

No. of Questions — 24

No. of Printed Pages — 7

SS-15-1-Maths. I

उच्च माध्यमिक परीक्षा, 2010

SENIOR SECONDARY EXAMINATION, 2010

वैकल्पिक वर्ग I तथा II — कला व विज्ञान वर्ग

(OPTIONAL GROUPS I & II — HUMANITIES AND SCIENCE)

गणित — प्रथम पत्र

(MATHEMATICS — First Paper)

समय : $3\frac{1}{4}$ घण्टे

पूर्णांक : 60

परीक्षार्थियों के लिए आवश्यक निर्देश:

GENERAL INSTRUCTIONS FOR EXAMINEES:

- 1. परीक्षार्थी सर्वप्रथम अपने प्रश्न पत्र पर नामांक अनिवार्यत: लिखें । Candidate must write first his / her Roll No. on the question paper compulsorily.
- 2. प्रश्न पत्र के हिन्दी व अंग्रेजी रूपान्तर में किसी प्रकार की त्रुटि / अन्तर / विरोधाभास होने पर हिन्दी भाषा के प्रश्न को सही मानें ।
 - If there is any error / difference / contradiction in Hindi and English versions of the Question paper, the question of Hindi version should be treated valid.
- 3. सभी प्रश्न करने अनिवार्य हैं । प्रश्न क्रमांक **21, 23** व **24** में आन्तरिक विकल्प हैं । All questions are compulsory. Question Nos. **21, 23** and **24** have internal choice.
- प्रश्न क्रमांक 2 से 7 तक अति लघूत्तरात्मक प्रश्न हैं।
 Question Nos. 2 to 7 are Very Short Answer type.
- 5. प्रत्येक प्रश्न का उत्तर दी गई उत्तर-पुस्तिका में ही लिखें। Write the answer of each question in answer-book only.

SS—15-1—Maths. I

SS-528

[Turn over

6. जिस प्रश्न के एक से अधिक समान अंक वाले भाग हैं, उन सभी भागों का हल एक साथ सतत् लिखें ।

For questions having more than one part carrying similar marks, the answers of those parts are to be written together in continuity.

7. अपनी उत्तर-पुस्तिका के पृष्ठों के दोनों ओर लिखिए । यदि कोई रफ़ कार्य करना हो, तो उत्तर-पुस्तिका के अंतिम पृष्ठों पर करें और इन्हें तिरछी लाइनों से काटकर उन पर 'रफ़ कार्य' लिख दें ।

Write on both sides of the pages of your answer-book. If any rough work is to be done, do it on last pages of the answer-book and cross with slant lines and write 'Rough Work' on them.

8. प्रश्न क्रमांक 1 के चार भाग (i, ii, iii तथा iv) हैं । प्रत्येक भाग के उत्तर के चार विकल्प (क, ख, ग एवं घ) हैं । सही विकल्प का उत्तराक्षर उत्तर-पुस्तिका में निम्नानुसार तालिका बनाकर लिखें :

There are *four* parts (i, ii, iii and iv) in Question No. 1. Each part has *four* alternatives A, B, C and D. Write the letter of the correct alternative in the answer-book at a place by making a table as mentioned below :

प्रश्न क्रमांक Guestion No.	सही उत्तर का क्रमाक्षर Correct letter of the Answer
1. (i)	
1. (ii)	
1. (iii)	
1. (iv)	

1.	(i)	बिन्दु P ($1,2,3$) से xy समतल पर लम्ब PM डाला गया । लम्बपाद M र	ŧ
		निर्देशांक हैं	

(क)	-	1	0	0	١
(an)	- 1		7.		- 1

(অ) (0,2,3)

 (η) (1, 0, 3)

(₁) (1, 2, 0).

A perpendicular PM is drawn from the point P (1, 2, 3) on xy plane. The coordinates of the foot of perpendicular M are

(A) (1, 2, 3)

(B) (0, 2, 3)

(C) (1, 0, 3)

(D) (1, 2, 0).

 $\frac{1}{2}$

(ii) समतल x = 0 की बिन्दु (3, 4, 6) से दूरी है

		(क)	3			(ख)	4	
		(ग)	6			(ঘ)	$\sqrt{61}$.	
		Distance of the plane $x = 0$ from the point (3, 4, 6) is						
		(A)	3			(B)	4	
		(C)	6			(D)	$\sqrt{61}$.	$\frac{1}{2}$
	(iii)	एक व	कण प्र	गरंभिक वेग g	मी/से से ऊर्ध्वाधर	दिशा में	ऊपर की ओर	फेंका जाता है ।
		कण ह	द्वारा त	य की गई महत्त्	तम ऊँचाई है			
		(क)	$\frac{g}{4}$	मीटर		(평)	$rac{g}{2}$ मीटर	
		(ग)	g मी	टर		(ঘ)	2g मीटर ।	
		Ар	artic	ele is proje	cted vertically	upwa	ards with i	nitial velocity
		g m	/sec	. The maxir	num height att	ained	by the parti	cle is
		(A)	$\frac{g}{4}$	m		(B)	$\frac{g}{2}$ m	
		(C)	g m	l		(D)	2g m.	$\frac{1}{2}$
	(iv)	500	ग्राम	द्रव्यमान के ए	क्र पिण्ड पर एक बल	त लगाने	पर 3 मी/से 2	का त्वरण उत्पन्न
		हो ज	ाता है,	तो लगने वाल	ा बल है			
		(क)	1 1	N		(평)	1·5 N	
		(ग)	2 1	V		(ঘ)	3 N.	
		A fo	orce	acting on	a body of i	mass	500 gms,	produces an
		acce	elera	tion of 3 m	$/\sec^2$. Then the	he imp	pressed forc	e is
		(A)	1 N			(B)	1·5 N	1
	_	(C)	2 N			(D)	3 N.	$\frac{1}{2}$
2.	सिद्ध	कीजिए	र्कि :	$2 \cos^{-1} x$	$= \cos^{-1} (2x^2)$	- 1 <u>)</u>		
	Prov	e tha	at 2	$\cos^{-1} x =$	\cos^{-1} ($2x^2$ –	1).		1
3.	बिन्दु ३ कीजि		(1,	5,0) तथा (্ব (2, 3, 2) को	मिलाने	वाली रेखा की	दिक्कोज्याएं ज्ञात
	Find	the	dire	ction cosin	es of the line j	joining	g the points	P(1, 5, 0)
	and	Q (2	2, 3,	2).				1
4.	बिन्दु	(a, Ł	o, c)	से गुजरने वाल	नी तथा z-अक्ष के स	ामान्तर रे	खा का समीकर	ण ज्ञात कीजिए ।
	Find	l the	equa	ation of a l	ine passing th	rough	the point (a, b, c) and
	para	allel t	o z-a	ixis.				1
SS—	15–1-	—Ма	ths.	I	SS-528			[Turn over

5.	किसी भी बूलीय बीजगणित में सिद्ध कीजिए कि $a+a=a$.	
	In any Boolean algebra, prove that $a + a = a$.	1
6.	सदिशों $\hat{i}-2\hat{j}+\hat{k}$ तथा $2\hat{i}+\hat{j}-3\hat{k}$ के लम्बवत् इकाई सदिश ज्ञात कीजिए	l

- 6. सिंदिशों $\hat{i} = 2\hat{j} + \hat{k}$ तथा $2\hat{i} + \hat{j} = 3\hat{k}$ के लम्बवत् इकाई सिंदिश ज्ञात कीजिए। Find unit vector perpendicular to the vectors $\hat{i} = 2\hat{j} + \hat{k}$ and $2\hat{i} + \hat{j} = 3\hat{k}$.
- 7. एक गुब्बारा 40 मी / से के वेग से ऊपर की ओर बढ़ रहा है । उसमें से एक गेंद को गिराया जाता है । गेंद धरातल तक पहुँचने में 10 से लगाती है । गेंद गिराते समय गुब्बारे की ऊँचाई ज्ञात कीजिए ।

A balloon is ascending with a velocity of 40 m/sec. A ball is dropped from the balloon. The ball takes 10 sec to reach the ground. Find the height of the balloon when the ball was dropped.

8. समुच्चय $A = \{1, 2, 3, 4, 5, 6\}$ से समुच्चय $B = \{1, 2, 3\}$ में परिभाषित सम्बन्ध R को क्रमित युग्मों के समुच्चय के रूप में लिखिए , जहाँ $xRy \Leftrightarrow x = 2y \mid R^{-1}$ का प्रांत भी ज्ञात कीजिए ।

Express the relation R as a set of ordered pairs, defined from the set $A = \{1, 2, 3, 4, 5, 6\}$ to the set $B = \{1, 2, 3\}$, where $xRy \Leftrightarrow x = 2y$. Also find the domain of R^{-1}

9. यदि $f(x) = \log_e \frac{1+x}{1-x}$ तथा $g(x) = \frac{3x+x^3}{1+3x^2}$ तब ($f \circ g$) (x) का मान ज्ञात कीजिए ।

If $f(x) = \log_e \frac{1+x}{1-x}$ and $g(x) = \frac{3x+x^3}{1+3x^2}$, then find the value of $(f \circ g)(x)$.

10. यदि (x+iy) $^{1/3}=a+ib$, जहाँ $a,b,x,y\in R$, तो सिद्ध कीजिए कि $\frac{x}{a}+\frac{y}{b}=4$ (a^2-b^2) .

If $(x+iy)^{1/3}=a+ib$, where $a,b,x,y\in R$, then prove that $\frac{x}{a}+\frac{y}{b}=4\left(a^2-b^2\right).$

11. यदि $\sin \left(\alpha + i\beta\right) = x + iy$, तो सिद्ध कीजिए कि $\frac{x^2}{\sin^2 \alpha} - \frac{y^2}{\cos^2 \alpha} = 1.$

If $\sin (\alpha + i\beta) = x + iy$, then prove that $\frac{x^2}{\sin^2 \alpha} - \frac{y^2}{\cos^2 \alpha} = 1.$

12. बिन्दु $2\hat{i} - \hat{j} + 3\hat{k}$ से होकर जाने वाले बल $3\hat{i} + \hat{k}$ का बिन्दु $\hat{i} + 2\hat{j} - \hat{k}$ के सापेक्ष आधूर्ण ज्ञात कीजिए ।

Find moment of the force $3\hat{i} + \hat{k}$ passing through the point $2\hat{i} - \hat{j} + 3\hat{k}$ about the point $\hat{i} + 2\hat{j} - \hat{k}$.

13. बिन्दुओं A (3, 4, -7) और B (1, -1, 6) से गुजरने वाली सरल रेखा का सदिश समीकरण ज्ञात कीजिए ।

Find the vector equation of the straight line passing through the points A (3, 4, -7) and B (1, -1, 6).

14. एक कण पर कार्यरत तीन समतलीय बल कण को साम्यावस्था में रखते हैं । प्रथम, द्वितीय एवं द्वितीय, तृतीय बलों के मध्य कोण क्रमश: 120° तथा 150° हैं, तो बलों के परिमाणों के अनुपात ज्ञात कीजिए ।

Three coplanar forces acting on a particle keep the particle in equilibrium. The angles between first, second and second, third forces are 120° and 150° respectively. Find the ratio of the magnitudes of the forces.

15. N प्राकृतिक संख्याओं का समुच्चय है । यदि $N \times N$ पर कोई सम्बन्ध R इस प्रकार परिभाषित हो कि (a,b) R $(c,d) \Leftrightarrow a+d=b+c$ जहाँ $a,b,c,d\in N$, तो सिद्ध कीजिए कि R एक तल्यता सम्बन्ध है ।

N is the set of natural numbers. If a relation R be defined on $N \times N$ such that $(a, b) R (c, d) \Leftrightarrow a + d = b + c$, where $a, b, c, d, \in N$. Then prove that R is an equivalence relation.

16. यदि फलन f और g दो ऐसे एकैकी आच्छादन हैं कि g o f परिभाषित हो, तो सिद्ध कीजिए कि (g o $f)^{-1} = f^{-1}$ o g^{-1} .

If f and g are two bijections such that $g \circ f$ is defined, then prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

17. सिद्ध कीजिए कि दो सरल रेखाएँ, जिनकी दिक्कोज्याएँ समीकरणों al + bm + cn = 0 तथा fmn + gnl + hlm = 0 से प्राप्त होती हैं,समान्तर होंगी यदि $\sqrt{af} + \sqrt{bg} + \sqrt{ch} = 0$.

Prove that the two lines whose direction cosines are given by the equations al + bm + cn = 0 and fmn + gnl + hlm = 0 are parallel, if $\sqrt{af} + \sqrt{bg} + \sqrt{ch} = 0$.

18. सिद्ध कीजिए कि बिन्दु A (- 1, 4, - 3), B (3, 2, - 5), C (- 3, 8, - 5) तथा D (- 3, 2, 1) समतलीय हैं ।

Prove that the points A(-1, 4, -3), B(3, 2, -5), C(-3, 8, -5) and D(-3, 2, 1) are coplanar.

19. एक कण पर क्रियाशील दो बल (P+Q) और (P-Q) एक दूसरे से 2α कोण बनाते हैं और उनका परिणामी उनके मध्य कोण के अर्द्धक से θ कोण बनाता है । सिद्ध कीजिए कि $P \tan \theta = Q \tan \alpha$.

Two forces (P+Q) and (P-Q) act on a particle at an angle 2α with each other and their resultant makes an angle θ with the bisector of the angle between them. Prove that $P \tan \theta = Q \tan \alpha$.

20. u वेग से तैरने वाले व्यक्ति को v वेग से बहने वाली नदी में धारा के लम्बवत् दूरी को पार करने में t_1 समय लगता है । यदि धारा की दिशा में उतनी ही दूरी को तय करने में t_2 समय लगता है, तो सिद्ध कीजिए कि

$$t_1 : t_2 = \sqrt{u + v} : \sqrt{u - v}$$
.

A man swimming with speed u takes time t_1 in crossing the river, flowing with speed v, perpendicular to the stream. If he covers the same distance in time t_2 down the stream, then prove that

$$t_1:t_2=\sqrt{u+v}:\sqrt{u-v}$$
 . 3

21. यदि $x=\cos\alpha+i\sin\alpha$, $y=\cos\beta+i\sin\beta$, $z=\cos\gamma+i\sin\gamma$ तथा x+y+z=xyz, तो सिद्ध कीजिए कि

$$\cos (\alpha - \beta) + \cos (\beta - \gamma) + \cos (\gamma - \alpha) = -1.$$

अथवा

यदि $x = \cos \theta + i \sin \theta$, तो सिद्ध कीजिए कि $\frac{x^{2n} - 1}{x^{2n} + 1} = i \tan n \theta.$

If $x = \cos \alpha + i \sin \alpha$, $y = \cos \beta + i \sin \beta$, $z = \cos \gamma + i \sin \gamma$ and x + y + z = xyz, then prove that

$$\cos (\alpha - \beta) + \cos (\beta - \gamma) + \cos (\gamma - \alpha) = -1.$$

OR

5

If $x = \cos \theta + i \sin \theta$, then prove that

$$\frac{x^{2n}-1}{x^{2n}+1}=i\tan n\ \theta.$$

SS—15-1—Maths. I

22. मूल बिन्दु से नहीं गुजरने वाले उन दो समतलों के समीकरण ज्ञात कीजिए जो बिन्दुओं (0, 4, -3) तथा (6, -4, 3) से गुजरते हैं तथा जिनके द्वारा अक्षों पर काटे गए अन्त:खण्डों का योगफल शून्य है।

Find the equations of two planes passing through the points (0, 4, -3) and (6, -4, 3) and not passing through the origin, the sum of whose intercepts on the axes is zero.

23. तीन समदिश समान्तर बल P, Q एवं R एक त्रिभुज ABC के शीर्षों पर क्रियाशील हैं । सिद्ध कीजिए कि उनका परिणामी त्रिभुज के परिकेन्द्र से गुजरता है, यदि

$$\frac{P}{\sin 2A} = \frac{Q}{\sin 2B} = \frac{R}{\sin 2C}$$

अथवा

एक वर्ग ABCD की भुजाओं AB, BC, CD और DA के अनुदिश क्रमश: P, 3P, 2P तथा 5P बल लगे हैं । इनके परिणामी का परिमाण तथा दिशा ज्ञात कीजिए तथा सिद्ध कीजिए कि यह बढ़ी हुई AD को E पर मिलता है, जहाँ AE:DE=5:4.

Three like parallel forces P, Q and R act at vertices of the triangle ABC. Prove that the resultant passes through the circumcentre of the triangle if

$$\frac{P}{\sin 2A} = \frac{Q}{\sin 2B} = \frac{R}{\sin 2C} .$$
OR

Forces P, 3P, 2P and 5P act along the sides AB, BC, CD and DA of a square ABCD. Find the magnitude and direction of the resultant and prove that it meets AD produced at point E such that AE:DE=5:4.

5

24. एक ऊर्ध्वाधर मीनार की चोटी एवं पाद से क्रमश: α तथा β उन्नतांश पर दो गोलियाँ चलाई जाती हैं और वे किसी वस्तु पर एक साथ तथा एक ही बिन्दु पर जाकर लगती हैं । यदि उस वस्तु की मीनार से क्षैतिज दूरी α है, तो सिद्ध कीजिए कि मीनार की ऊँचाई

$$a (\tan \beta - \tan \alpha)$$
 है ।

अथवा

एक कण u वेग से फेंका जाता है । यदि क्षैतिज धरातल पर इसका परास प्राप्त की गई महत्तम ऊँचाई का दुगुना है, तो सिद्ध कीजिए कि इसका परास $\frac{4u^2}{5g}$ होगा ।

Two bullets are fired from the top and bottom of a tower at elevations α and β respectively. They strike a body simultaneously and at the same point. If α be the horizontal distance of the body from the tower, prove that the height of the tower is α ($\tan \beta - \tan \alpha$).

OR

A particle is projected with a velocity u. If its horizontal range is double of the greatest height attained by the particle, prove that the range is $\frac{4u^2}{5g}$.