Ionic Equilibria

Q. 1. What is meant by the conjugate acid-base pair? Find the conjugate acid/base for the following species:

HNO2, CN-, HClO4, F-, OH-, CO32-, and S-

Ans. A conjugate acid-base pair is a pair that differs only by one proton. The conjugate acid-base for the given species is mentioned in the table below.

Species	Conjugate acid-base
HNO ₂	$NO_2^-(base)$
CN⁻	HCN (acid)
HCIO ₄	$ClO_4^{-}(base)$
F ⁻	HF (acid)
OH-	H ₂ O (acid) /O2 ⁻ (base)
CO_3^{2-}	$HCO_3^{-}(acid)$
S ²⁻	HS⁻ (acid)

Q. 2. Which of the followings are Lewis acids? H_2O , BF_3 , H^+ , and NH^+4

Ans. Lewis acids are those acids which can accept a pair of electrons. For example, BF_3 , H^+ , NH^+4 and are Lowis acids

and are Lewis acids.

Q. 3. What will be the conjugate bases for the Brönsted acids: HF, H₂SO₄ and HCO₃?

Ans. The table below lists the conjugate bases for the given Bronsted acids.

Bronsted acid	Conjugate base
HF	F ⁻
H ₂ SO ₄	

	HSO_4^-
HCO ₃	CO_3^{2-}

Q. 4. Write the conjugate acids for the following Brönsted bases: NH_2^- , NH_4^- and $HCOO^-$. The table below lists the conjugate acids for the given Bronsted bases.

Ans.

Bronsted base	Conjugate base
NH_2^-	NH ₃
NH ₃	NH_4^+
HCOO ⁻	нсоон

Q. 4. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base: (a) $OH^{-}(b) F^{-}(c) H^{+}(d) BCl_{3}$.

Ans. (a) OH⁻ is a Lewis base since it can donate its lone pair of electrons.

(b) F⁻ is a Lewis base since it can donate a pair of electrons.

(c) H⁺ is a Lewis acid since it can accept a pair of electrons.

(d) BCl₃ is a Lewis acid since it can accept a pair of electrons.

Q. 5. The concentration of hydrogen ion in a sample of soft drink is 3.8×10^{-3} M. what is its pH?

```
Ans. Given,

[H^+] = 3.8 \times 10^{-3} \text{ M}

pH value of soft drink

= -\log[H^+]

= -\log(3.8 \times 10^{-3})

= -\log 3.8 - \log 10^{-3}

= -\log 3.8 + 3

= -0.58 + 3

= 2.42
```

Q. 6. The pH of a sample of vinegar is 3.76. Calculate the concentration of hydrogen ion in it.

Ans. Given, pH = 3.76 It is known that,

$$pH = -\log[H^+]$$

 $\Rightarrow \log[H^+] = -pH$
 $\Rightarrow [H^+] = antilog(-pH)$
 $= antilog(-3.76)$
 $= 1.74 \times 10^{-4} M$

Hence, the concentration of hydrogen ion in the given sample of vinegar is 1.74×10^{-4} M.

Q. 7. The ionization constant of HF, HCOOH and HCN at 298K are 6.8×10^{-4} , 1.8×10^{-4} and 4.8×10^{-9} respectively. Calculate the ionization constants of the corresponding conjugate base.

Ans. It is known that, $K_{b} = \frac{K_{w}}{K_{a}}$ Given, Ka of HF = 6.8×10^{-4} Hence, Kb of its conjugate base F⁻ $= \frac{K_{w}}{K_{a}}$ $= \frac{10^{-14}}{6.8 \times 10^{-4}}$ $= 1.5 \times 10^{-11}$ Given, Ka of HCOOH = 1.8×10^{-4} Hence, Kb of its conjugate base HCOO⁻ $= \frac{K_{w}}{K_{a}}$ $= \frac{10^{-14}}{1.8 \times 10^{-4}}$ $= 5.6 \times 10^{-11}$

Given, *Ka* of HCN = 4.8×10^{-9} Hence, *Kb* of its conjugate base CN⁻

$$= \frac{K_w}{K_a}$$
$$= \frac{10^{-14}}{4.8 \times 10^{-9}}$$
$$= 2.08 \times 10^{-6}$$

Q. 8. Calculate the pH of the following solutions:

a) 2 g of TIOH dissolved in water to give 2 litre of solution.

b) 0.3 g of $Ca(OH)_2$ dissolved in water to give 500 mL of solution.

c) 0.3 g of NaOH dissolved in water to give 200 mL of solution.

d) 1mL of 13.6 M HCl is diluted with water to give 1 litre of solution.

Ans. (a) For 2g of TIOH dissolved in water to give 2 L of solution:

$$\begin{bmatrix} \text{TIOH}_{(aq)} \end{bmatrix} = \frac{2}{2} \text{g/L}$$
$$= \frac{2}{2} \times \frac{1}{221} \text{M}$$
$$= \frac{1}{221} \text{M}$$
$$\text{TIOH}_{(aq)} \longrightarrow \text{TI}_{(aq)}^{+} + \text{OH}_{(aq)}^{-}$$
$$\begin{bmatrix} \text{OH}_{(aq)}^{-} \end{bmatrix} = \begin{bmatrix} \text{TIOH}_{(aq)} \end{bmatrix} = \frac{1}{221} \text{M}$$
$$K_w = \begin{bmatrix} \text{H}^+ \end{bmatrix} \begin{bmatrix} \text{OH}^- \end{bmatrix}$$
$$10^{-14} = \begin{bmatrix} \text{H}^+ \end{bmatrix} \begin{bmatrix} \text{OH}^- \end{bmatrix}$$
$$10^{-14} = \begin{bmatrix} \text{H}^+ \end{bmatrix} \begin{bmatrix} \frac{1}{221} \end{bmatrix}$$
$$221 \times 10^{-14} = \begin{bmatrix} \text{H}^+ \end{bmatrix}$$
$$\Rightarrow \text{pH} = -\log \begin{bmatrix} \text{H}^+ \end{bmatrix} = -\log (221 \times 10^{-14})$$
$$= -\log (2.21 \times 10^{-12})$$
$$= 11.65$$

(b) For 0.3 g of $Ca(OH)_3$ dissolved in water to give 500 mL of solution:

$$Ca(OH)_{2} \longrightarrow Ca^{2+} + 2OH^{-}$$

$$[Ca(OH)_{2}] = 0.3 \times \frac{1000}{500} = 0.6M$$

$$[OH^{-}_{aq}] = 2 \times [Ca(OH)_{2aq}] = 2 \times 0.6$$

$$= 1.2M$$

$$[H^{+}] = \frac{K_{w}}{[OH^{-}_{aq}]}$$

$$= \frac{10 - 14}{1.2}M$$

$$= 0.833 \times 10^{-14}$$

$$pH = -\log(0.833 \times 10^{-14})$$

$$= -\log(8.33 \times 10^{-13})$$

$$= (-0.902 + 13)$$

$$= 12.098$$

(c) For 0.3 g of NaOH dissolved in water to give 200 mL of solution: NaOH \longrightarrow Na⁺_(aq) + OH⁻_(aq) [NaOH] = $0.3 \times \frac{1000}{200} = 1.5M$ [OH⁻_{aq}] = 1.5M Then, [H⁺] = $\frac{10^{-14}}{1.5}$ = 6.66×10^{-13} pH = $-\log(6.66 \times 10^{-13})$ = 12.18

(d) For 1mL of 13.6 M HCl diluted with water to give 1 L of solution:

13.6 × 1 mL = M₂ × 1000 mL (Before dilution) (After dilution) 13.6 × 10⁻³ = M₂ × 1L M₂ = 1.36 × 10⁻² [H+] = 1.36 × 10₃ pH = $-\log (1.36 \times 10^{-2})$ = (-0.1335 + 2) = 1.866 _ 1.87