अभिक्रियाकारके किंवा ं उत्पादिते (aq) या अक्षरांनी दर्शविली जातात.
 - iii. रासायनिक समीकरण अधिक माहितीपूर्ण बनविण्यासाठी अभिक्रियाकारके आणि उत्पादिते यांची भौतिक अवस्था समीकरणात नमूद करणे गरजेचे असते.

म्हणून, रासायनिक समीकरणे लिहिताना अभिक्रियाकारक व उत्पादितांच्या भौतिक अवस्था दर्शवितात.

- रासायनिक बदल रासायनिक समीकरणाच्या स्वरूपात लिहितात.
- उत्तर: i. जेव्हा रासायनिक बदल होतात तेव्हा रासायनिक अभिक्रिया होतात.
 - ii. रासायनिक अभिक्रियेचे सविस्तर वर्णन फार मोठे होते. त्यामुळे रासायनिक अभिक्रिया ही रासायनिक समीकरणाने संक्षिप्त स्वरूपात लिहितात.
 - iii. रासायनिक समीकरणात अभिक्रियाकारके व उत्पादिते रासायनिक सूत्रांचा वापर करून लिहिली जातात.

म्हणून, रासायनिक बदल रासायनिक समीकरणाच्या स्वरूपात लिहितात.

- रासायनिक समीकरणे संतुलित करणे आवश्यक असते.
- उत्तरः i. अणुवस्तुमानाच्या अक्षय्यतेच्या नियमानुसार, अभिक्रियाकारकांचे अणुवस्तुमान रासायनिक अभिक्रियेनंतरच्या उत्पादितांच्या अणुवस्तुमाना इतकेच असते.
 - म्हणून, रासायनिक अभिक्रियेत सहभागी असलेल्या प्रत्येक मूलद्रव्याची अणुसंख्या अभिक्रियेपूर्वी व अभिक्रियेनंतर एकसमान असते.

त्यामुळे, रासायनिक समीकरण संतुलित करणे आवश्यक असते.

- सिल्व्हर क्लोराइड हे गडद रंगाच्या बाटलीत साठवतात.
- उत्तर: i. सिल्व्हर क्लोराइड जेव्हा सूर्यप्रकाशाच्या सान्निध्यात येते, तेव्हा त्याचे अपघटन होऊन सिल्व्हर व क्लोरीन तयार होतात.

 $\begin{array}{ccc} 2AgCl_{(s)} \xrightarrow{\frac{\pi}{4}yanm} 2Ag_{(s)} + & Cl_{2(g)} \\ \hline \mbox{Recest} & & \mbox{Recest} & & \mbox{achildrenge} \\ \hline \mbox{achildrenge} & & \mbox{achildre$

बाटलीचा गडद रंग सूर्यप्रकाश आत पोहोचू देत नाही व त्यामुळे सिल्व्हर क्लोराइडचे अपघटन टाळता येते.

म्हणून, सिल्व्हर क्लोराइड हे गडद रंगाच्या बाटलीत साठवतात.

- *5. पोटॅशिअम फेरोसायनाइड हे गडद रंगाच्या बाटलीत व सूर्यप्रकाशापासून दूर साठवतात.
- उत्तर: i. पोटॅशिअम फेरोसायनाइडचे सूर्यप्रकाशाच्या संपर्कात आल्याने रासायनिक अपघटन होते.
 - गडद रंगाच्या बाटलीत ठेवल्याने पोटॅशिअम फेरोसायनाइडचे अपघटन होण्याएवढी प्रकाशऊर्जा आत पोहोचत नाही.

त्यामुळे, पोटॅशिअम फेरोसायनाइड गडद रंगाच्या बाटलीत ठेवून सूर्यप्रकाशापासून दूर ठेवतात व त्यामुळे त्याचे अपघटन होत नाही.

वेगवेगळ्या अभिक्रिया वेगवेगळ्या वेगाने होतात.

उत्तरः अभिक्रियेचा वेग हा अभिक्रियाकारकांच्या कणांचा आकार, त्यांची संहती आणि स्थिती जसे तापमान आणि दाब, उत्प्रेरकांची उपस्थिती/अनुपस्थिती, अभिक्रिया घडण्याचे माध्यम इत्यादींवर अवलंबून असते.

म्हणून, वेगवेगळ्या अभिक्रिया वेगवेगळ्या वेगाने होतात.

- *7. दरवाजे आणि खिडक्यांच्या जाळ्या वापरण्यापूर्वी त्यांना रंग देतात.
 ।सप्टेंबर 14, जुलै 16)
- उत्तर: i. सर्वसाधारणपणे दरवाजे आणि खिडक्यांच्या जाळ्या लोखंडाच्या असतात.
 - ii. रंग देण्यापूर्वी लोखंडाची दारे, खिडक्यांच्या जाळचा वातावरणातील आर्द्रतेच्या संपर्कात असतात.
 - iii. हवेतील आर्द्रतेच्या परिणामामुळे लोखंडाच्या पृष्ठभागावर लालसर तपकिरी रंगाचा थर तयार होतो, यालाच गंज असे म्हणतात. गंजामुळे दरवाजा व खिडक्यांच्या लोखंडी जाळ्यांचे नुकसान होते.
 - iv. रंग दिल्यामुळे लोखंडाचा हवेतील आर्द्रता व ऑक्सिजन यांच्याशी परस्पर संपर्क होत नाही त्यामुळे क्षरण होत नाही.

त्यामुळे, दरवाजे आणि खिडक्यांच्या जाळ्या वापरण्यापूर्वी त्यांना रंग देतात.

- *8. लोखंडी वस्तू सहज गंजतात तर मुख्यतः लोखंडापासूनच बनविलेल्या स्टीलच्या वस्तूंचे 'क्षरण' होत नाही.
- उत्तर: i. जेव्हा लोखंडाच्या वस्तू हवेतील आर्द्रतेच्या संपर्कात येतात तेव्हा त्यावर गंज येतो.
 - ii. स्टील हा लोखंड आणि कार्बन (0.2 ते 2 %) यांचे संमिश्र आहे.
 - iii. कार्बनच्या गंजविरोधी गुणधर्मामुळे स्टीलच्या पृष्ठभागावर गंज येत नाही.

म्हणून, लोखंडी वस्तूंना सहज गंज येतो; परंतु लोखंडापासूनच तयार केलेल्या स्टीलच्या वस्तूंचे क्षरण होत नाही.

- *9. लोखंड अथवा कथिलाच्या डब्यात खादचतेले दीर्घकाळ साठवून ठेवता येत नाहीत. |जुलै 15|
- उत्तर: i. खाद्यतेले लोखंडाच्या किंवा कथिलाच्या डब्यात बराच कालावधीसाठी ठेवल्यास त्याचे ऑक्सिडीकरण होते.
 - ii. ऑक्सिडीकरणामुळे तेलाची चव आणि वासात बदल होऊन ते खवट होते.

iii. अशा तेलात शिजविलेल्या अन्नाची चव बदलते. त्यामुळे, लोखंड अथवा कथिलाच्या डब्यात खाद्यतेले दीर्घकाळ साठवून ठेवता येत नाहीत. खालील संतुलित रासायनिक अभिक्रिया सांगा.

 तांब्याचा चुरा चिनीमातीच्या बशीत उच्च तापमानास तापविला.

उत्तर: तांब्याचा चुरा चिनीमातीच्या बशीत उच्च तापमानास तापविल्यास काळ्या रंगाचे कॉपर ऑक्साइड तयार होते.

> $2Cu_{(s)} + O_{2(g)} \xrightarrow{\Delta} 2CuO_{(s)}$ कॉपर ऑक्सिजन कॉपर ऑक्साइड (काळे)

- आयर्न सल्फाइडच्या चुऱ्यात थोडचा प्रमाणात सौम्य सल्फ्युरिक आम्ल घातले.
- उत्तरः सौम्य सल्फ्युरिक आम्ल आयर्न सल्फाइडच्या चुऱ्यावर घातल्यास हायड्रोजन सल्फाइड वायू आणि फेरस सल्फेट तयार होते.

FeS(s) +	$H_2SO_{4(aq)}$ –	→ FeSO _{4(aq)} +	$H_2S_{(g)}\uparrow$
आयर्न	सौम्य सल्फ्युरिक	फेरस	हायड्रोजन
सल्फाइड	आम्ल	सल्फेट	सल्फाइड

 सल्फर डायऑक्साइड वायूची हायड्रोजन सल्फाइड वायूशी अभिक्रिया.

उत्तरः सल्फर डायऑक्साइड वायू आणि हायड्रोजन सल्फाइड वायूची अभिक्रिया होऊन सल्फर आणि पाणी तयार होते.

 $\begin{array}{rcl} SO_{2(g)} & + & 2H_2S_{(g)} \longrightarrow 3S_{(s)} + 2H_2O_{(l)} \\ \hline & \mbox{ सल्फर } & \mbox{ हायड्रोजन } & \mbox{ सल्फर } & \mbox{ पाणी} \\ \hline & \mbox{ डायऑक्साइड } & \mbox{ सल्फाइड } \end{array}$

सल्फर पावडरबरोबर आयर्न पावडर तापविल्यास.

उत्तरः सल्फर पावडरबरोबर आयर्न पावडर तापविल्यास त्यांची संयोग अभिक्रिया होऊन आयर्न सल्फाइड तयार होते.

- आपल्या शारीरातील ऑक्सिजनशी ग्लुकोजचा संयोग.
- उत्तर: आपल्या शरीरातील ऑक्सिजनबरोबर ग्लुकोजचा संयोग होऊन कार्बन डायऑक्साइड व पाणी तयार होते, तसेच थोडी ऊर्जा निर्माण होते.

 $C_6H_{12}O_{6(aq)} + 6O_{2(g)} \longrightarrow 6CO_{2(g)} + 6H_2O_{(l)} + ऊर्जा$ ग्लुकोज ऑक्सिजन कार्बन पाणी डायऑक्साइड

 कॅल्शिअम सल्फाइडवर हायड्रोक्लोरिक आम्लाची क्रिया.

उत्तरः कॅल्शिअम सल्फाइडची हायड्रोक्लोरिक आम्लाबरोबर अभिक्रिया होऊन कॅल्शिअम क्लोराइड व हायड्रोजन सल्फाइड वायू तयार होतो.

 $CaS_{(s)} + 2HCl_{(aq)} \longrightarrow CaCl_{2(s)} + H_2S_{(g)}$ कॉल्शिअम हायड्रोक्लोरिक कॉल्शिअम हायड्रोजन सल्फाइड आम्ल क्लोराइड सल्फाइड

- ॲल्युमिनिअमचे ऑक्सिजनबरोबर ज्वलन.
- उत्तरः ॲल्युमिनिअमचे ऑक्सिजनबरोबर ज्वलन झाल्यास ॲल्युमिनिअम ऑक्साइड म्हणजे ॲल्युमिना तयार होते.

 $4Al_{(s)} + 3O_{2(g)} \longrightarrow 2Al_2O_{3(s)}$ ॲल्युमिनिअम ऑक्सिजन ॲल्युमिना

- पोर्टेशिअम आयोडाइडच्या द्रावणात कॉपर क्लोराइडचे द्रावण मिसळले.
- उत्तरः कॉपर क्लोराइडचे द्रावण पोटॅशिअम आयोडाइडच्या द्रावणात मिसळल्यास तपकिरी रंगाचा क्युप्रिक आयोडाइडचा अवक्षेप तयार होतो. यामध्ये दुहेरी विस्थापन अभिक्रिया होते.

CuCl_{2(aq)} + 2KI_(aq) → CuI_{2(s)} ↓ + 2KCl_(aq) कॉपर पोटॅशिअम क्युप्रिक पोटॅशिअम क्लोराइड आयोडाइड क्लोराइड (तपकिरी अवश्लेप)

- बेरिअम सल्फाइडवर झिंक सल्फेटच्या द्रावणाची अभिक्रिया.
- उत्तरः बेरिअम सल्फाइडची झिंक सल्फेटच्या द्रावणाबरोबर अभिक्रिया झाल्याने पांढऱ्या रंगाचा बेरिअम सल्फेटचा अवक्षेप तयार होतो. यामध्ये दुहेरी विस्थापन अभिक्रिया होते.

 $BaS_{(s)} + ZnSO_{4(aq)} \rightarrow BaSO_{4(s)} \downarrow + ZnS_{(aq)}$ बेरिअम झिंक बेरिअम झिंक सल्फाइड सल्फेट सल्फेट सल्फाइड (अवक्षेप)

- 10. साखर तापवली (जाळली).
- उत्तरः साखर तापवली असता तिचे अपघटन होऊन कार्बन व पाण्याची वाफ तयार होते.

 $C_{12}H_{22}O_{11} \xrightarrow{a} 12C_{(s)} + 11H_2O_{(g)}$ साखर कार्बन बाष्प

11. कॉपर सल्फेटमध्ये झिंकचा चुरा मिसळला.

उत्तरः कॉपरपेक्षा झिंक अधिक क्रियाशील असल्याने कॉपर सल्फेटमधील कॉपरचे विस्थापन करून झिंक सल्फेट तयार होते. विस्थापन अभिक्रियेमुळे द्रावणाचा निळा रंग बदलतो.

> $CuSO_{4(aq)} + Zn_{(s)} \longrightarrow ZnSO_{4(aq)} + Cu_{(s)}$ कॉपर झिंक झिंक सल्फेट कॉपर सल्फेट

- मेटॅलिक सोडिअम इथिल अल्कोहोलमध्ये मिसळले.
- उत्तर: सोडिअम धातूची इथिल अल्कोहोलबरोबर अभिक्रिया होऊन सोडिअम इथॉक्साइड व हायड्रोजन वायू तयार होतो.

 $\begin{array}{ccc} 2C_2H_5OH_{(l)} + & 2Na_{(s)} \longrightarrow 2C_2H_5ONa_{(l)} + H_{2(g)} \\ \hline stare & th star$

13. कार्बनची हायड्रोजन वायूबरोबर अभिक्रिया.

उत्तरः कार्बनची हायड्रोजन वायूबरोबर अभिक्रिया होऊन मिथेन गॅसची निर्मिती होते.

> $C_{(s)}$ + $2H_{2(g)} \rightarrow CH_{4(g)}$ कार्बन हायड्रोजन मिथेन वायु

14. सिल्व्हर नायट्रेट सोडिअम क्लोराइडमध्ये मिसळले.

उत्तरः सिल्व्हर नायट्रेटची सोडिअम क्लोराइडबरोबर अभिक्रिया होऊन सिल्व्हर क्लोराइडचा अवक्षेप व सोडिअम नायट्रेट तयार होते. ही दुहेरी विस्थापन अभिक्रिया आहे.

AgNO _{3(aq)}	+ $NaCl_{(aq)} \rightarrow$	$AgCl_{(s)} \downarrow +$	NaNO _{3(aq)}
सिल्व्हर	सोडिअम	सिल्क्र	सोडिअम
नायट्रेट	क्लोराइड	क्लोराइड	नायट्रेट

- लोखंडी खिळा कॉपर सल्फेटच्या द्रावणात बुडवून ठेवला.
- उत्तरः लोखंडी खिळा कॉपर सल्फेटच्या द्रावणात बुडवून ठेवला असता लाल रंगाचे कॉपर खिळ्यावर जमा होईल आणि हिरव्या रंगाचे फेरस सल्फेटचे द्रावण तयार होईल.

- ओझोन वायू उष्णता आणि प्रकाशाच्या संपर्कात आला.
- उत्तरः ओझोन वायू उष्णता आणि प्रकाशाच्या संपर्कात आल्यास त्याचे क्षपण होऊन ऑक्सिजन आणि नवजात ऑक्सिजन तयार होते.

 $O_{3(g)} \xrightarrow{\Delta} O_{2(g)} + [O]$ ओझोन ऑक्सिजन नवजात ऑक्सिजन

योग्य जोडचा लावा.

	'अ' गट		'ब' गट
i.	उदासिनीकरण	a.	हायड्रोजन निघून जाणे
ii.	ऑक्सिडीकरण	b.	हवाबंद डबा
iii.	खवटपणा	c.	आम्ल + आम्लारी
iv.	क्षपण	d.	जस्ताचा थर देणे
	5 - X	e.	ऑक्सिजन निघून जाणे

उत्तरे: (i - c), (ii - a), (iii - b), (iv - e)

	•		
11	ட	 -	

	'अ' गट		'ब' गट
i.	क्युप्रिक आयोडाइड	a.	राखाडी
ii.'	सिल्व्हर क्लोराइड	b.	काळा
iii.	मेटालिक सिल्व्हर	c.	पांढरा
iv.	कॉपर ऑक्साइड	d.	तपकिरी

उत्तरे: (i - d), (ii - c), (iii - a), (iv - b)

खालील जोड्यांतील तुलनात्मक

फरक सांगा.

1. भौतिक बदल आणि रांसायनिक बदल

उत्तर:

	भौतिक बदल	रासायनिक बदल
i.	भौतिक बदल हा तात्पुरता असतो.	रासायनिक बदल हा कायमस्वरूपी असतो.
ii.	या बदलामध्ये, पदार्थाची स्थिती बदलते; परंतु रासायनिक गुणधर्म बदलत नाहीत.	ACC 23 1211
iii.	नवीन पदार्थ तयार होत नाही.	नवीन पदार्थ तयार होतो.
उदा.	वाफेचे संघनन होणे.	फळाचे पिकणे.

	शाब्दिक समीकरणे	रासायनिक समीकरणे
i.	ही शब्दांच्या स्वरूपात केलेली रासायनिक अभिक्रियेची साधी मांडणी असते.	यामध्ये रासायनिक अभिक्रियेची रासायनिक सूत्रांचा वापर करून संक्षिप्त स्वरूपात मांडणी केलेली असते.
ii.	शाब्दिक समीकरणातून रासायनिक अभिक्रियेची सखोल माहिती प्राप्त होत नाही.	रासायनिक समीकरणातून अभिक्रियेची सखोल माहिती प्राप्त होते.
iii.	यावरून अभिक्रियाकारके आणि उत्पादिते यांच्या भौतिक स्थितीचे वर्णन समजत नाही.	यावरून अभिक्रियाकारके आणि उत्पादितांच्या भौतिक स्थितीचे वर्णन समजते.
उदा.	तांबे + ऑक्सिजन → कॉपर ऑक्साइड	$2Cu_{(s)}+O_{2(g)}\rightarrow 2CuO_{(s)}$

2. शाब्दिक समीकरणे आणि रासायनिक समीकरणे उत्तर:

 उष्मादायी अभिक्रिया आणि उष्माग्राही अभिक्रिया उत्तर:

	उष्मादायी अभिक्रिया	उष्माग्राही अभिक्रिया
i.	ज्या रासायनिक अभिक्रियेत उष्णता उत्सर्जित केली जाते, त्या अभिक्रियेस उष्मादायी अभिक्रिया म्हणतात.	ज्या रासायनिक अभिक्रियेत उष्णता शोषली जाते, त्या अभिक्रियेस उष्माग्राही अभिक्रिया म्हणतात.
ii.	या अभिक्रियेत मिश्रणाचे तापमान वाढते.	या अभिक्रियेत मिश्रणाचे तापमान घटते.
उदा.	NaOH _(s) + H ₂ O _(l) → NaOH _(aq) + उष्णता	KNO _{3(s)} + H ₂ O _(l) + उष्णता → KNO _{3(aq)}

संयोग अभिक्रिया आणि अपघटन अभिक्रिया

उत्तर:

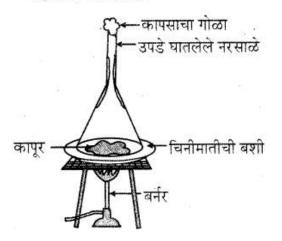
	संयोग अभिक्रिया	अपघटन अभिक्रिया
i.	जेव्हा दोन किंवा अधिक	जेव्हा एका अभिक्रियाकारकाचे
	पदार्थ एकत्र येऊन एकच	विभाजन होऊन त्यापासून एक
	उत्पादित मिळते, तेव्हा	किंवा जास्त साधी उत्पादिते
	त्या रासायनिक	तयार होतात, तेव्हा त्या
	अभिक्रियेस संयोग	रासायनिक अभिक्रियेस
	अभिक्रिया म्हणतात.	अपघटन अभिक्रिया म्हणतात.
ii.	उत्पादित तयार	अशा अभिक्रियेत
	करण्यासाठी	अभिक्रियाकारकास उष्णता,
	अभिक्रियाकारकास	प्रकाश किंवा विद्युत ऊर्जा
	उष्णतेची गरज असेलच	किंवा एखादे आम्ल मिळाल्यास
	असे नाही.	उत्पादित निर्माण होते.
उदा.	$H_2O_{(g)} + CO_{2(g)}$	$CaCO_{3(s)} \xrightarrow{\Delta} CaO_{(s)}$
	\longrightarrow H ₂ CO _{3(l)}	$+ CO_{2(g)}$

 ऑक्सिडीकरण अभिक्रिया आणि क्षपण अभिक्रिया |जुलै 16|

-	-	-		-	
			T		٠
9	х	х		х	140
-		-	τ.		1.

	ऑक्सिडीकरण अभिक्रिया	क्षपण अभिक्रिया	
i.	जेव्हा रासायनिक अभिक्रियेत अभिक्रियाकारके ऑक्सिजन स्वीकारतात किंवा अभिक्रियाकारकातून हायड्रोजनचा अणू निघून जातो व उत्पादित तयार होते, त्या अभिक्रियेला ऑक्सिडीकरण अभिक्रिया म्हणतात.	ज्या रासायनिक अभिक्रियेत अभिक्रियाकारकातून ऑक्सिजनचा अणू निघून जातो किंवा अभिक्रियाकारके हायड्रोजनचा अणू स्वीकारतात व उत्पादित तयार होते, त्या अभिक्रियेला क्षपण अभिक्रिया म्हणतात.	

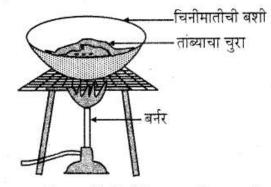
ii.	क्षपणकारक पदार्थांचे ऑक्सिडीकरण होते.	ऑक्सिडीकारक पदार्थांचे क्षपण होते.		
उदा.	$2Cu_{(s)} + O_{2(g)} \xrightarrow{\Delta} 2CuO_{(s)}$	$C_{(s)} + 2H_{2(g)} \rightarrow CH_{4(g)}$		


खवटपणा आणि क्षरण

उत्तर:

	खवटपणा	क्षरण
i.	तेल आणि तूप यांचे ऑक्सिडीकरण झाल्यास किंवा बराच काळ ठेवले तर ते खवट होते; यालाच खवटपणाची अभिक्रिया म्हणतात.	हवा, आर्द्रता आणि आम्ल यांचा धातूंवर परिणाम होऊन त्यांची सावकाश झीज होते, यालाच क्षरण म्हणतात.
ii.	ऑक्सिडीकरण विरोधक वापरून तेल किंवा तूप असलेल्या पदार्थांचे ऑक्सिडीकरण टाळता येते.	गंजविरोधक द्रावणे वापरून क्षरणापासून धातूंचे रक्षण करता येते.
iii.	यामुळे तेल व तूप तापवले असता ते फसफसते तसेच घाणेरडा वास येतो.	क्षरणामुळे इमारती, पूल, वाहने, जहाजे, लोखंडाच्या इतर वस्तू इत्यादींना धोका संभवतो.
iv.	खवटपणापासून वाचविण्यासाठी पदार्थ हवाबंद डब्यात ठेवावेत.	गंजापासून वाचविण्यासाठी लोखंडी वस्तूंना जस्ताचा थर दचावा किंवा गंजविरोधक द्रावणांचे विलेपन करावे.

आकृत्यांवर आधारित प्रश्न


- 1. खालील आकृतीमध्ये,
 - कापराला उष्णता दिली असता कोणत्या प्रकारचा बदल घडून येतो?
 - ii. कापरासारखेच गुणधर्म दाखविणाऱ्या पदार्थाचे नाव लिहा.

उत्तर: i. भौतिक बदल

ii. अमोनिअम क्लोराइड

 खालील आकृती तांब्याच्या चुऱ्याचे चिनी मातीच्या बशीत ज्वलन दाखविते.

 वरील अभिक्रियेचे रासायनिक समीकरण लिहा.

ii. उत्पादिताचा रंग कोणता असेल?

उत्तर: i.

ii.

2Cu_(s) + O_{2(g)} → 2CuO_(s) काळा संकीर्ण

#1.	खालील	बदलांचे	भौतिक	बदल	a	रासायनिक
	बदल अ	से वर्गीकर	ण करा.			

- i. बर्फाचे पाण्यात रूपांतर होणे.
- ii. दुधाचे दह्यात रूपांतर होणे.
- iii. फळे पिकणे.
- iv. वाफेचे संघनन होणे.
- v. मानवातील श्वसनप्रक्रिया.
- उत्तर: भौतिक बदल: बर्फाचे पाण्यात रूपांतर होणे, वाफेचे संघनन होणे.

रासायनिक बदल: दुधाचे दह्त्यात रूपांतर होणे, फळे पिकणे, मानवातील श्वसनप्रक्रिया.

#2. खालील शाब्दिक समीकरणाचे संतुलित रासायनिक समीकरण लिहा आणि तक्ता पूर्ण करा.

आयर्न सल्फाइड + सल्फ्युरिक आम्ल →

फेरस सल्फेट + हायड्रोजन सल्फाइड

मूलद्रव्य	अभिक्रियाकारकांमधील अणूंची संख्या (डावी बाजू)	उत्पादितांमधील अणूंची संख्या (उजवी बाजू)
Fe	1	1
S		4
H		
0		

उत्तर: शाब्दिक समीकरणासाठी संतुलित रासायनिक समीकरण पुढीलप्रमाणे:

मूलद्रव्ये	अभिक्रियाकारकांमधील अणुसंख्या (डावी बाजू)	उत्पादितांमधील अणुसंख्या (उजवी बाजू)
Fe	1	1
S	2	2
Н	2	2
0	4	4

 $FeS + H_2SO_4 \longrightarrow FeSO_4 + H_2S$

#3. दिलेले समीकरण संतुलित करा.

 $Cu + O_2 \longrightarrow CuO$

उत्तरः संतुलित रासायनिक समीकरणः

 $2Cu + O_2 \longrightarrow 2CuO$ कॉपर ऑक्सिजन कॉपर ऑक्साइड

#4. खालील अभिक्रियांकरिता संतुलित रासायनिक समीकरण लिहा. बेरिअम क्लोराइड + सल्फ्युरिक आम्ल

- उत्तर: $BaCl_{2(aq)} + H_2SO_{4(aq)} \longrightarrow BaSO_{4(s)} + 2HCl_{(aq)}$ बेरिअम सल्पयुरिक बेरिअम हायड्रोजन क्लोराइड आम्ल सल्फेट क्लोराइड
- #5. खालील अभिक्रियांमध्ये अभिक्रियाकारके आणि उत्पादिते यांच्या भौतिक अवस्था लिहा.
 - i. $AgNO_3 + NaCl \longrightarrow AgCl + NaNO_3$

ii. $Zn + 2HCl \longrightarrow ZnCl_2 + H_2$

उत्तर:

- i. $AgNO_{3(aq)} + NaCl_{(aq)} \longrightarrow AgCl_{(s)} + NaNO_{3(aq)}$ Recent the three the three three the three thr
- ii. $Zn_{(s)} + 2HCl_{(aq)} \longrightarrow ZnCl_{2(aq)} + H_{2(g)}$ [\$\vec{s}\vec{a} \vec{s}\vec{a} \vec{s}\vec{a}\vec{s}\vec{a}\vec{s}\vec
- #6. पुढील अभिक्रिया पूर्ण करून उत्पादितांची नावे लिहा.

CuSO_{4(aq)} + Fe_(s) \longrightarrow _____ +उत्तर: CuSO_{4(aq)} + Fe_(s) \longrightarrow FeSO_{4(aq)} + Cu_(s)कॉपर सल्फेट आयर्न फेरस सल्फेट कॉपरउत्पादिते: फेरस सल्फेट व तांबे

- #7. खालील अभिक्रिया उष्माग्राही अभिक्रिया आहेत की उष्मादायी अभिक्रिया आहेत ते लिहा.
 - i.
 $3CaO.Al_2O_{3(s)}$ +
 $6H_2O_{(l)}$

 ट्रायकॅल्शिअम ॲल्युमिनेट
 पाणी

काँक्रीट

- ii. $2CaSO_4 \cdot H_2O + 3H_2O$ vertect with the vertex of the vertex of
 - → $2CaSO_4 \cdot 2H_2O$ + उष्णता

जिप्सम

उत्तर: रासायनिक अभिक्रियेतून उष्णता बाहेर पडली असल्याने वरील दोन्ही अभिक्रिया उष्मादायी अभिक्रिया आहेत.

*8. जोडचा लावा.

	अभिक्रियाकारके		उत्पादिते		रासायनिक अभिक्रियेचा प्रकार
i.	Fe + S	a.	NaCl + H ₂ O	w.	ऑक्सिडीकरण
ii.	$CuSO_4 + Zn$	b.	2CuO	x.	उदासिनीकरण
iii.	$2Cu + O_2$	с.	ZnSO ₄ + Cu	у.	विस्थापन
iv.	HCl + NaOH	d.	FeS	Z.	संयोग

उत्तरे:(i - d - z), (ii - c - y), (iii - b - w), (iv - a - x)

- *9. नैसर्गिक वातावरणात सकाळी चालायला गेल्यावर आपल्याला ताजेतवाने वाटते. हेच सकाळी 10 वाजल्यानंतर किंवा गर्दीच्या वेळी का वाटत नाही? तुमच्या उत्तराचे समर्थन करण्यासाठी योग्य ते रासायनिक समीकरण लिहा.
- उत्तर: i. सकाळच्या वेळी हवेतील ऑक्सिजनचे प्रमाण (O₂) हे कार्बन डायऑक्साइडच्या प्रमाणापेक्षा (CO₂) अधिक असते. आपल्या शरीराला ऑक्सिजनचा पुरवठा व्यवस्थित झाल्याने शरीरातील सर्व कार्ये सुरळीत होतात.
 - ii. अन्नपदार्थातील कर्बोदकांमधून मिळालेल्या ग्लुकोजचे ऑक्सिजनमुळे ज्वलन होते आणि शरीरास ऊर्जा मिळते.

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + ऊर्जा$ ग्लुकोज ऑक्सिजन कार्बन पाणी डायऑक्साइड

त्यामुळे, नैसर्गिक वातावरणात सकाळी चालताना ताजेतवाने वाटते.

iii. सकाळी 10 नंतर गर्दीच्या वेळी वाहनांची वर्दळ वाढते. वाहनाच्या इंधनातील मिथेनची (वाहनांमध्ये वापरल्या जाणाऱ्या CNG मधील मुख्य घटक) ऑक्सिजनशी अभिक्रिया होऊन कार्बन डायऑक्साइड व पाणी तयार होते. तसेच पेट्रोल, डिझेल इ. इंधनांच्या ज्वलनातून CO₂ मुक्त होतो.

म्हणून, हवेतील CO₂ ची पातळी वाढल्यामुळे आणि ऑक्सिजनची पातळी कमी झाल्यामुळे सकाळी 10 वाजल्यानंतर किंवा गर्दीच्या वेळी आपल्याला ताजेतवाने वाटत नाही.

- *10. अत्यंत बारीक दळलेली जस्ताची पूड घ्या व त्याची CuSO₄ बरोबर अभिक्रिया होऊ दचा. नंतर दाणेदार जस्त घेऊन अशीच अभिक्रिया करा. यांपैकी कोणती अभिक्रिया जलद घडेल व का?
- उत्तर: i. जस्त कॉपर सल्फेटच्या द्रावणातून कॉपर विस्थापित करते आणि झिंक सल्फेट तयार होते.

 $Zn_{(s)} + CuSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Cu_{(s)}$ इंग्रंक कॉपर सल्फेट इंग्रंक सल्फेट कॉपर

ii. जस्ताच्या बारीक पुडीवर दाणेदार जस्तापेक्षा अधिक वेगाने CuSO₄च्या द्रावणात अभिक्रिया होते.

iii. अभिक्रियाकारकाच्या कणांचा आकार जितका लहान तितका अभिक्रियेचा वेग अधिक असतो, कारण अभिक्रियेचा वेग हा अभिक्रियेसाठी उपलब्ध असलेल्या पृष्ठभागाच्या क्षेत्रफळावर आणि त्यामुळे अभिक्रियाकारकांच्या कणांच्या आकारावर अवलंबून असतो.

iv. अभिक्रिया घडून येण्यासाठी उपलब्ध असणाऱ्या पृष्ठभागाचे क्षेत्रफळ हे दाणेदार जस्तापेक्षा जस्ताची पूड घेतल्यास अधिक असते. परिणामी, जेव्हा CuSO₄ च्या द्रावणात जस्ताची पूड घातली जाते तेव्हा जस्ताचे जास्त रेणू CuSO₄ च्या संपर्कात येतात, म्हणून जस्ताच्या दाण्यांऐवजी जस्ताची पूड वापरली असता अभिक्रिया जलद घडते.

- #11. बेरिअम सल्फेटच्या (BaSO4) द्रावणात पोटॅशिअम क्रोमेट (K2CrO4) घातल्यास
 - तयार झालेल्या अवक्षेपाचा रंग कोणता?
 - ii. अवक्षेपाचे नाव लिहा.
 - iii. अभिक्रियेचे संतुलित रासायनिक समीकरण लिहा.
 - iv. ही विस्थापन अभिक्रिया आहे की दुहेरी विस्थापन अभिक्रिया आहे?
- उत्तर: i. तयार झालेल्या अवक्षेपाचा रंग पिवळा आहे.
 - ii. अवक्षेपाचे नाव बेरिअम क्रोमेट आहे.
 - iii. संतुलित रासायनिक समीकरण:

 $K_2CrO_{4(aq)} + BaSO_{4(aq)} \longrightarrow K_2SO_{4(aq)} + BaCrO_{4(s)} \downarrow$ पोटॅशिअम बेरिअम पोटॅशिअम बेरिअम क्रोमेट सल्फेट क्रोमेट

iv. ही दुहेरी विस्थापन अभिक्रिया आहे.

- #12. उष्णता अथवा प्रकाशाच्या साहाय्याने पाण्याचे अपघटन करणे शक्य आहे का? 6 व्होल्टची विद्युतघारा पाण्यातून प्रवाहित केल्यास त्याचे अपघटन घडुन येणे शक्य आहे का?
- उत्तरः प्रकाश अथवा उष्णता ऊर्जेने पाण्याचे अपघटन होऊ शकत नाही; परंतु पाण्यामध्ये आम्लाचे काही थेंब टाकल्यास आणि त्यातून 6 व्होल्टच्या विदयुतघटातून विदयुतधारा प्रवाहित केल्यास पाण्याचे अपघटन करणे शक्य होते.
- #13. जेव्हा खादचतेलाचे रूपांतर तुपात होते तेव्हा ती कोणत्या प्रकारची अभिक्रिया आहे? ही अभिक्रिया शब्दांत व्यक्त करा.
- उत्तरः खाद्यतेलाचे तुपात रूपांतर करताना हायड्रोजन गॅस, उच्च तापमान आणि निकेलचा उत्प्रेरक म्हणून वापर करतात, या अभिक्रियेला हायड्रोजनीकरण असे म्हणतात.

शाब्दिक समीकरण:

खाद्यतेल, + हायड्रोजन वायू _____ तूप

- #14. जेव्हा तांब्याच्या वस्तू प्रकाश किंवा आर्द्रतेच्या सान्निध्यात येतात तेव्हा त्यांचे 'क्षरण' होते का? कसे ?
- उत्तरः होय, तांब्याच्या वस्तू प्रकाश किंवा आर्द्रतेच्या सान्निध्यात आल्या असता त्यांचे क्षरण होते. कॉपरची हवेतील बाष्प आणि CO2 यांच्याशी अभिक्रिया होऊन हिरव्या रंगाच्या कॉपर कार्बोनेटचा थर तयार होतो.
- #15. चांदीचे दागिने प्रकाश आणि आर्द्रतेच्या सान्निध्यात आल्यास काय आढळते? का?
- उत्तर: चांदीचे दागिने आर्द्रतेच्या सान्निध्यात आल्यास त्यांच्यावर काळचा रंगाचा थर जमा होतो. हवेतील H₂S मुळे चांदीच्या दागिन्यांवर काळचा रंगाच्या सिल्व्हर सल्फाइडचे आवरण तयार होते.

म्हणून, चांदीचे दागिने प्रकाश आणि आर्द्रतेच्या सान्निध्यात आल्यास ते काळे पडतात.

- #16. ॲल्युमिनिअमच्या भांडचात हिरव्या पालेभाज्या उकळविल्यास भांडी पुन्हा पूर्वीसारखी का चमकू लागतात?
- उत्तरः जास्त वापरानंतर ॲल्युमिनिअमच्या भांड्यावर ॲल्युमिनिअम ऑक्साइडचा (Al₂O₃) पातळ थर जमा होऊ लागतो. त्यामुळे या भांड्यांची चकाकी कमी होऊ लागते. हिरव्या पालेभाज्यांमध्ये असलेल्या हरितद्रव्यांमध्ये क्षपण घडवन आणणारे घटक असतात पालेभाज्या हिरव्या ॲल्युमिनिअमच्या भांड्यात उकळविल्या असता. ॲल्युमिनिअम ऑक्साइडचे क्षपण होऊन त्याचे ॲल्युमिनिअममध्ये रूपांतर होते व भांडी पुन्हा चमकू लागतात.
- #17. जुने शिल्लक राहिलेले 100 ml खादचतेल घेऊन ते एका भांड्यात तापवा व तुमच्या निरीक्षणाची नोंद करा.
- उत्तरः जुने शिल्लक राहिलेले खाद्यतेल तापविले असता ते फसफसते आणि त्याचा दुर्गंध येतो.

#18. नैसर्गिक ऑक्सिडीकरण विरोधक पदार्थांची नावे सांगा. सध्याच्या काळात औषधांच्या दुकानात मिळणाऱ्या दर्जेदार ऑक्सिडीकरण विरोधकांची यादी तयार करा.

उत्तरः नैसर्गिक ऑक्सिडीकरण विरोधकः

भाज्याः लाल कोबी, पालक, टोमॅटो, गाजर, आले इत्यादी.

कडधान्येः सोयाबीन, राजमा इत्यादी. तृणधान्यः जव, नाचणी, ओट, मका इत्यादी. मसालेः लवंग, दालचिनी, काळीमिरी इत्यादी. फळेः पपई, स्ट्रॉबेरी, सफरचंद, चेरी, डाळिंब,

पेरू, संत्र, अननस, द्राक्षे, किवी इत्यादी.

तसेच अक्रोड, बदाम, शेंगदाणे, सूर्यफुलाच्या बिया यांचाही उपयोग ऑक्सिडीकरण विरोधक म्हणून करतात.

औषधांच्या दुकानात उपलब्ध असणारे ऑक्सिडीकरण विरोधकः

बीटाकॅरोटिन, झिंक सल्फेट मोनोहायड्रेट, सेलेनिअम डायऑक्साइड मोनोहायड्रेट, मॅंगनीज आणि कॉपर.

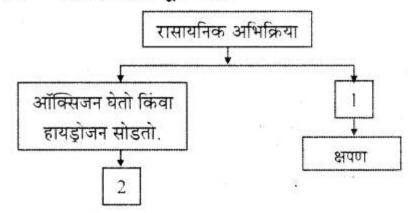
- #19. कुरकुरे, चिप्स, फ्रायम्स इ. पदार्थ हवाबंद वेष्टणात साठवितात. हे ऑक्सिडीकरण टाळण्यासाठी पुरेसे आहे का?
- उत्तरः नाही, हवाबंद वेष्टणात साठविल्यामुळे कुरकुरे, चिप्स, फ्रायम्स इ. पदार्थांची ऑक्सिडीकरणाची प्रक्रिया मंदावता येते; परंतु पूर्णपणे टाळता येत नाही.

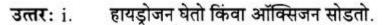
#20. खादचपदार्थांचे ऑक्सिडीकरण टाळण्यासाठी कोणकोणत्या गोष्टी केल्या जातात?

उत्तरःखाद्यपदार्थांचे ऑक्सिडीकरण टाळण्यासाठी ते हवाबंद वेष्टणात साठविले जातात. ही वेष्टणे नायट्रोजन वायूने भरली जातात. नायट्रोजन निष्क्रिय असल्यामुळे तो जीवाणूंची वाढ रोखतो आणि त्यामुळे खाद्यपदार्थांचे ऑक्सिडीकरण टळते आणि ते जास्त काळ टिकून राहतात.

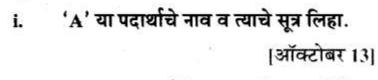
HOTS

- सेंद्रिय पदार्थ 'A' चे उच्च तापमान व दाबास पॉलिमरायझेशन होते आणि पॉलिथिन तयार होते.
 - i. A म्हणजे काय?
 - ii. कार्बन अणूंमध्ये कोणत्या प्रकारचे अणुबंध आहेत?
- उत्तर: i. A म्हणजे इथिलीन (C2H4)


ii. दुहेरी बंध


- वायू P हा उष्णता व सूर्यप्रकाशात ऑक्सिजन आणि Q देतो.
 - i. Pम्हणजे ii. Qम्हणजे काय?

उत्तर: i. ओझोन (O3)


ii. Q म्हणजे नवजात ऑक्सिजन जो [O] असा दर्शवितात.

3. खालील तक्ता पूर्ण करा.

- ii. ऑक्सिडीकरण.
- #4. 'A' या पदार्थाची खळ (paste) तुमच्या घराचे छत सुशोभित करण्यासाठी वापरली जाते तर

- 'A' या पदार्थाची पाण्याबरोबर अभिक्रिया केली. त्या अभिक्रियेचे समीकरण लिहा. या अभिक्रियेत मिळणाऱ्या उत्पादिताचे नाव (B) लिहा. [ऑक्टोबर 13]
- iii. 'B' चा उपयोग कोठे व कसा होतो?
- उत्तर: i. 'A' म्हणजेच प्लॅस्टर ऑफ पॅरिस (POP) होय. त्याचे रासायनिक सूत्र 2CaSO4.H2O

ii. $2CaSO_4 H_2O + 3H_2O$

----> 2CaSO4.2H2O + उष्णता

तयार होणारे उत्पादित 'B' म्हणजे जिप्सम होय.

iii. जिप्समचा उपयोग सिमेंट तयार करण्यासाठी कच्चामाल म्हणून होतो.

खालील प्रश्नांची उत्तरे लिहा. BaSO4 च्या द्रावणात 'A' पदार्थ मिसळला असता

पिवळा अवक्षेप प्राप्त होतो.

5.

 पदार्थ 'A' कोणत्या प्रकारचा आहे असे तुम्हांला वाटते.

b. अवक्षेपाचे नाव लिहा.

c. ही अभिक्रिया कोणत्या प्रकारची आहे?

[मार्च 13]

उत्तर: a. पोटॅशिअम क्रोमेट (K2CrO4)

b. बेरिअम क्रोमेट (BaCrO₄)

c. दुहेरी विस्थापन अभिक्रिया

 खालीलपैकी कोणती विधाने दिलेल्या अभिक्रियेसाठी बरोबर आहेत?

 $\mathbf{2PbO} + \mathbf{C} \rightarrow \mathbf{2Pb} + \mathbf{CO}_2$

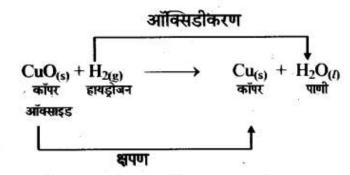
i. शिशाचे क्षपण झाले आहे.

- ii. कार्बनडायऑक्साइडचे ऑक्सिडीकरण झाले आहे.
- iii. कार्बनचे ऑक्सिडीकरण झाले आहे.

iv. लेड ऑक्साइडचे क्षपण झाले आहे.

उत्तर: i. शिशाचे क्षपण झालेले आहे.

ii. कार्बनचे ऑक्सिडीकरण झाले आहे.


 खालील अभिक्रियेतील उत्पादित 'A' आणि 'B' ओळखा.

 $CuO + H_2 \longrightarrow A + B$

योग्य रासायनिक समीकरण लिहून कोणत्या मूलद्रव्याचे ऑक्सिडीकरण आणि क्षपण होते ते दाखवा.

उत्तर: उत्पादिते : Cu आणि H2O

रासायनिक समीकरणः

 अजयने एका चंचुपात्रातील पाण्यामध्ये 'A' हा पदार्थ थोड्या प्रमाणात टाकून तो विरघळवला. त्याला द्रावणाचे तापमान वाढल्याचे दिसून आले.

- i. 'A' हा पदार्थ पाण्यात टाकल्यास द्रावणातील तापमान बदल लक्षात घेता, कोणत्या प्रकारची अभिक्रिया घडली असावी?
- ii. तुमच्या मते 'A' हा पदार्थ कोणता असावा: NaOH किंवा KNO₃?
- उत्तर: i. उष्मादायी अभिक्रिया.
 - ii. जेव्हा NaOH पाण्यात विरघळते, तेव्हा उष्णतेचे उत्सर्जन होते (म्हणजेच उष्मादायी अभिक्रिया). जेव्हा KNO₃ पाण्यात विरघळते, तेव्हा उष्णता शोषली जाते (म्हणजेच उष्माग्राही अभिक्रिया). म्हणून, तो पदार्थ KNO₃ नसून NaOH हा आहे.

9.	सोडिअम क्लोराइडच्या द्रावणात सिल्व्हर नायट्रेटचे
	द्रावण मिसळले असताः

- i. कशाचा अवक्षेप तयार होतो?
- ii. या अभिक्रियेचा प्रकार सांगा.
- iii. या अभिक्रियेचे रासायनिक समीकरण लिहा. [जुलै 15]
- उत्तर: i. सिल्वहर क्लोराइड (AgCl)

ii. दुहेरी विस्थापन अभिक्रिया

iii.	AgNO _{3(aq)} +		$\rightarrow \operatorname{AgCl}_{(s)} \downarrow$
	सिल्व्हर	सोडिअम .	सिल्व्हर
	नायट्रेट	क्लोराइड	क्लोराइड
			+ NaNO2(aa)

सोडिअम नायट्रेट

- 10. रमेशने A, B व C अशी नावे दिलेली तीन चंचुपात्रे घेतली. त्या प्रत्येक चंचुपात्रात 25 मिली पाणी टाकले व त्यानंतर थोड्या प्रमाणात NaOH, CuSO4 ची पावडर व NaCl हे अनुक्रमे A, B व C या चंचुपात्रांत टाकले. A व B चंचुपात्रांमध्ये तापमानवाढ दिसून आली; परंतु C चंचुपात्रातील द्रावणाचे तापमान घटले. तर
 - कोणत्या चंचुपात्रात उष्णता शोषण्याची क्रिया घडली?
 - ii. C चंचुपात्रात कोणती अभिक्रिया घडून आली?
- उत्तर: i. C चंचुपात्रात उष्णता शोषण्याची क्रिया झाली.

ii. उष्माग्राही अभिक्रिया

- रात्रीच्या जेवणानंतर साबण किंवा डिटर्जंटने तुम्ही तुमचे ताट धुतले, त्यावर आधारित प्रश्नांची उत्तरे लिहाः
 - जेव्हा साबण किंवा डिटर्जंट वापरतो तेव्हा रंगबदल कसा होतो?

ii. या अभिक्रियेला नाव देऊन ती स्पष्ट करा. [मार्च 14]

उत्तर: i. जेव्हा आपण जेवणानंतर साबण किंवा डिटर्जेंटने ताट धुतो, तेव्हा त्यावरच्या पिवळ्या तेलकट डागांचे रूपांतर लाल/केशरी रंगात होते.

ii.

ही उदासिनीकरण अभिक्रिया आहे. खाद्यतेले ही अल्कोहोल आणि कार्बोक्सिलिक आम्ल यांची सेंद्रिय संयुगे आहेत. खाद्यतेलातील संयुगांचे साबण किंवा डिटर्जैंटमुळे उदासिनीकरण होते. ही अभिक्रिया पिवळ्या रंगाच्या हळदीचे लाल किंवा नारिंगी रंगात रूपांतर होऊन दर्शविली जाते. खालील परिच्छेद वाचून दिलेल्या प्रश्नांची उत्तरे लिहा.

> अक्षय रसायनशास्त्राच्या प्रयोगशाळेत प्रयोग करत होता. त्याला एका फळीवर पोर्टेशिअम आयोडाइडच्या द्रावणाची बाटली सापडली व पुढच्याच फळीवर लेड नायट्रेटच्या द्रावणाची बाटली सापडली. त्याने ही द्रावणे वेगवेगळ्या परीक्षानळीत घेतली व नंतर हळूहळू एकमेकांत मिसळली. तेव्हा त्याला पिवळ्या रंगाचा अवक्षेप मिळाला. हा प्रयोग करताना त्याची उत्सुकता वाढली व त्याने लेड नायट्रेट ऐवजी इतर कोणते द्रावण वापरता येईल का ते पाहिले. त्याच्यापुढील टेबलवर लेड ॲसिटेट, अमोनिअम नायट्रेट व पोर्टेशिअम सल्फेटच्या द्रावणाच्या बाटल्या होत्या. यांपैकी एक द्रावण निवडले असता त्याला पुन्हा पिवळ्या रंगाचा अवक्षेप मिळाला.

प्रश्न:

- पहिल्या अभिक्रियेत मिळालेल्या पिवळ्या अवश्वेपाचे नाव लिहा.
- ii. पहिल्या रासायनिक अभिक्रियेचे संतुलित समीकरण लिहा.

- iii. इतर उपलब्ध द्रावणांपैकी अध्ययने पिवळ्या रंगाचा अवध्येप मिळवण्यासाठी कोणत्या द्रावणाचा उपयोग केला असेल?
- उत्तरे: i. लेड आयोडाइड (PbI2)

.

ii. पहिल्या अभिक्रियेचे संतुलित रासायनिक समीकरणः

Pb(NO₃)_{2(aq)} + 2KI_(aq) → 2KNO_{3(aq)} + PbI_{2(s)}↓ लेड पोटॅशिअम पोटॅशिअम लेड नायट्रेट आयोडाइड नायट्रेट आयोडाइड

iii. लेड ॲसिटेट, अमोनिअम नायट्रेट व पोटॅशिअम सल्फेट यांपैकी अक्षयने लेड ॲसिटेटचा उपयोग केला असावा, कारण लेड ॲसिटेटची पोटॅशिअम आयोडाइडबरोबर अभिक्रिया होऊन लेड आयोडाइडचा अवश्वेप तयार होतो.