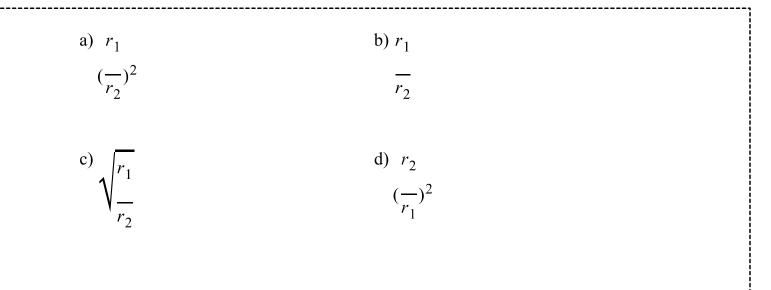
NEET (UG) 2024

SAMPLE PAPER - 5

Time Allowed: 3 hours and 20 minutes **General Instructions:**

- The test is of 3 hours and 20 minutes and it contains 200 questions. Internal choice is given within the sections.
- For each correct response, the candidate will get 4 marks.
- For each incorrect response, one mark will be deducted from the total scores.
- The maximum marks are 720.

PHYSICS (Section-A)

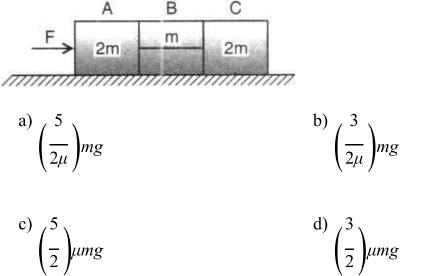

The dimensional formula of magnetic flux is: 1.

- a) $[ML^2T^{-2}A^{-1}]$ b) $[ML^0T^{-2}A^{-2}]$ d) $[M^0L^{-2}T^{-2}A^{-2}]$ c) $[ML^2T^{-1}A^3]$
- 2. Which of the following quantity is NOT dimensionless?
 - a) Angle b) Reynold's number
 - d) Radius of gyration c) Strain
- A stone falls freely under gravity. It covers distances h_1 , h_2 and h_3 in the first 4 3. [4] seconds, the next 4 seconds and the next 4 seconds respectively. The relation between h_1, h_2 and h_3 is $(g = 10 \text{ m/s}^2)$
 - a) $h_2 = 3h_1$ and $h_3 = 3h_2$ b) $h_2 = 3h_1$ and $h_3 = 5h_1$ d) $h_1 = 2h_2 = 3h_3$ c) h_2 hz $h_1 = \frac{1}{3} = \frac{1}{5}$
- Two particles of equal masses are revolving in circular paths of radii r_1 and r_2 4. [4] respectively with the same period. The ratio of their centripetal force is:

Maximum Marks: 720

[4]

[4]

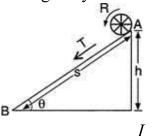


5. The range of a projectile is 100 m. Its kinetic energy will be maximum after covering a [4] distance of:

a) 75 m	b) 100 m
a) / 5 m	0)

- c) 50 m d) 25 m
- 6. The system is pushed by a force F as shown in figure. All surfaces are smooth except [4] between B and C. Friction coefficient between B and C is μ . Minimum value of F to

prevent block B from downward slipping is:



A ball moving with a velocity of 6 m/s strikes an identical stationary ball. After the [4] collision, each ball moves at an angle of 30° with the original line of motion. What are the speeds of the balls after the collision?

Page 2 of 79

a) $\sqrt{3}$	b) $\sqrt{3}$ m/sec	
$\frac{1}{2}$ m/sec		
c) 3 m/sec	d) $2\sqrt{3}$ m/sec	

- 8. A horizontal force F pulls a 10 kg box at a constant speed along a horizontal floor. If the [4] coefficient of friction between the box and the floor is 0.5, how much work is done by the force F in moving the box through a distance of 4 m?
 - a) 196 J b) 147 J c) 49 J d) 98 J
- 9. Suppose a body of mass M and radius R is allowed to roll on an inclined plane without [4] slipping from its topmost point A. The velocity acquired by the body, time taken by the rolling body to reach the bottom of the inclined plane is:

(Where $\beta = 1 + \frac{1}{MR^2}$, I is the moment of inertia of the body about its axis of rotation)

a)
$$\frac{1}{\sin \theta} \sqrt{\frac{2h}{g}}$$
 b) $\sqrt{\beta\left(\frac{2h}{g}\right)}$

c)
$$\frac{1}{\sin\theta} \sqrt{\beta\left(\frac{2h}{g}\right)}$$
 d) $\sqrt{\frac{2h}{g}}$

10. A particle is moving with a uniform speed in a circular orbit of radius R in a central [4] force inversely proportional to the nth power of R If the period of rotation of the particle

Page 3 of 79

is T, then:

a) $T \propto R^{(n+1)/2}$ b) $T \propto R^{3/2}$ for any n. c) $T \propto R^{n/2}$ d) $T \propto R^{n/2+1}$

11. The value of acceleration due to gravity is g_1 at a height $h = \frac{R}{2}$ (R = radius of the earth) [4]

from the surface of the earth. It is again equal to g_1 and a depth d below the surface of d

the earth. The ratio $\left(\frac{d}{R}\right)$ equals:

b) 1	a) 5
3	9
d) 4	c) 7
<u>_</u>	<u>_</u>

- 12. An Indian rubber cord L metre long and area of cross-section A metre² is suspended [4] vertically. Density of rubber is ρ kg/metre³ and Young's modulus of rubber is Y newton/metre². If the cord extends by 1 metre under its own weight, then extension 1 is:
 - a) $L^2 \rho g$ $\overline{4Y}$ b) Y $\overline{L^2 \rho g}$ c) $L^2 \rho g$ d) $L^2 \rho g$
 - $\frac{1}{2Y} \qquad \frac{1}{Y}$
- 13. If a thermometer reads freezing point of water as 20°C and boiling point as 150°C, how [4] much thermometer read when the actual temperature is 60°C?

	a) 110°C	b) 98°C	
	c) ₆₀ °C	d) 40°C	
14.	Which of the following statements is true	about the radiation emitted by human body?	[4]
	a) The radiation emitted lies in the ultraviolet region and hence is not visible	b) The radiation is emitted only during the day	
	c) The radiation emitted is in the infrared region	d) The radiation is emitted during the summers and absorbed during the winters	
	1		[4]
15.	A reversible engine converts $\frac{1}{6}$ of heat in	to work. When the 6 temperature of sink is	
	reduced by 62 ⁰ C, its efficiency is doubled	d; the temperature of source is:	
	a) 100°C	b) 99°C	
	c) ₂₀₀ °C	d) ₁₆₂ °C	
16.		ertical) contains an ideal gas at normal eing carried by rocket which is moving at a n. The pressure of the gas inside the vessel is	[4]
	a) will increase by a factor equal to $v_{rms}^2 + (500)^2$	b) will be different on the top wall and bottom wall of the vessel	
	$\frac{2}{vrms}$ where v_{rms} was		
	the original mean square velocity of the gas		
	c) remains the same because the motion of the vessel as a whole does not affect the relative motion of the gas molecules and the walls	 d) remains the same because 500 ms⁻¹ is very much smaller than v_{rms} of the gas 	

Page 5 of 79

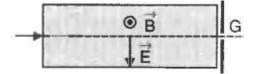
17.	The equation of SHM is given as: $x = 3 \sin 20\pi t + 4 \cos 20\pi t$,		[4]
	where x is in cms and t is in seconds. The	amplitude is:	
	a) 4 cm	b) 5 cm	
	c) 7 cm	d) 3 cm	
18.	The equation of a travelling wave is, $y = 60 \cos (1800t - 6x)$. Where y is in microns, t in seconds and x velocity to velocity of wave propagation	in metres. The ratio of maximum particle is:	[4]
	a) 3.6	b) 3.6×10^{-4}	
	c) 3.6×10^{-6}	d) 3.6×10^{-11}	
19.	When the pressure increased by 1 atmosp velocity of sound:	where and temperature increases by 1 ⁰ C, the	[4]
	a) decreases by 61 ms ⁻¹	b) decreases by 0.61 ms ⁻¹	
	c) increases by 0.61 ms ⁻¹	d) increases by 61 ms ⁻¹	
20.		y vertically down from a fixed identical bob by are charged with a charge each, time period of pobs)	
	a) $2\pi \sqrt{\frac{l}{g - \left(\frac{q^2}{l^2 m}\right)}}$	b) $2\pi \sqrt{\frac{l}{g - \left(\frac{q^2}{l}\right)}}$	
	c) $2\pi \sqrt{\frac{l}{g}}$		

d)
$$2\pi \sqrt{\frac{l}{g^+\left(\frac{q^2}{l^2m}\right)}}$$

21. A square of side $\sqrt{2}$ m has charges of +2 × 10⁻⁹ C, 1 × 10⁻⁹ C, -2 × 10⁻⁹ C and -3 [4]

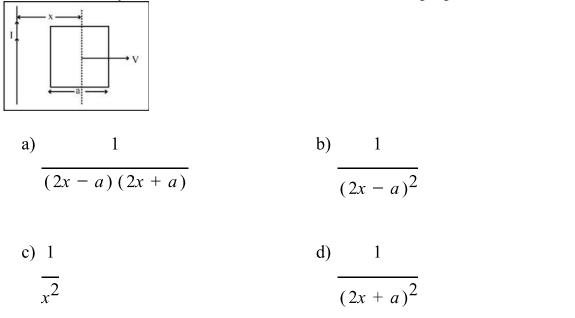
 \times 10⁻⁹C respectively at its corners. Potential at the centre of the square is:

a) -18 V b) +8 V


22. n identical cells are joined in series with two cells A and B with reversed polarities. [4]
EMF of each cell is E and internal resistance is r. Potential difference across cell A or B is (n > 4):

a)
$$2E\left(1-\frac{2}{n}\right)$$
 b) $4E$
 $\frac{1}{n}$

c)
$$2E\left(1-\frac{1}{n}\right)$$
 d) $2E$ $\frac{1}{n}$


23. A stream of electrons and protons are directed towards a narrow slit in a screen (see [4] figure). The intervening region has a uniform electric field \vec{E} (vertically downwards)

and a uniform magnetic field \vec{B} (out of the plane of the figure) as shown. Then:

	a) electrons and protons with speed $ \vec{E} $ $\overline{ \vec{B} }$ will pass through the slit	b) electrons will always be deflected downward irrespective of their speed	
	c) neither electrons nor protons will go through the slit irrespective of their speed	d) $ \vec{E} $ protons with speed $\frac{ \vec{E} }{ \vec{B} }$ will pass	
		through the slit, electrons of the same speed will not	
24.	The direction of magnet in tan B position	is along:	[4]
	a) east-west	b) north-south	
	c) north-west	d) south-west	
25.	If a diamagnetic substance is brought near is:	the north or the south pole of a bar magnet, it	[4]
	a) repelled by the north-pole and attracted by the south-pole	b) repelled by both the poles	
	c) attracted by both the poles	d) attracted by the north-pole and repelled by the south-pole	
26.	A motor having an armature of resistant 2	Ω is designed to operate at 220 V mains. At	[4]
	full speed, it develops a back emf of 210 current in the armature is:	V. When the motor is running at full speed, the	
	a) 10 A	b) 5 A	
	c) 3 A	d) 7 A	
27.	A conducting square frame of side a and a located in the same plane as shown in the	l long straight wire carrying current I are figure. The frame moves to the right with a	[4]

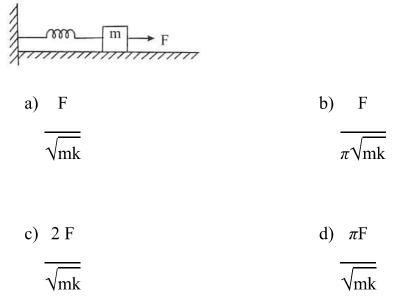
constant velocity v. The emf induced in the frame will be proportional to:

- 28. A transformer having efficiency of 90% is working on 200 V and 3 kW power supply. If [4] the current in the secondary coil is 6 A, the voltage across the secondary coil and the current in the primary coil respectively are
 - a) 600 V, 15 A c) 450 V, 13.5 A d) 300 V, 15 A

29. The electric fields of two plane electromagnetic plane waves in vacuum are given by [4] $\vec{E}_1 = E_0 \hat{j} \cos(\omega t - kx)$ and $\vec{E}_2 = E_0 \hat{k} \cos(\omega t - ky)$.

At t = 0, a particle of charge q is at origin with a velocity $\vec{v} = 0.8c\hat{j}$ (c is the speed of light in vacuum). The instantaneous force experienced by

the particle is:


- ^{a)} $E_{0q} (0.8\hat{i} \hat{j} + 0.4\hat{k})$ ^{b)} $E_{0q} (0.4\hat{i} 3\hat{j} + 0.8\hat{k})$
- c) $E_{0q} (-0.8\hat{i} + \hat{j} + \hat{k})$ d) $E_{0q} (0.8\hat{i} + \hat{j} + 0.2\hat{k})$
- 30. The focal length of the objective and eye-piece of a telescope are respectively 200 cm [4] and 5 cm. The maximum magnifying power of the telescope will be:

	a) -48	b) -40	
	c) -60	d) -100	
31.	The width of a single slit, if the first minin o	mum is observed at an angle of 2° with a light	[4]
	of wavelength 6980 A, (in mm) is:		
	a) $_{2} \times 10^{-5}$	b) 0.2	
	c) 0.02	d) 2	
32.	Which of the following device is the appl	ication of photoelectric effect?	[4]
	a) Transistor	b) Light emitting diode	
	c) Diode	d) Photocell	
33.	The maximum wavelength of a beam of liphotoelectric effect on metal is 250 nm. T from the surface of the metal when a bear	The energy of the electrons (in joule) emitted	[4]
	a) 19.86 × 10 ⁻²⁰	b) $_{89.61} \times 10^{-22}$	
	c) $_{18.96} \times 10^{-20}$	d) $_{69.81} \times 10^{-22}$	
34.	The ratio of minimum to maximum wave	length in Balmer series is:	[4]
	a) 5 : 9	b) 3 : 4	
	c) 1 : 4	d) 5 : 36	
35.	The half-life of a radioactive substance is of decay will be:	20 minutes. The time between 20% and 80%	[4]
	a) 40 min	b) 30 min	
	c) 25 min	d) 20 min	
	PHYSIC	S (Section-B)	
	Attempt ar	y 10 questions	
36.	negligible mass) of spring constant k. The	rizontal surface, is attached to a spring (of e other end of the spring is fixed, as shown in ts equilibrium position. If now the block is	[4]

Page 10 of 79

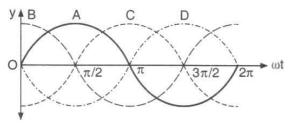
pulled with a constant force F, the maximum speed of the block is:

37. A solid sphere is in rolling motion. In rolling motion, a body possesses translational [4] kinetic energy (Kt) as well as rotational kinetic energy (Kr) simultaneously. The ratio Kt : (Kt + Kr) for the sphere is

- a) 5 : 7 b) 7 : 10
- c) 10 : 7 d) 2 : 5
- 38. Imagine earth is rotating at a very high speed such that weight of a body at the equator [4] is zero. Then the number of hours in a day is:

a) $2\pi \sqrt{g}$	b) $2\pi \sqrt{2}$	R
$\frac{1}{3600} \sqrt{\frac{1}{R}}$	$\frac{1}{3600}$ V	g

c)
$$\frac{3600}{2\pi}\sqrt{\frac{R}{g}}$$
 d) $\frac{3600}{2\pi}\sqrt{\frac{g}{R}}$


39. The radiant energy from the sun, incident normally at the surface of the earth, is 20 [4] kcal/m²-min. What would have been the radiant energy incident normally on the earth, if the sun had a temperature twice of the present one?

a) 320 Kcal/m ² -min	b) 40 Kcal/m ² -min
c) $_{160 \text{ Kcal/m}^2 \text{ -min}}$	d) 80 Kcal/m ² -min

40. A long glass tube is held vertically in water. A tuning fork is struck and held over the [4] tube. Strong resonances are observed at two successive lengths 0.50 m and 0.84 m above the surface of water. If the velocity of sound is 340 m/s, then the frequency of the tuning fork is:

a) 256 Hz	b) 500 Hz
c) 384 Hz	d) 128 Hz

41. Figure given below shows four progressive waves A,B,C and D with their phases expressed with respect to the wave A. It can be calculated from the figure that:

a) The wave C lags behind by a phase angle of π and the wave B is

ahead by a phase angle of π

- c) The wave C lags behind by a phase angle of π/2 and the wave B is ahead by a phase angle of π/2
- b) The wave C is ahead by a phase angle of π and the wave B lags

[4]

behind by a phase angle of π

- d) The wave C is ahead by a phase angle of π/2 and the wave B lags behind by a phase angle of π/2
- 42. A long conducting wire having a current I flowing through it, is bent into a circular coil [4] of N tums. Then it is bent into a circular coil of n turns. The magnetic field is calculated at the centre of coils in both the cases. The ratio of the magnetic field in first case to that of second case is:

a)
$$n^2 : N^2$$

b) $N^2 : n^2$
c) $n : N$
d) $N : n$

43. A bar magnet of magnetic moment M and moment of inertia I is freely suspended such [4] that the magnetic axial line is in the direction of magnetic meridian. If the magnet is displaced by a very small angle θ , angular acceleration is: (magnetic induction of the

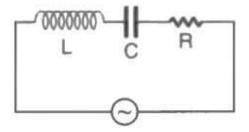
earth's horizontal field is B_H)

Page 12 of 79

a) $MB_H \theta$	b) <i>Ιθ</i>
I	$\overline{MB_H}$
с) <i>IB_Hθ</i>	d) <u>M</u> θ
M	IB_H

44. A conducting circular loop is placed in a uniform magnetic field of induction B tesla [4] with its plane normal to the field. Now, the radius of the loop starts shrinking at the rate (dr/dt). Then, the induced emf at the instant when the radius is r, is:

a)
$$\frac{dr}{\pi r B(\frac{d}{dt})}$$
 b) $\frac{dr}{\pi r^2(\frac{d}{dt})}$


c)
$$\pi r^2 \frac{dr}{(\frac{1}{2})B(\frac{1}{dt})}$$
 d) $\frac{dr}{2\pi rB(\frac{1}{dt})}$

45. A 100 V, AC source of frequency 500 Hz is connected to an L-C-R circuit with L = 8.1 [4] mH, C = 12.5 μ F, R = 10 Ω , all connected in series as shown in the figure. What is the

b) 2.02

d) 200.54

quality factor of the circuit?

a)	20.54	
----	-------	--

c) 2.5434

46. When light is refracted into a medium:

a) its wavelength increases but the frequency remain unchangedb) its wavelength and frequency both increase

[4]

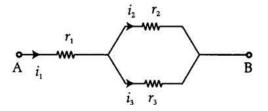
c) its wavel	length d	ecreases	but the
frequenc	y remai	n unchan	ged

d) its wavelength and frequency both decrease

47. ACB is a right-angled triangle of refractive index 1.5. $\angle A$, $\angle B$ and $\angle C$ are 60°, 30° and [4]

90⁰. A thin layer of liquid is on the face AB for a ray of light which is incident normally on AC to be totally reflected at AB, the refractive index of the liquid on AB should be:

- a) 1.4 b) 1.3
- c) 1.2 d) 1.5

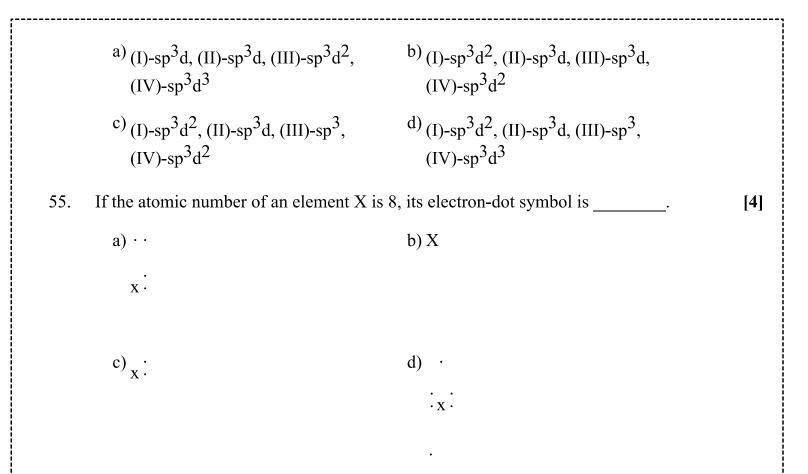

48. A proton, a neutron, an electron and α-particle have the same energy. Then their de [4]
 Broglie wavelengths compare as:

a) $\lambda_e < \lambda_p = \lambda_n > \lambda_\alpha$ b) $\lambda_\alpha < \lambda_p = \lambda_n < \lambda_e$

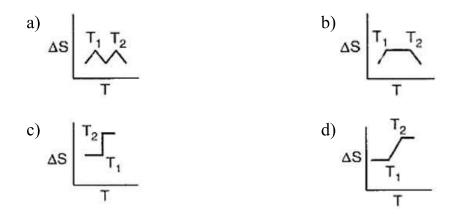
c)
$$\lambda_e = \lambda_p = \lambda_n = \lambda_\alpha$$
 d) $\lambda_p = \lambda_n > \lambda_e > \lambda_\alpha$

49. Three resistors having resistances r_1 , r_2 and r_3 are connected as shown in the given [4] i_3

circuit. The ratio $\frac{1}{i_1}$ of currents in terms of resistances used in the circuit is:



a) r₂ b) r₁


$$\overline{r_2 + r_3} \qquad \qquad \overline{r_2 + r_3}$$

- c) r_1 d) r_2
 - $\overline{r_1 + r_2} \qquad \overline{r_1 + r_3}$

50.	O_2 molecule consists of two oxygen atom nuclei of the two atoms:	ns. In the molecule, nuclear force between the	[4]
	a) is not important because nuclear forces are short-ranged	b) cancels the repulsive electrostatic force between the nuclei	
	c) is not important because oxygen nucleus have equal number of neutrons and protons	d) is as important as electrostatic force for binding the two atoms	
	CHEMIST	RY (Section-A)	
51.	An element, X has the following isotopic 200 X : 90% 199 X : 8.0% 202 X : 2.0%	composition:	[4]
	The average atomic mass of the naturally	-occurring element X is closest to:	
	a) 200 amu	b) 201 amu	
	c) 199 amu	d) 202 amu	
52.	If m and e are the mass and charge of the hydrogen atom, the total energy of the rev	revolving electron in the orbit of radius r for volving electron will be:	[4]
	a) $1 e^2$	b) me ²	
	$\frac{1}{2}r$	ľ	
	c) $1 e^2$	d) _e 2	
	$\overline{2}r$	<i>r</i>	
53.	Which of the following is the most electro	opositive element?	[4]
	a) Phosphorus	b) Magnesium	
	c) Sulphur	d) Aluminum	
54.	Consider the following: $H_5IO_6 SOF_4 PSCl_3 SeF_6$		[4]
	(I) , (II) , (III) , (IV)		
	Select the CORRECT combination of hyl	oridisation states:	
	• Page 1	5 of 79 •	

- 56. Bond enthalpies of $N \equiv N, H H$ and Cl Cl bonds are 946, 436 and 243 kJ mol⁻¹ [4] respectively. Arrange them in the increasing order of their reactivity.
 - a) $H_2 < Cl_2 < N_2$ b) $H_2 < N_2 < Cl_2$
 - c) $Cl_2 < H_2 < N_2$ d) $N_2 < H_2 < Cl_2$
- 57. For a given substance T_1 and T_2 are freezing point and melting point of a substance. [4] Which of the graph represents correctly, the variation of ΔS with temperature?

58. Acetic acid and propionic acid have K_a values 1.75×10^{-5} and 1.3×10^{-5} respectively at a certain temperature. An equimolar solution of a mixture of the two Page 16 of 79

[4]

acids is partially neutralised by NaOH. How is the ratio of the contents of acetate and propionate ions related to the K_a values?

a) The ratio is related to the molarity

b)
$$\left(\frac{\alpha}{1-\alpha}\right) = \frac{1.75}{1.3} \times \left(\frac{\beta}{1-\beta}\right)$$
 where

 α and β are ionised fraction of the acids

- c) The ratio is unrelated to the pH of the solution
- d) The ratio is unrelated to the K_a values
- 59. Excess of KI reacts with CuSO₄ solution and then Na₂S₂O₃ solution is added to it. [4] Which of the statements is incorrect in this reaction?

a) $Na_2S_2O_3$ is oxidised b) Cu_2I_2 is formed

c) Evolved I₂ is reduced d) Cul₂ is formed

60. Which of the following equation depicts reducing nature of H_2O_2 ?

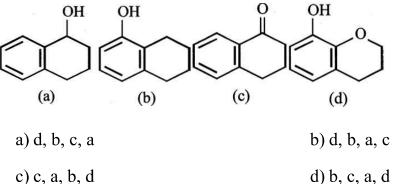
a) $_{2[Fe(CN)_{6}]^{4-} + 2H^{+} + H_{2}O_{2}}$ $\rightarrow 2[Fe(CN)_{6}]^{3-} + 2H_{2}O$ b) PbS + 4H_{2}O_{2} \rightarrow PbSO_{4} + 4H_{2}O
c) $_{Mn^{2+} + H_{2}O_{2}} \rightarrow Mn^{4+} + d)_{I_{2} + H_{2}O_{2} + 2OH^{-}} \rightarrow 2I^{-} + 2H_{2}O + O_{2}$

61. Electrode potentials for the general reaction, $M_{(aq)}^{3+} + 3e^- \rightarrow M_{(s)}$ are given below. [4]

M belongs to group 13. Identify the most electropositive metal.

Metal	M ₁	M ₂	M3	M4
Electrode Potential	-0.56	-1.66	+1.26	-0.34
a) M ₁	b) M3			
c) M ₄	d) M ₂			

62. Match the compounds given in Column I with the hybridisation and shape given in [4] column II and mark the correct option.


Column I		Column II
	Page 17 of 79	•

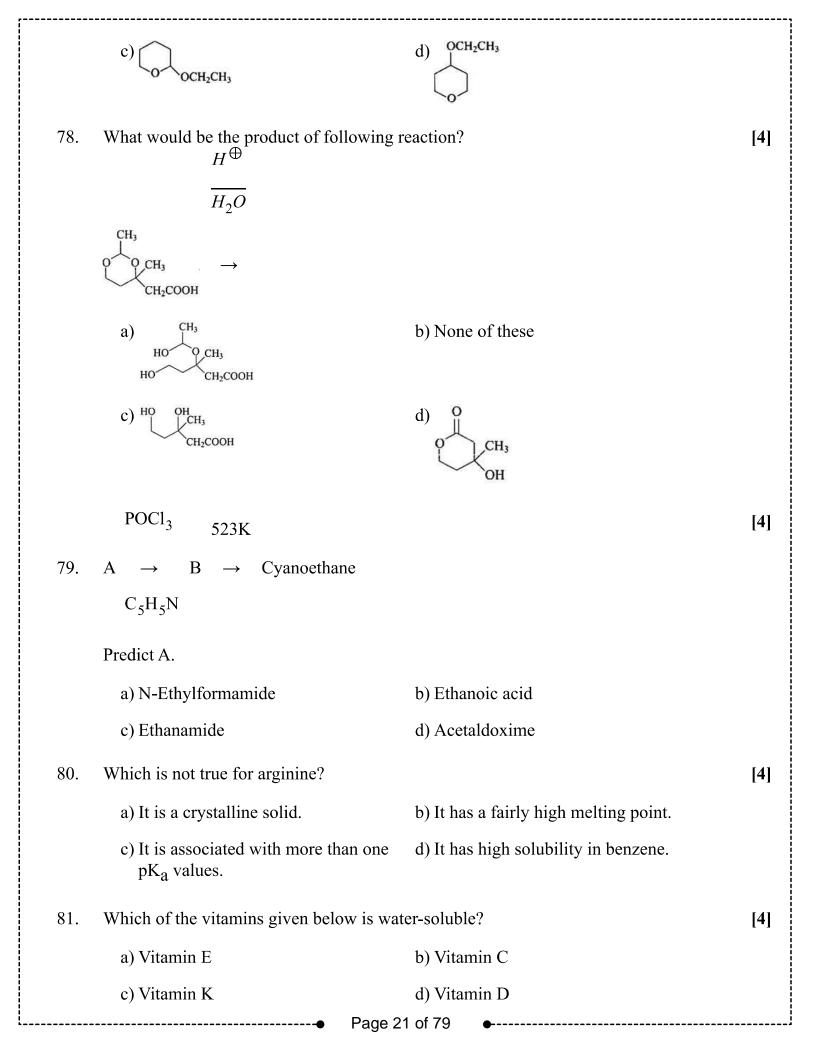
[4]

ii) square planar	
iii) pyramidal	
(iv) square pyramidal	
(C) XeOF ₄ (iii) pyramidal	

c) (A) - (iv), (B) - (i), (C) - (ii), (D) -(iii)

63. Arrange the Mowing compounds in increasing order of rate of aromatic electrophilic [4] substitution reaction.

- 64. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which [4] by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is _____.
 - a) CH_4 b) $CH \equiv CH$ c) $CH_3 - CH_3$ d) $CH_2 = CH_2$
- 65. Which of the following alkene will give enantiomeric product on reaction with HBr? [4]



66. The freezing point of a solution containing 10 mL of non-volatile and non-electrolyte [4] liquid A in 500 g of water is -0.413° C. If K_f of water is 1.86 K kg mol⁻¹ and the

molecular weight of A = 60 g mol⁻¹, what is the density of the solution in g mL⁻¹? (Assume $\Delta_{mix} V = 0$) a) 0.90 b) 0.993 c) 1.3 d) 1.13 67. Pure water can be obtained from sea water by: [4] a) reverse osmosis b) centrifugation c) sedimentation d) plasmolysis A cell constant of 1 N electrolyte solution is 0.33 cm⁻¹ and the equivalent conductance [4] 68. is 95.2 Ω^{-1} cm² eq⁻¹. If a potential difference between electrodes is 6 V, the current is a) 1.42 A b) 1.73 A c) 3.47 A d) 20.8 A In a reaction, $A + B \rightarrow$ Product, rate is doubled when the concentration of B is 69. [4] doubled, and rate increases by a factor of 8 when the concentrations of both the reactants (A and B) are doubled, rate law for the reaction can be written as: b) Rate = $k[A]^2 [B]$ a) Rate = k[A][B]d) Rate = $k[A][B]^2$ c) Rate = $k[A]^2 [B]^2$ The reaction $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ follows first order kinetics. The pressure [4] 70. of a vessel containing only N₂O₅ was found to increase from 50 mm Hg to 87.5 mm Hg in 30 min. The pressure exerted by the gases after 60 min. will be (assume temperature remains constant): a) 116.25 mm Hg b) 106.25 mm Hg c) 125 mm Hg d) 150 mm Hg 71. In the following transition metals, the maximum number of oxidation states are [4] exhibited by: a) chromium (Z = 24)b) manganese (Z = 25) d) iron (Z = 26) c) titanium (Z = 22)

Page 19 of 79	Page	19	of	79
---------------	------	----	----	----

72. Pure N₂ is not produced when: [4] Δ Δ a) b) $Ba(N_3)_2 \rightarrow$ $NaN_3 \rightarrow$ Δ c) Δ d) $Ba(N_5)_4 \rightarrow$ Red hot CuO + NH₃ \rightarrow Magnetic moment 2.83 BM is given by which of the following ions? 73. [4] (At. no's. Ti = 22, Cr = 24, Mn = 25, Ni = 28) a) $_{Ni}^{2+}$ b) Mn^{2+} c) Cr^{3+} d) $_{Ti}3^+$ 74. Geometrical isomerism can be shown by: [4] a) $[PtCl_4I_2]$ b) $[Ag(NH_3)(CN)]$ c) $Na_2[Cd(NO_2)_4]$ d) [Pt(NH₃)₃Cl][Au(CN)₄] In which of the following metal carbonyls the C—O bond order is lowest? 75. [4] a) $[Cr(CO)_6]$ b) $[Ti(CO)_6]^{2-1}$ d) $[Mn(CO)_6]^+$ c) [V(CO)₆]⁻ In the following halogenated organic compounds the one with maximum number of 76. [4] chlorine atoms in its structure is: a) Chloral b) Freon-12 c) Chloropicrin d) Gammaxene 77. Which of the following is correct? [4] + CH₃CH₂OH -HCI CH₂—O—ĊH₃ b) a) -O-CH Page 20 of 79

82.	Find out strongest acid among the follow	ving:	[4]
	a) \oplus_{NH_2}	b) _{O2N} [⊕] _{NH3}	
	$H_2N - C - NH_2$		
	c)	d) 🕀	
	$CH_3 - NH_3$	$C_6H_5 - NH_3$	
83.	How many faraday are needed to reduce	a mole of $MnO\overline{4}$ to Mn^{2+} ?	[4]
	a) 4	b) 3	
	c) 2	d) 5	
84.	When a solid vapourize directly without	melting, the process is called	[4]
	a) Sublimation	b) Saponification	
	c) Evaporation	d) Sedimentation	
85.		pt (B) on treatment with dil.HCI. Compound on gives yellow ppt. (C) on treatment with fumes on heating with H_2SO_4 .	[4]
	Identify (A), (B), and (C) respectively.		
	a) $Pb(NO_3)_2$, $PbCl_2$, PbO	b) PbSO ₄ , PbCl ₂ , PbCrO ₄	
	c) Pb(NO ₃) ₂ , PbCl ₂ , PbCrO ₄	d) PbCl ₂ , Pb ₅ , PbCrO ₄	
	CHEMIST	TRY (Section-B)	
	Attempt a	ny 10 questions	
86.	Out of all halides of caesium (Cs^+) :		[4]
	a) CsF has maximum lattice energy	b) CsF has minimum covalent character	
	c) all are correct		
	Page 2	22 of 79 •	
	• . ugo 2		

į

	d) Csl has maximum covalent character		
87.	Which of the following is not correct above $VO + Fe_2O_3 \rightarrow FeO + V_2O_5$	out the reaction in	[4]
	a) V changes from $+ 2$ to $+ 5$ state	b) V is reduced to + 5 state	
	c) Fe is reduced to + 2 state	 d) Stoichiometric balanced form coefficient of VO and Fe₂O₃ are 2 and 3 respectively. 	
88.	The most stable dihalide is		[4]
	a) GeCl ₂	b) PbCl ₂	
	c) SnCl ₂	d) SiCl ₂	
89.	The electronegativities of the following order:	elements, H, O, F, S and Cl increase in the	[4]
	a) $H < O < F < S < Cl$	b) S < H < Cl < O < F	
	c) $H < S < Cl < O < F$	d) $H < S < O < Cl < F$	
90.	An ion with 3 units of negative charge h the number of neutrons is	as 54 electrons. If the mass number is 122, then	[4]
	a) 39.2% more than the number of electrons.	b) 39.2% more than the number of protons.	
	c) 31.4% more than the number of protons.	d) 31.4% less than the number of electrons.	
91.	Which one of the following elements is	unable to form MF_6^3 -ion?	[4]
	a) AI	b) In	
	c) B	d) Ga	
92.	Which of the following elementary react	tion is not a biomolecular reaction?	[4]
	a) $PCl_3 + Cl_2 \rightarrow PCl_5$	b) $H_2 + I_2 \rightarrow 2HI$	
	c) 2HC1 \rightarrow H ₂ + Cl ₂		

i

!__

d) 1
N₂O₅
$$\rightarrow$$
 N₂O₄ + $\frac{1}{2}$ O₂

93.	A button cell used in watches function $Z_{1}(x) + A_{2}(x) + H_{2}(x) + H_{$	-	[4]		
	$Zn(s) + Ag_2O(s) + H_2O(l) \rightleftharpoons 2Ag(s) + 2Zn^{2+}(aq) + 2OH^{-}(aq)$ If half cell potentials are,				
	$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s); E^{0} = -0.76 V$				
	$Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s)$ The cell potential will be:) + 2OH ⁻ (aq) + 2OH ⁻ (aq); $E^{0} = 0.34 V$			
	a) 0.84 V	b) 1.34 V			
	c) 1.10 V	d) 0.42 V			
94.	Four successive members of the firs	t row transition elements are listed below with	[4]		
	atomic numbers. Which one of them	is expected to have the highest E_{M}^{0} + $/M^{2}$ +			
	value?				
	a) Fe ($Z = 26$)	b) Mn ($Z = 25$)			
	c) Cr (Z = 24)	d) Co (Z = 27)			
95.	The activation energy of a reaction i	s zero. The rate constant of reaction:	[4]		
	a) increases with increase of temperature	b) independent of temperature			
	c) decreases with decrease of temperature	d) decreases with increase of temperature			
96.	Inert gases have positive electron ga	in enthalpy. Its correct order is	[4]		
	a) Xe < Kr < Ne < He	b) He $<$ Xe $<$ Kr $<$ Ne			
	c) He < Ne < Kr < Xe	d) He $<$ Kr $<$ Xe $<$ Ne			
97.	Chlorine water on standing loses its	colour and forms:	[4]		
	a) HCl and HOCl	b) HCl and HClO ₂			
	c) HOCl and HOCl ₂	d) HCl only			
	• Pa	age 24 of 79 •			

98.	 Highest oxidation state of Mn is exhibited in Mn₂O₇. The correct statements about Mn₂O₇ are. A. Mn is tetrahedrally surrounded by oxygen atoms. B. Mn is octahedrally surrounded by oxygen atoms. C. Contains Mn-O-Mn bridge. D. Contains Mn-Mn bond. 		
	a) B and C only	b) A and C only	
	c) A and D only	d) B and D only	
99.	The coordination number and oxidation	state of Cr in $K_3Cr(C_2O_4)_3$ are respectively:	[4
	a) 3 and +3	b) 3 and 0	
	c) 6 and + 3	d) 4 and + 2	
	$LiAlH_4$ Fe/conc.HCl		[4
100.	$\begin{array}{rcl} P_1 & \leftarrow & C_6H_5NO_2 & \rightarrow \\ & & & \\ & & & \\ & & & \\ \end{array}$	P ₂	
	Predict P_1 and P_2 .		
	a) $P_1 = C_6H_5 - CH_2 - NH_2$ $P_2 = C_6H_5N_2 + Cl^-$	b) $P_1 = C_6H_5 - NO$ $P_2 = C_6H_5 - N = N - C_6H_5$	
	c) $P_1 = C_6H_5 - N = N - C_6H_5$ $P_2 = C_6H_5 - NH_2$	d) $C_6H_5 - CH = N - OH$ $P_2 = C_6H_5 - NH_2$	
		NY (Section-A)	
101.	Which of the following ranks contain or		[4
	a) Genus	b) Class	
	c) Species	d) Family	
102.	Which of the following organism do not	t reproduce?	[4
	a) Infertile human	b) Worker bees	
	c) All of these	d) Mules	

103.	What is true for cyanobacteria?		[4]
	a) oxygenic with nitrogenase	b) non-oxygenic without nitrogenase	
	c) oxygen without nitrogenase	d) non-oxygenic with nitrogenase	
104.	Rickettsia is:		[4]
	a) Virus	b) Micro-organism	
	c) Bacteria	d) PPLO	

105. Match the items given in column I with those given in column II and choose the correct [4] option given below.

	Column I		Column II		
	(A) Tapetum	(i) Oxalis an	d Commelina		
	(B) Chasmogamous flowers	(ii) Allogam	у		
	(C) Hydrophily	(iii) Nourish	es the developing pollen grains.		
	(D) Xenogamy	(iv) Zostera			
	a) A-(iii), B-(i), C-(iv), D-((ii)	b) A-(ii), B-(iv), C-(i), D-(iii)		
	c) A-(iii), B-(iv), C-(ii), D-	(i)	d) A-(ii), B-(i), C-(iii), D-(iv)		
106.	Sporophyte of bryophyte are:			[4]]
	a) Attached to the photosyn gametophyte	nthetic	b) Both (Attached to the photosynthetic gametophyte) (Derives nourishment from gametophyte) are correct	and	
	c) Free-living		d) Derives nourishment from gametophyte		
107.	The basis of karyotaxonomy	is :		[4]]
	a) Chromosome banding		b) Sedimentation rate of ribosor	nes	
	c) Chromosome number		d) Number of nucleoli		
108.	Male gametophyte with least	number of ce	ells is present in:	[4]]
	a) Pteris		b) Pinus		
	c) Funaria		d) Lilium		
		Page 26	6 of 79 •		

109.	Malacophily is the name given to pollination by:		[4]
	a) Animal	b) Bat	
	c) Snail	d) Birds	
110.	Which of the following statements is inco	prrect about sclereids (stone cells)?	[4]
	a) Different shape	 b) Commonly found in the fruits like, wallnuts, seed coats of legumes and leaves of tea 	
	c) Highly thickened and lignified cell wall and lumen is narrow	d) They are types of parenchyma	
111.	Division of meristem into apical, intercal	ary and lateral are based on	[4]
	a) function	b) development	
	c) origin	d) position	
112.	Casparian strips occur in:		[4]
	a) Endodermis	b) Epidermis	
	c) Cortex	d) Pericycle	
113.	Genotype of hybrid is determined by:		[4]
	a) Crossing one F, progeny with another F progeny	b) Crossing one F, progeny with recessive parent	
	c) Crossing one F ₂ progency with female parent	d) Crossing one F ₂ progeny with male parent	
114.	The genes, which are confined to differen	ntial region of Y-chromosome only, are called	[4]
	a) Sex-linked	b) Mutant	
	c) Holandric	d) Autosomal	
115.	What would be the base sequence of RNA segment? 5' - GCATTCGGCTAGTAAC - 3'Coding	A transcript obtained from the given DNA	[4]
	3' - CGTAAGCCGATCATTG - 5'- Non-c		
	a) 5' - GCAUUCGGCUAGUAAC - 3'	b) 5' - GCATTCGGCTAGTAAC - 3'	

	c) 5' - CGUAAGCCGAUCAUUG - 3'	d) 3' - CGTAAGCC6ATCATTG - 5'	
116.	In the genetic code dictionary, how many essential amino acids?	y codons are used to code for all the 20	[4]
	a) 64	b) 20	
	c) 60	d) 61	
117.	Two cells are connected by the help of:		[4]
	a) Plasmodesmata	b) Cell wall	
	c) Plasma membrane	d) Plasma cell	
118.	In germinating seeds fatty acids are degr	aded exclusively in the:	[4]
	a) Mitochondria	b) Peroxisome	
	c) Proplastids	d) Glyoxysomes	
119.	Which of the following disease is now co	onsidered nearly eradicated from India?	[4]
	a) Plague	b) Chicken pox	
	c) Smallpox	d) Kala azar	
120.	A person suffering from leukaemia has		[4]
	a) tumours in adipose tissue.	b) increased number of plasma cells.	
	c) increased number of WBCs.	d) increased number of melanocytes.	
121.	The mandatory combination responsible	for assembly of microtubules are	[4]
	a) Cl ⁻ and Ca ²⁺	b) Na^+ and K^+	
	^{c)} Mg^{2+} and Ca^{2+}	d) Na^+ and Ca^{2+}	
122.	Savannahs are:		[4]
	a) Desert	b) Dense forest with close canopy	
	c) Grassland with scattered trees	d) Tropical rain forest	
123.	In an ecosystem:		[4]
	• Page 2	28 of 79 •	

Ĺ

	a) Primary consumers are least depend on primary producers.	b) Primary consumers are larger than primary producers.	
	c) Primary producers are more than primary consumers.	d) Secondary consumers are larger than primary.	
124.	Saccharomyces cervisiae is:		[4]
	a) Eukaryote	b) Prokaryote	
	c) cryptophyte	d) Algae	
125.	Which of the following is the most seriou	as threat to biodiversity?	[4]
	a) Competition from exotic species	b) Over exploitation	
	c) Commercial harvesting	d) Habitat loss	
126.	Species diversity increase as one proceed	s from	[4]
	a) high altitude to low altitude and low latitude to high latitude.	b) high altitude to low altitude and high latitude to low latitude.	
	c) low altitude to high altitude and high latitude to low latitude.	d) low altitude to high altitude and low latitude to high latitude.	
127.	How many Biodiversity hot spots in the v conservation efforts?	world have been proposed for intensive	[4]
	a) 40	b) 15	
	c) 34	d) 27	
128.	Beaded structure on chromosomes in lept	totene are:	[4]
	a) Centromere	b) Centrosome	
	c) Chromomeres	d) Genes	
129.	Identify the stage when homologous chronic remain associated.	omosomes separate but sister chromatids	[4]
	a) Metaphase - I	b) Anaphase - I	
	c) Anaphase - II	d) Metaphase - II	
130.	The molecule that acts as the source of C	O ₂ for Calvin cycle in C4 plants is	[4]
	• Page 2	29 of 79 •	

	a) OAA	b) Malic acid	
	c) RuBP	d) Phosphoglyceric acid	
131.	Which of the following is the first substan photosynthesis?	ice that a green plant synthesises during	[4]
	a) A simple sugar	b) Starch	
	c) Protein	d) Fat	
132.	Impure air is purified in the presence of li	ght and green plants was first said by:	[4]
	a) Jan Ingen-Housz	b) Priestley	
	c) Van Helmont	d) De Saussur	
133.	Carbon dioxide is necessary for photosynt most effectively from entering a control a	thesis. The chemical used to remove this gas pparatus is	[4]
	a) Sodium carbonate	b) Calcium oxide	
	c) Distilled water	d) Potassium hydroxide solution	
134.	Among the following, identify the substra occurs in the process of glycolysis.	te required for the only oxidative reaction that	[4]
	a) 3 - phosphoglyceric acid	b) Glyceraldehyde - 3 - phosphate	
	c) Fructose - 6 - phosphate	d) Glucose - 6 - phosphate	
135.	Read the following statements and choose i. Kinetin is a degradative substance from ii. ABA is present in all plants including le iii. Low ratio of cytokinin to auxin favours iv. ABA is synthesised catabolically through	ower plants, s root formation only.	[4]
	a) (i) and (iii)	b) (iii) and (iv)	
	c) (ii) and (iii)	d) (i) and (ii)	
	BOTANY	(Section-B)	
136.	Attempt an Which of the following is correct for Man	y 10 questions gifera indica Linn?	[4]
		<u> </u>	r - 1
	• Page 30	0 of 79	

i.

1

	a) This species was first described by Linnaeus	b) None of these	
	c) Name of mango was changed by Linnaeus	d) This species was not first described by Linnaeus	
137.	Deuteromycetes is known as fungi imper-	fecti because	[4]
	a) They are not autotrophic	b) Only asexual phases are known	
	c) Mycelium is aseptate	d) They undergo meroblastic and holoblastic cleavage in their cell cycle	
138.	The stems are branched in:		[4]
	a) Pinus	b) Cycas	
	c) Cedrus	d) Both Cedrus and Pinus	
139.	In which type of flowers, stigma is rough	and sticky?	[4]
	a) Wind pollinated	b) All of these	
	c) Insect pollinated	d) Water pollinated	
140.	In some plants, thalamus contributes to fr	uit formation. Such fruits are termed as	[4]
	a) aggregate fruits	b) false fruits	
	c) parthenocarpic fruit	d) true fruits	
141.	The given pedigree chart shows the inher disorder?	itance of which of the following mendelian	[4]
	A. Sex linked dominant trait		
	B. Autosomal dominant trait		
	C. Sex linked recessive trait		
	D. Autosomal recessive trait		
	a) (D)	b) (C)	
	c) (A)	d) (B)	
	• Page 3	1 of 79 •	

142.	That, DNA is present in the chro	pmosome, was demonstrated by staining them with:	[4]
	a) Feulgen	b) Haematoxylin	
	c) Carmine	d) Fuchsin	
143.	Choose the wrong statement for	mitochondria.	[4]
	i. Each mitochondrion is a doub	ble membrane-bound structure.	
	ii. The inner compartment is cal	led the matrix.	
	iii. The outer membrane forms th	ne continuous limiting boundary of the organelle.	
	iv. The inner membrane forms a	number of infoldings called the cristae.	
	v. They produce cellular energy houses' of the cell.	in the form of ATP, hence they are called 'power	
	-	ny circular DNA molecule, a few RNA molecules, ponents required for the synthesis of carbohydrates.	
	a) Only (iii)	b) (iv) and (vi)	
	c) Only (vi)	d) (ii) and (iii)	
144.	Which of the following is a rod-	shaped virus?	[4]
	a) CMV	b) TMV	
	c) Bacteriophage	d) All of these	
145.	Pyruvic acid is produced at the e	end of:	[4]
	a) Calvin cycle	b) Photo-respiration	
	c) Krebs' cycle	d) Glycolysis	
146.	The nutritive medium for growing	ng bacteria and many fungi in the laboratory is called	[4]
	a) fermentation media	b) growth media	
	c) culture media	d) baking media	
147.	Mr. X is eating curd/yoghurt. Fo considered as occupying	or this food intake in a food chain he should be	[4]
	a) First trophic level	b) Fourth trophic level	
	c) Third trophic level	d) Second trophic level	
148.	Choose the correct option from	given statement:	[4]
		Page 32 of 79 •	

[

	a) All of these	b) One single maize root apical meristem can give rise to more than 17,500 new cells per hour, this growth is expressed as an increase in cell number.	
	c) The growth of a pollen tube is measured in terms of its length, an increase in surface area denotes the growth in a dorsiventral leaf.	d) Whereas cells in watermelon may increase in size by upto 3,50,000 times, this growth expresses an increase in the size of the cell.	
149.	Cut or excised leaves remain green for lo	ng if induced to root or dipped in	[4]
	a) auxins	b) gibberellins	
	c) cytokinins	d) ethylene	
150.	In one of the following plant types both P present in the cell chloroplast:	EP carboxylase and RuBP carboxylase are	[4]
	a) CAM	b) C ₄	
	c) CAM and C ₄	d) C3	
	ZOOLOG	GY (Section-A)	
151.	Polyesters mammal is:		[4]
	a) Man	b) Cat	
	c) Rabbit	d) Dog	
152.	Which of the following option is correct f character?	for given diagram regarding their class and	[4]
	I. Pristis		
	II. Scoliodon		
	 a) I- Saw fish - Osteichthyes, II- Dog fish - Chondrichthyes 	 b) I- Saw fish - Chondrichthyes, II- Dog fish - Chondrichthyes 	
	c) I- Sting ray- Chondrichthyes, II- Dog fish - Chondrichthyes		
	• Page 3	3 of 79 •	

	d) I- Great white shark - Osteichthyes, II- Saw Osteichthyes			
153.	In contrast to Annelids the	Platyhelminthes sł	now:	[4]
	a) Absence of body cavi	ty b)	Radial symmetry	
	c) Presence of pseudoco	el d)	Bilateral symmetry	
54.	Which one of the followin	g contains the large	est quantity of extracellular material?	[4]
J T.				[ד]
	a) Areolar tissue	6)	Myelinated nerve fibers	
	c) Striated muscle	d)	Stratified epithelium	
55.	Which of the following is	considered as a uni	t of the neural system?	[4]
	a) Axon	b)	Neurons	
	c) Dendron	d)	Neuroglia	
5.	Match the columns and fir	nd correct combinat	tion:	[4]
	(A) Earthworm		(i) Pulmonary	1
	(B) Human		(ii) Gills	1
	(C) Prawn		(iii) Tracheal	1
	(D) Insects		(iv) Cutaneous	1
	a) (A)-(iv), (B)-(i), (C)-	(ii), (D)-(iii) b)	(A)-(i), (B)-(ii), (C)-(iii), (D)-(iv	-
	c) (A)-(iv), (B).(ii), (C)-		(A)-(iii), (B)-(ii), (C)-(iv), (D).(i)	
	$C)(R)^{-}(R), (D).(R), (C)^{-}$	(I), (D)-(III) d)	$((X)^{-}(\Pi), (D)^{-}(\Pi), (C)^{-}(\Pi), (D).(I)$	
•	Match the column I (organ	s) with column II ((functions) and choose the correct option.	[4]
	Column I (Organs)		Column II (Functions)	
	A Nose	(i) stops food from	n going down into lungs.	
	B Epiglottis	(ii) produces sour	nd.	
	C Pharynx	(iii) traps bacteria	as well as dust.	
			pass from nose to oesophagus.	

158.	Bulk of oxygen diffuses from the plasma into the red blood corpuscles where it joins loosely with Fe^{2+} ions of hemoglobin (Hb) to form bright red oxyhemoglobin (HbO ₂). The process is called		[4]
	a) dehydrogenation	b) oxidation	
	c) oxygenation	d) hydration	
159.	The partial pressures (in mm Hg) of oxy (the site of diffusion) are	gen (O_2) and carbon dioxide (CO_2) at alveoli	[4]
	a) $pO_2 = 159$ and $pCO_2 = 0.3$	b) pO ₂ = 104 and pCO ₂ = 40	
	c) $pO_2 = 40$ and $pCO_2 = 45$	d) $pO_2 = 95$ and $pCO_2 = 40$	
160.		of the human respiratory system with labels A, es correct identification and main function	[4]
	a) B-pleural membrane - surround ribs on both sides to provide cushion against rubbing	b) D-Lower end of lungs - diaphragm pulls it down during inspiration	
	 c) A-trachea - long tube supported by complete cartilaginous rings for conducting inspired air 	d) C-Alveoli - thin walled vascular bag like structures for exchange of gases	
161.	During cleavage, what is true about emb	ryo?	[4]
	a) Size does not increase	b) The division is like meiosis	
	c) These is less consumption of oxygen	d) Nucleocytoplasmic ratio remains unchanged	
162.	 Which of the following statements is fals a. It opens into oviducts through cervix b. Its wall has three layers, outer perimetendometriwn. 	whose cavity is called cervical canal.	[4]

	c. It is also called womb and its shape is d. It is supported by ligaments attached t	-	
	a) Statement (b) is false.	b) Statement (c) is false.	
	c) Statement (d) is false.	d) Statement (a) is false.	
163.	Chorionic gonadotropin is secreted by:		[4]
	a) Thymus	b) Pituitary	
	c) Ovary	d) Placenta	
164.	Artificial insemination means:		[4]
	a) Introduction of sperms of a healthy donor directly into the ovary	b) Transfer of sperms of a healthy donor to a test tube containing ova	
	c) Artificial introduction of sperms of a healthy donor into the vagina	d) Transfer of sperms of husband to a test tube containing ova.	
165.	Select the incorrect statements regardingi. In this method, ova from the donor fer induced to form zygote in the uterus.ii. Embryo with 2 blastomeres is transfer	nale and sperms from the donor male are	[4]
	iii. Embryo with more than 8 blastomeres iv. The baby thus produced is called test t	is transferred into the uterus.	
	a) (ii) and (iii)	b) (i) and (ii)	
	c) (iii) and (iv)	d) (i) and (iv)	
166.	Light coloured Peppered Moth/Biston be variety due to:	tularia gets changed to its darker carbonaria	[4]
	a) Deletion of gene segment due to industrial pollution	b) Mutation of single Mendelian gene for survival in smoke-laden Industrial environment	
	c) Industrial carbon deposited on wings	d) Translocation of block of genes in response to heavy carbons	
167.	The cranial capacity of modern man is:		[4]
	a) 350-400 cc	b) 500-1000 cc	
	• Page 3	36 of 79 •	

[

	c) 1350-1700 cc	d) 1350-1500 cc	
168.	Human urine as compared to	human blood is normally:	[4]
	a) Hypotonic	b) Isotonic	
	c) All of these	d) Hypertonic	
169.	The increase in osmolarity fro	om outer to inner medullary interstitium is maintained due	[4]
	i. close proximity between H ii. counter current mechanism	-	
	iii. selective secretion of HCO	$\overline{3}$ and hydrogen ions in PCT.	
	iv. higher blood pressure in gl	omerular canillaries	
		-	
	a) Only (ii)	b) (i) and (ii)	
	c) (i), (ii) and (iii)	d) (iii) and (iv)	
170.	Match the abnormal condition Column B and Choose the con	ns given in Column A with their explanations given in rrect option:	[4]
	Column A	Column B	
	(A) Glycosurea	(i) Accumulation of uric acid in joints	
	(A) Glycosurea(B) Renal calculi		
		(i) Accumulation of uric acid in joints	
	(B) Renal calculi	(i) Accumulation of uric acid in joints(ii) Inflammation in glomeruli	
	(B) Renal calculi(C) Glomerular nephritis	 (i) Accumulation of uric acid in joints (ii) Inflammation in glomeruli (iii) Mass of crystallised salts within the kidney (iv) Presence of glucose in urine 	
	(B) Renal calculi(C) Glomerular nephritis(D) Gout	 (i) Accumulation of uric acid in joints (ii) Inflammation in glomeruli (iii) Mass of crystallised salts within the kidney (iv) Presence of glucose in urine (D)-(iv) b) (A)-(iii), (B)-(ii), (C)-(iv), (D)-(i) 	
171.	 (B) Renal calculi (C) Glomerular nephritis (D) Gout a) (A)-(i), (B)-(iii), (C)-(ii), 	 (i) Accumulation of uric acid in joints (ii) Inflammation in glomeruli (iii) Mass of crystallised salts within the kidney (iv) Presence of glucose in urine (D)-(iv) b) (A)-(iii), (B)-(ii), (C)-(iv), (D)-(i) (D)-(i) d) (A)-(iv), (B)-(ii), (C)-(iii), (D)-(i) 	[4]
171.	 (B) Renal calculi (C) Glomerular nephritis (D) Gout a) (A)-(i), (B)-(iii), (C)-(ii), c) (A)-(iv), (B)-(iii), (C)-(iii) 	 (i) Accumulation of uric acid in joints (ii) Inflammation in glomeruli (iii) Mass of crystallised salts within the kidney (iv) Presence of glucose in urine (D)-(iv) b) (A)-(iii), (B)-(ii), (C)-(iv), (D)-(i) (D)-(i) d) (A)-(iv), (B)-(ii), (C)-(iii), (D)-(i) 	[4]
171.	 (B) Renal calculi (C) Glomerular nephritis (D) Gout a) (A)-(i), (B)-(iii), (C)-(ii), c) (A)-(iv), (B)-(iii), (C)-(iii) A synovial joint is found between the synovial joint is found between the	 (i) Accumulation of uric acid in joints (ii) Inflammation in glomeruli (iii) Mass of crystallised salts within the kidney (iv) Presence of glucose in urine (D)-(iv) b) (A)-(iii), (B)-(ii), (C)-(iv), (D)-(i)), (D)-(i) d) (A)-(iv), (B)-(ii), (C)-(iii), (D)-(i) 	[4]
171.	 (B) Renal calculi (C) Glomerular nephritis (D) Gout a) (A)-(i), (B)-(iii), (C)-(ii), c) (A)-(iv), (B)-(iii), (C)-(ii A synovial joint is found betw a) Two skull bones c) Tail vertebrae 	 (i) Accumulation of uric acid in joints (ii) Inflammation in glomeruli (iii) Mass of crystallised salts within the kidney (iv) Presence of glucose in urine (D)-(iv) b) (A)-(iii), (B)-(ii), (C)-(iv), (D)-(i) (D)-(i) d) (A)-(iv), (B)-(ii), (C)-(iii), (D)-(i) (veen: b) Two vertebrae 	[4]
	 (B) Renal calculi (C) Glomerular nephritis (D) Gout a) (A)-(i), (B)-(iii), (C)-(ii), c) (A)-(iv), (B)-(iii), (C)-(ii A synovial joint is found betw a) Two skull bones c) Tail vertebrae 	 (i) Accumulation of uric acid in joints (ii) Inflammation in glomeruli (iii) Mass of crystallised salts within the kidney (iv) Presence of glucose in urine (D)-(iv) b) (A)-(iii), (B)-(ii), (C)-(iv), (D)-(i) (D)-(i) d) (A)-(iv), (B)-(ii), (C)-(iii), (D)-(i) (veen: b) Two vertebrae d) Humerus and ulna 	
	 (B) Renal calculi (C) Glomerular nephritis (D) Gout a) (A)-(i), (B)-(iii), (C)-(ii), c) (A)-(iv), (B)-(iii), (C)-(ii A synovial joint is found betw a) Two skull bones c) Tail vertebrae Forearm is rotated to turn pair 	 (i) Accumulation of uric acid in joints (ii) Inflammation in glomeruli (iii) Mass of crystallised salts within the kidney (iv) Presence of glucose in urine (D)-(iv) b) (A)-(iii), (B)-(ii), (C)-(iv), (D)-(i) (D)-(i) d) (A)-(iv), (B)-(ii), (C)-(iii), (D)-(i) (een: b) Two vertebrae d) Humerus and ulna m downward or backwards by muscle: 	
	 (B) Renal calculi (C) Glomerular nephritis (D) Gout a) (A)-(i), (B)-(iii), (C)-(ii), c) (A)-(iv), (B)-(iii), (C)-(ii A synovial joint is found betw a) Two skull bones c) Tail vertebrae Forearm is rotated to turn pala a) Abductor 	 (i) Accumulation of uric acid in joints (ii) Inflammation in glomeruli (iii) Mass of crystallised salts within the kidney (iv) Presence of glucose in urine (D)-(iv) b) (A)-(iii), (B)-(ii), (C)-(iv), (D)-(i) (D)-(i) d) (A)-(iv), (B)-(ii), (C)-(iii), (D)-(i) (veen: b) Two vertebrae d) Humerus and ulna m downward or backwards by muscle: b) Extensor 	

173.	An acromion process is characteristically	found in the	[4]
	a) pelvic girdle of mammals.	b) skull of frog	
	c) pectoral girdle of mammals.	d) sperm of mammals	
174.	The transmission of nerve impulse is a:		[4]
	a) Physical process	b) Chemical-electrical process	
	c) physical-electrical process	d) Chemical process	
175.	During stress condition which of the follo	owing nerves start working?	[4]
	a) Parasympathetic nerves	b) Autonomic nerves	
	c) Cranial nerves	d) Sympathetic nerves	
176.	Identify 2, 3, 5, and 6 respectively in the Identify 3, 5, and 6 respectively in the Identify 3, and 6 respectively in the Identify 3, and 6 respectively	b) Cerebral hemisphere, mid brain, Corpus callosum and Cerebellum aqueduct	[4]
	c) Cerebrum, Thalamus, corpus callosum and Cerebral aqueduct	d) Cerebral hemisphere, Hypothalamus, Corpus callosum and Cerebellum aqueduct	
177.	Which is gastrointestinal hormone?		[4]
	a) Cholecystokinin	b) GIP	
	c) Secretin	d) All of these	
178.	A man has an less I.Q., this is due to define	ciency of which hormone?	[4]

A man has an less I.Q., this is due to deficiency of which hormone?

a) All of these

b) Adrenaline

	c) Aldosterone	d) Thyroxine	
179.		s an incomplete double circulation system?	[4]
	a) Toad and lizard	b) Frog and crocodile	
	c) Lizard and pigeon	d) Shark and whale	
180.	Blood coagulation is assisted by :		[4]
	a) Leucocytes	b) Erythrocytes	
	c) Phagocytes	d) Thrombocytes	
181.	Rank the following blood vessels in orde lowest: artery, vein, arteriole, venule, aor	er of their average pressure, from highest to ta, capillary.	[4]
	a) Capillary > arteriole > venule > artery > vein > aorta	 b) Aorta > arteriole > venule > artery > vein > capillary 	
	c) Capillary > vein > venule > arteriole > artery > aorta	d) Aorta > artery > arteriole > capillary > venule > vein	
182.	The term molecular scissors refers to		[4]
	a) Taq polymerase	b) Restriction enzymes	
	c) recombinant DNA.	d) palindromic nucleotide sequences	
183.	Which one of the following is used as ve	ctor for cloning genes into higher organisms?	[4]
	a) Salmonella typhimurium	b) Baculovirus	
	c) Retrovirus	d) Rhizopus nigricans	
184.	Transgenic animal has:		[4]
	a) Foreign DNA in all its cells	b) Foreign DNA in some of the cells	
	c) Foreign RNA in all its cells	d) Both Foreign RNA in all its cells and Foreign DNA in some of the cells	
185.	Which step was proved to be the main ch recombinant DNA technology?	nallenge in the production of human insulin by	[4]
	a) Addition of C - peptide to proinsulin	b) Splitting A and B - peptide chain	
	• Page 3	B9 of 79 ●	

	c) Removal of C - peptide from active insulin	d) Getting insulin assembled into mature form	
	ZOOLOG	GY (Section-B)	
10.5	-	ny 10 questions	
186.	12 pairs of cranial nerves are found in:		[4]
	a) Mammals	b) Birds	
	c) All of these	d) Reptiles	
187.	The ciliated epithelial cells are required to direction. In humans, these cells are main		[4]
	a) Eustachian tube and Salivary duct	b) Bile duct and Bronchioles	
	c) Bronchioles and Fallopian tubes	d) Fallopian tubes and Pancreatic duct	
188.	This type of lymphocyte functions in the virus-infected cells and tumour cells.	immune response by acting directly against	[4]
	a) B-cells	b) Monocytes	
	c) T-cells	d) Neutrophils	
189.	Dissociation of CO ₂ from carbamino-hae	moglobin takes place when:	[4]
	a) pCO ₂ is equal to pO ₂ in tissue, i.e. high	b) Po ₂ is low and Pco ₂ is high in alveoli	
	c) pCO_2 is equal to pO_2 in lungs, i.e.	d) pCO_2 is less in alveoli and pO_2 is	
	low	less	
190.	What happens during fertilisation in hum ovum?	ans after many sperms reach close to the	[4]
	a) Only two sperms nearest the ovum penetrate zona pellucida	b) Cells of corona radiata trap all the sperms except one	
	c) All sperms except the one nearest to the ovum lose their tails	 d) Secretions of acrosome helps one sperm enter cytoplasm of ovum through zona pellucida 	
		0 of 79 •	

[---

191.	From the sexually transmitted diseases not specifically affect the sex organs:	mentioned below, identify the one which does	[4]	
	a) Syphilis	b) Genital warts		
	c) AIDS	d) Gonorrhea		
192.	Which of these is a false statement?A. The earliest organisms that appeared anaerobes.	l on the earth were non-green and presumably	[4]	
	oxygen.	e the chemoautotrophs that never released		
	C. Prokaryotes were started photosynthesis. D. The primitive atmosphere was more suitable for cynobacteria.			
	a) (A) and (B)	b) Only (D)		
	c) (C) and (D)	d) (B) and (D)		
193.	All of the following are present in swea	at except:	[4]	
	a) Calcium	b) Urea		
	c) Lactic acid	d) Uric acid		
194.	Who propounded the Sliding filament t	heory for muscles contraction?	[4]	
	a) H.E. Huxley and A.F. Huxley	b) A.F. Huxley		
	c) J. Huxley	d) H.E. Huxley		
195.	The nerves leading to the central nervo	us system are called:	[4]	
	a) Afferent	b) Efferent		
	c) Motor	d) thoracic nerves		
196.	The steroid responsible for the balance	of water and electrolytes in our body is:	[4]	
	a) Testosterone	b) Insulin		
	c) Aldosterone	d) Melatonin		
197.	A child with a weak immune system cogland?	ould have problem in which of the following	[4]	
	a) Thymus	b) Parathyroid gland		
	• Page	e 41 of 79 •		

	c) Thyroid gland	d) Pituitary gland	
198.	Minerals ions presents in blood plasma :		[4]
	a) HCO ₃	b) _{Ca} ++	
	c) All of these	d) Na^+	
199.	The most important feature in a plasmid t experiment is :	o be used as a vector in gene cloning	[4]
	a) Origin of replication (ori)	b) Presence of sites for restriction endonuclease	
	c) Its size	d) Presence of a selectable marker	

Match the column A with column B : 200.

Column A	Column B
(A) Antigen-antibody interaction	(i) ADA deficiency patient
(B) PCR	(ii) Detaching mutated gene
(C) Recombinant DNA technology	(iii) ELISA
(D) Gene therapy	(iv) Detect HIV in suspected AIDS patients

a) (A) - (iii), (B) - (ii), (C) - (iv), (D) b) (A) - (iv), (B) - (ii), (C) - (iii), (D) - (i)

- (i)

c) (A) - (iii), (B) - (iv), (C) - (ii), (D) d) (A) - (iv), (B) - (iii), (C) - (ii), (D) - (i)
$$(i)$$

[4]

Solution

SAMPLE PAPER - 5

PHYSICS (Section-A)

1. (a) $[ML^2T^{-2}A^{-1}]$

Explanation:
$$[\phi] = [BA] = \left[\frac{F}{qv}A\right]$$

(b) $h_2 = 3h_1$ and $h_3 = 5h_1$

$$= \left[\frac{\mathrm{MLT}^{-2}\mathrm{L}^{2}}{\mathrm{ATLT}^{-1}}\right] = \left[\mathrm{ML}^{2}\mathrm{T}^{-2}\mathrm{A}^{-1}\right]$$

2.

(d) Radius of gyration Explanation: The radius of gyration is not dimensionless.

3.

Explanation: At point A, u = 0u = 0A h t = 4sв h₂ t = 4s: $h_1 = \frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times 16$ \therefore h₁ = 80 m Now, v = u + gt = 0 + 10(4) \therefore v = 40 m/s At point B, final velocity from A to B = initial velocity at B : $h_2 = ut + \frac{1}{2}gt^2 = 40 \times 4 + \frac{1}{2} \times 10 \times 16$ = 240 mv = u + gt = 40 + 10(4) \therefore v = 80 m/s Similarly, At point C, $h_3 = 400 \text{ m}$ \therefore h₁: h₂: h₃ = 80: 240: 400 = 1: 3: 5 i.e., $h_2 = 3h_1$ and $h_3 = 5h_1$

4. (a)
$$(\frac{r_1}{r_2})^2$$

Explanation: As $T_1 = T_2$

Hence,
$$\frac{2\pi r}{v_1} = \frac{2\pi r_2}{v_2}$$
 or $\frac{v_1}{v_2} = \frac{r_1}{r_2}$
 $\frac{F_1}{F_2} = \frac{mv_1^2}{r_1} \times \frac{r_2}{mv_2^2} = \left(\frac{v_1}{v_2}\right)^2 \times \frac{r_2}{\eta} = \left(\frac{r_1}{r_2}\right)^2 \times \frac{r_2}{r_1} = \frac{\eta}{r_2}.$

(b) 100 m

Explanation: The velocity is maximum, i.e., equal to initial velocity, when it strikes the ground again, i.e., after covering a distance of 100 m (= Range).

6. (a)
$$\left(\frac{5}{2\mu}\right)mg$$

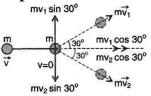
Explanation:

Horizontal acceleration of the system is,

$$a = \frac{F}{2m+m+2m} = \frac{F}{5m}$$

Let N be the normal reaction between B and C. Free body diagram of C gives

$$N = 2ma = \frac{2}{5}F$$


Now, B will not slide downward if $\mu N \ge m_B g$

or
$$\mu\left(\frac{2}{5}F\right) \ge mg$$

or $F \ge \frac{5}{2\mu}mg$
So, $F_{\min} = \left(\frac{5}{44}\right)mg$

7.

(d) $2\sqrt{3}$ m/sec

Explanation:

Applying the law of conservation of momentum in perpendicular to the initial line of motion,

 $0 = mv_1 \sin 30^\circ - mv_2 \sin 30^\circ$

:
$$v_1 = v_2 ...(i)$$

Now, along the line of motion, $m \times v + m \times 0 = mv_1 \cos 30^\circ + mv_2 \cos 30^\circ ...(ii)$

Putting eqn. (i) in eqn. (ii),
$$mv = 2mv_1 \cos 30^\circ$$

or m × 6 = 2 × m × v₁ ×
$$\frac{\sqrt{3}}{2}$$

or v₁ = $\frac{6}{\sqrt{3}}$ = 2 $\sqrt{3}$ m/sec

8. (a) 196 J

Explanation: Since the box is moving at a constant speed, the force F is just enough to overcome the force of kinetic friction, i.e., $F = f = \mu mg$.

Therefore, work done is

 $W = Fs = \mu mgs = 0.5 \times 10 \times 9.8 \times 4 = 196 J$ 9.

(c)
$$\frac{1}{\sin\theta} \sqrt{\beta\left(\frac{2h}{g}\right)}$$

Explanation: As here acceleration is constant and body starts from rest, so from 2nd equation of translatory motion,

$$s = \frac{h}{\sin \theta} = 0 \times t + \frac{1}{2} \frac{g \sin \theta}{\beta} t^{2}$$
$$\therefore \quad t = \frac{1}{\sin \theta} \sqrt{\beta \left(\frac{2h}{g}\right)}$$

10. (a) T \propto R^{(n+1)/2}

Explanation:
$$m\omega^2 R = Force \propto \frac{1}{R^n} \left(Force = \frac{mv^2}{R} \right)$$

 $\Rightarrow \omega^2 \propto \frac{1}{R^{n+1}} \Rightarrow \omega \propto \frac{1}{\frac{n+1}{R^{n+1}}}$
Page 45 of 79

Time period T =
$$\frac{2\pi}{\omega}$$

Time period, T $\propto R \frac{n+1}{2}$
11. (a) $\frac{5}{9}$
Explanation: According to question, $g_h = g_d = g_1$
 $g_h = \frac{GM}{\left(R + \frac{R}{2}\right)^2}$ and $g_d = \frac{GM(R-d)}{R^3}$
 $\frac{GM}{\left(\frac{3R}{2}\right)^2} = \frac{GM(R-d)}{R^3} \Rightarrow \frac{4}{9} = \frac{(R-d)}{R}$
 $\Rightarrow 4R = 9R - 9d \Rightarrow 5R = 9d$
 $\therefore \frac{d}{R} = \frac{5}{9}$

13

(c)
$$\frac{L^2 \rho g}{2Y}$$

Explanation: Weight of the cord, $W = F\rho g = AL\rho g$

$$Stress = \frac{W}{A} = L\rho g$$

For the purpose of extension, the weight acts at the centre of gravity of the bar. Hence the upper half length, i.e., $(\frac{L}{2})$ will be stretched.

$$\therefore \text{ Strain } = \frac{l}{(L/2)} = \frac{2l}{L}$$
$$\therefore Y = \frac{\text{stress}}{\text{strain}} = \frac{L\rho g}{2l/L} = \frac{L^2 \rho g}{2l}$$
$$\text{or } l = \frac{L^2 \rho g}{2Y}$$
$$.$$
(b) 98°C

Explanation: Using, $\frac{100-60}{60-0} = \frac{150-x}{x-20}$

or 40 (x - 20) = 60 (150 - x)

 $\therefore x = 98^{\circ}C$

14.

(c) The radiation emitted is in the infrared region

Explanation: We know that the human body at all times and at all temperatures, except absolute temperature, emits radiations. We also know that radiations emitted by the human body are in the infrared region.

15.

(b) 99⁰C

Explanation: 99^oC

16.

(b) will be different on the top wall and bottom wall of the vessel

Explanation: As
$$P = \frac{nRT}{V}$$
, it remains unaffected by n, R, T and V.

17.

(b) 5 cm

Explanation: Both the SHM have same frequency, with an amplitude of 3 and 4, with a

phase difference of 90°

The maximum value of the equation, $x = 3\sin(20\pi t) + 4\cos(20\pi t)$ is $\sqrt{3^2 + 4^2} = 5$ cm

18.

(b) 3.6×10^{-4} Explanation: Maximum particle velocity = ωA

Wave velocity $= \frac{\omega}{K}$ Required ratio $= \frac{\omega A}{\omega/K}$ = AK $= 60 \times 10^{-6} \times 6$ $= 3.6 \times 10^{-4}$ 19.

(c) increases by 0.61 ms^{-1}

Explanation: The increase of pressure does not change the velocity of sound. When the temperature increases by 1° C, the velocity of sound increases roughly by 0.6 m/s. (V₁ = V₀ + 0.6t)

(c)
$$2\pi\sqrt{\frac{l}{g}}$$

Explanation: $2\pi \sqrt{\frac{l}{g}}$

21. (a) -18 V Explanation: -18 V

22. (a)
$$2E\left(1-\frac{2}{n}\right)$$

Explanation: Current in the circuit will be,

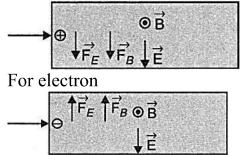
$$[=\frac{(n-4)}{nr}$$

E

Hence, potential difference across A and B is,

$$\mathbf{V} = \mathbf{E} + \mathbf{Ir} = \mathbf{E} + \frac{(n-4)E}{nr} \cdot r = 2\mathbf{E}\left(1 - \frac{2}{n}\right)$$

23.


(d) protons with speed $\frac{|\vec{E}|}{|\vec{B}|}$ will pass through the slit, electrons of the same speed will not

Explanation:

A charge q moving with velocity \vec{v} in presence of both electric field \vec{E} and magnetic field \vec{B} experiences a Lorentz force and is given by

 $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) = \vec{F}_E + \vec{F}_B$

If the total force \vec{F} on the charge is zero, the charge will move in the fields undeflected. For proton

24. (a) east-west

Explanation: In tan B position, the magnet will be parallel to the arms of the magnetometer and will be in an east-west direction

25.

(b) repelled by both the poles

Explanation: A diamagnet is always repelled by a magnetic field. Therefore, it is repelled by both the north-pole as well as south-pole.

Page 48 of 79

26. **(b)** 5 A Explanation: I = $\frac{e_1 - e_2}{R} = \frac{220 - 210}{R} = \frac{10}{2} = 5A$ 27. (a) $\frac{1}{(2x-a)(2x+a)}$ **Explanation:** Induced $emf = B_1vl - B_2vl$ $= \frac{\mu_0 I}{lv - \frac{\mu_0 I}{lv$ $2\pi\left(x-\frac{a}{2}\right)$ $2\pi\left(x+\frac{a}{2}\right)$ $=\frac{\mu_0 I l v}{\pi (2x-a)} - \frac{\mu_0 I l v}{\pi (2x+a)}$ $=\frac{\mu_0 Ilv(2a)}{(2x-a)(2x+a)}$ Hence, induced emf = $\frac{1}{(2x - a)(2x + a)}$ 28. **(b)** 450 V, 15 A **Explanation:** Power output = $\frac{90}{100} \times 3 \text{ kW} = 2.7 \text{ kW}$ $I_S = 6A$ $V_S = \frac{2.7 \text{ kW}}{6 \text{ A}} = \frac{2700 \text{ W}}{6 \text{ A}} = 450 \text{ W}$ $I_P = \frac{3 \text{ kW}}{200 \text{ V}} = \frac{3000 \text{ W}}{200 \text{ V}} = 15 \text{ A}$ 29. (d) E₀q $(0.8\hat{i} + \hat{j} + 0.2\hat{k})$ **Explanation:** Given: $\vec{E}_1 = E_0 \hat{j} \cos(\omega t - kx)$ i.e., Travelling in + ve x-direction $\vec{E} \times \vec{B}$ should be in x-direction \therefore \vec{B} is in \vec{K} $\therefore = \frac{E_0}{C} \cos(\omega t - kx)\hat{k} \left(\because B_0 = \frac{E_0}{C} \right)$ $\vec{E}_2 = E_0 \hat{k} \cos(\omega t - ky)$

$$\vec{B}_{2} = \frac{E_{0}}{C}\hat{i}\cos(\omega t - ky)$$

$$\therefore \text{ Travelling in + ve y-axis } \vec{E} \times \vec{B} \text{ should be in y-axis}$$

$$\hat{j}$$

$$\hat{j$$

30. **(a)** -48

Explanation: Magnifying power,
$$M = \frac{f_o}{f_e} \left(1 + \frac{f_e}{d} \right)$$

Least distance of distinct vision, d = 25 cm

$$M = -\frac{200}{5} \left(1 + \frac{5}{25} \right) = -40 \left(1 + \frac{1}{5} \right)$$
$$= -40 \left(\frac{6}{5} \right) = -48 \text{ cm}$$

31.

(c) 0.02

Explanation: For the first minimum, $a\sin\theta = \lambda$ where, a = width of slit

:.
$$a = \frac{\lambda}{\sin \theta} = \frac{6980 \times 10^{-10}}{\sin 2^{\circ}} = 2 \times 10^{-5} \text{ m} = 0.02 \text{ mm}$$

32.

(d) Photocell Explanation: Photocell 33. (a) 19.86 \times 10⁻²⁰ **Explanation:** $\lambda_0 = 250 \text{ nm} = 250 \times 10^{-9} \text{ m}$ $\lambda = 200 \text{ nm} = 200 \times 10^{-9} \text{ m}$ $E = \frac{1}{2} mv^2 = hv - hv_0 = \frac{hc}{\lambda} - \frac{hc}{\lambda_0}$ $= \operatorname{hc}\left[\frac{1}{\lambda} - \frac{1}{\lambda_0}\right]$ $= 6.62 \times 10^{-34} \times 3 \times 10^8 \times \left[\frac{1}{200} - \frac{1}{250}\right] \times \frac{1}{10^{-9}}$ $\therefore E = 19.86 \times 10^{-20} J$ 34. (a) 5 : 9 Explanation: Shortest wavelength $n_1 = 2$ $n_2 = \infty$ $\frac{1}{\lambda} = \mathbb{R} \left(\frac{1}{2^2} - 0 \right)$ $\lambda_1 = \frac{4}{R}$ Largest wavelength $n_1 = 2$ $n_2 = 3$ $\frac{1}{\lambda} = \mathbf{R} \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$ $\lambda_2 = \frac{5}{36R}$ Ratio = $\frac{5}{9}$ 35. (a) 40 min Explanation: According to radioactive decay N = $N_0 e^{-\lambda t}$ where, N_0 = Number of redioactive nuclei present in the sample at t = 0 N = Number of radioactive nuclei left undecayed after time t $\lambda = \text{decay constant}$ For 20% decay Page 51 of 79

$$\frac{80N_0}{100} = N_0 e^{-\lambda t_1} \dots (i)$$

For 80% decay
$$\frac{20N_0}{100} = N_0 e^{-\lambda t_2} \dots (ii)$$

Dividing equation (i) by (ii), we get
$$4 = e^{-\lambda} \left(t_1 - t_2 \right)$$
$$\Rightarrow 4 = e^{\lambda} \left(t_2 - t_1 \right)$$

Taking natural logarithms of both sides, we get
$$\ln 4 = \lambda (t_2 - t_1)$$
$$2 \ln 2 = \frac{\ln 2}{T_1^1} \left(t_2 - t_1 \right)$$
$$t_2 - t_1 = 2 \times T_2^1 = 2 \times 20 \text{ min} = 40 \text{ min}$$

PHYSICS (Set

PHYSICS (Section-B)

36. (a) $\frac{F}{\sqrt{mk}}$

Explanation: Maximum speed is at mean position or equilibrium. At equilibrium Position, F

$$F = kx \implies x = \frac{1}{k}$$

From work-energy theorem,

$$W_F + W_{sp} = \Delta KE$$

$$F(x) - \frac{1}{2}kx^2 = \frac{1}{2}mv^2 - 0$$

$$F\left(\frac{F}{k}\right) - \frac{1}{2}k\left(\frac{F}{k}\right)^2 = \frac{1}{2}mv^2 \implies \frac{1}{2}\frac{F^2}{K} = \frac{1}{2}mv^2$$

or, $v_{max} = \frac{F}{\sqrt{mk}}$
37. (a) 5 : 7
Explanation: $\frac{(K.E.)_{linear}}{(K.E.)_{rolling}} = \frac{1}{1 + \frac{K^2}{R^2}}$

$$= \frac{1}{1 + \frac{2}{5}} \dots \left[\left(\frac{K^2}{R^2} \right)_{\text{solid}} = \frac{2}{5} \right]$$
$$= \frac{5}{7}$$
38.
(b) $\frac{2\pi}{3600} \sqrt{\frac{R}{g}}$

Explanation: Given that weight of a body at the equator is zero. It implies that acceleration due to gravity at the equator is zero.

$$\therefore g' = g - \omega^2 \mathbf{R} = 0 \text{ or } \omega = \sqrt{\frac{g}{R}}$$

Number of hours in a day

$$= \frac{2\pi}{\omega \times 60 \times 60}$$
$$= \frac{2\pi}{\sqrt{g/R} \times 3600}$$
$$= \frac{2\pi}{3600} \sqrt{\frac{R}{g}}$$

39. (a) 320 Kcal/m² -min

Explanation:
$$E = \sigma T^4 = 20$$

 $T' = 2T$
 $E' = \sigma (2T)^4 = 16 \sigma T^4$
 $= 16 \times 20 = 320 \text{ Kcal/m}^2 \text{ -min}$
40.
(b) 500 Hz

Explanation: $\lambda = 2 (x_2 - x_1) = 2 (0.84 - 0.50) = 0.68$ $n = \frac{v}{\lambda} = \frac{340}{0.68} = 500 \text{ Hz}$

41.

(c) The wave C lags behind by a phase angle of $\pi/2$ and the wave B is ahead by a phase angle of $\pi/2$

Explanation: It is clear from figure that the wave A attains its mean position T/4 times earlier than C, i.e., C lags behind A by phase angle $\pi/2$. Further, B attains the mean position T/4 times earlier than A, i.e., B is ahead by a phase angle of $\pi/2$.

Page 53 of 79

42. **(b)** $N^2 : n^2$ Explanation: We have, $B_1 = \frac{N\mu_0 I}{2r_1}$ and $B_2 = \frac{n\mu_0 I}{2r_2}$ Now, N × $2\pi r_1 = n \times 2\pi r_2 \Rightarrow Nr_1 = nr_2 \Rightarrow \frac{r_2}{r_1} = \frac{N}{n}$ So, $\frac{B_1}{B_2} = \frac{Nr_2}{r_1n} = \frac{N}{n} \left(\frac{r_2}{r_1} \right) = \frac{N^2}{n^2}$ 43. (a) $\frac{MB_H\theta}{I}$ **Explanation:** MBH MBH $\tau = -2mB_H I \sin\theta$ $= -MB_H \sin\theta$ If θ is small, $sin\theta \approx \theta$ $I\alpha = -MB_H\theta$ $|\alpha| = \frac{MB_H\theta}{I}$ 44.

(d)
$$2\pi rB(\frac{dr}{dt})$$

Explanation: If the radius is r at a time t, then the instantaneous magnetic flux ϕ is given by:

$$\phi = \pi r^2 B$$

Now, induced emf e is given by:

$$\mathbf{e} = -\frac{d\phi}{dt} = -\frac{d}{dt} \Big(\pi r^2 B\Big)$$

$$= -\pi B\left(2r\frac{dr}{dt}\right) = -2\pi Br\left(\frac{dr}{dt}\right)$$

Induced emf $2\pi r B\left(\frac{dr}{dt}\right)$ numerically as $\left(\frac{dr}{dt}\right)$ is negative.
45.
(c) 2.5434
Explanation: 2.5434
46. (a) its wavelength increases but the frequency remain unchanged
Explanation:
According to Snell's law

$$\frac{denser}{rare} r \frac{i}{r} \frac{90-r}{p0-r}$$

$$\frac{\sin i}{medium 1 (\mu_1)}$$

$$\frac{\sin i}{rare} = \frac{v_1}{v_2} = \frac{\mu_2}{\mu_1}$$
From figure we see that,
 $r > i$
 $\Rightarrow v_2 > v_1$
from Snell's Law,
So, $v_2 = n\lambda_2 > v_1 = n\lambda_1$
 $\Rightarrow \lambda_2 > \lambda_1$ (Frequency of wave does not change on reflection)
47.

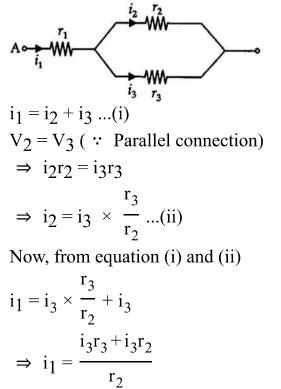
(b) 1.3

Explanation: Given, μ = refractive index of the liquid.

From the figure, it is itself clear that, angle of incidence, $i = 60^{\circ}$ Now, for internal reflection, angle of refraction $r = 90^{\circ}$

Now, $\frac{\sin i}{\sin r} = \frac{\mu}{\mu_1}$ $\Rightarrow \sin 60^\circ = \frac{\mu}{1.5}$ $\Rightarrow \mu = \frac{\sqrt{3}}{2} \times 1.5$ $\Rightarrow \mu = 1.3$

48.


(b)
$$\lambda_{\alpha} < \lambda_{p} = \lambda_{n} < \lambda_{e}$$

Explanation: Kinetic energy of particle,

 $K = \frac{1}{2} \text{ mv}^2$ or mv = $\sqrt{2mK}$

de Broglie wavelength, $\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mK}}$ For the given value of K, $\lambda \propto \frac{1}{\sqrt{m}}$ $\therefore \quad \lambda_p : \lambda_n : \lambda_e : \lambda_\alpha = \frac{1}{\sqrt{mp}} : \frac{1}{\sqrt{mn}} : \frac{1}{\sqrt{me}} : \frac{1}{\sqrt{m\alpha}}$ Since m_p = m_n, hence $\lambda_p = \lambda_n$ As m_{\alpha} > m_p, therefore $\lambda_\alpha < \lambda_p$ As m_e < m_n, therefore $\lambda_e > \lambda_n$ Hence, $\lambda_\alpha < \lambda_p = \lambda_n < \lambda_e$ 49. (a) $\frac{r_2}{r_2 + r_3}$

Explanation: Given, Resistance of the resistor are r_1 , r_2 , and r_3 .

$$\Rightarrow i_1 = i_3 \frac{\left(r_3 + r_2\right)}{r_2}$$
$$\Rightarrow \frac{i_3}{i_1} = \frac{r_2}{r_2 + r_3}$$

50. (a) is not important because nuclear forces are short-ranged

Explanation: Key concept: Forces that keep the nucleons bound in the nucleus are called nuclear forces.

- i. Nuclear forces are short-range forces. These do not exist at large distances greater than $10 \sim 15$ m.
- ii. Nuclear forces are the strongest forces in nature.
- iii. These are attractive force and causes the stability of the nucleus.

iv. These forces are charge-independent.

v. Nuclear forces arc non-central force.

The nuclear binding force has to dominate over the Coulomb repulsive force between protons inside the nucleus. The nuclear force between two nucleons falls rapidly to zero as their distance is more than a few femtometres.

In O_2 molecule which consists of two oxygen atoms molecules, nuclear force between the nuclei of the two atoms is not important because nuclear forces are short-ranged and act inside the nucleus only.

CHEMISTRY (Section-A)

51. **(a)** 200 amu

Explanation: Average atomic mass = $\frac{(90 \times 200) + (8 \times 199) + (2 \times 202)}{100}$

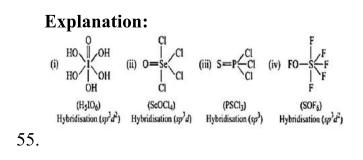
 $= 199.96 \approx 200$ amu

52. (a)
$$-\frac{1}{2}\frac{e^2}{r}$$

Explanation: Total energy of a revolving electron is the sum of its kinetic and potential energy.

Total energy = K.E. + P.E.

$$=\frac{e^2}{2r} + \left(-\frac{e^2}{r}\right) = -\frac{e^2}{2r}$$


53.

(b) Magnesium

Explanation: Sulphur and phosphorus are non-metals, they have very low electropositivity. As aluminium has one extra-nuclear charge than Mg, it has lesser electropositive character than Mg (due to greater pull exerted by nucleus on the electron).

54.

(c) (I)- sp^3d^2 , (II)- sp^3d , (III)- sp^3 , (IV)- sp^3d^2 Page 57 of 79

(**d**) [x]

Explanation: Electronic configuration of 'X' = $1s^2 2s^2 2p^4 5$. 'X' has six valence electrons.

56.

(b) ${\rm H}_2 < {\rm N}_2 < {\rm Cl}_2$ Explanation: ${\rm H}_2 < {\rm N}_2 < {\rm Cl}_2$

57.

(c) $\Delta S \begin{bmatrix} T_2 \\ T_1 \end{bmatrix}$

Explanation: T_1 and T_2 are same for a substance

58.

(b)
$$\left(\frac{\alpha}{1-\alpha}\right) = \frac{1.75}{1.3} \times \left(\frac{\beta}{1-\beta}\right)$$
 where α and β are ionised fraction of the acids

Explanation: In a given mixture, the ionisation of two acids can be written as: Let α , β be degree of ionisation at same concentration.

$$CH_{3}COOH1 - \alpha \rightleftharpoons CH_{3}C\alpha OO^{-} + H^{+}\alpha + \beta$$

$$C_{2}H_{5}COOH1 - \beta \rightleftharpoons C_{2}H_{5}C\beta OO^{-} + H^{+}\alpha + \beta$$

$$\therefore K_{A.A.} = \frac{[\alpha] [\alpha + \beta] \cdot c}{[1 - \alpha]}$$

$$K_{P.A.} = \frac{[\beta] [\alpha + \beta] \cdot c}{[1 - \beta]}$$

$$\therefore \frac{K_{A.A}}{K_{P.A.}} = \frac{\alpha}{1 - \alpha} \times \frac{(1 - \beta)}{\beta}$$
or $\frac{\alpha}{1 - \alpha} = \frac{1.75}{1.3} \times \left[\frac{\beta}{1 - \beta}\right]$
59.
(d) Cul₂ is formed

Explanation: Copper sulphate reacts with potassium iodide to form cuprous iodide and iodine.

 $2CuSO_4 + 4KI \rightarrow Cu_2I_2 \downarrow + I_2 + 2K_2SO_4$

Thus, CuI_2 is not formed in this reaction.

The liberated iodine is titrated with sodium thiosulphate to form sodium tetrathionate. $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$

Iodine is reduced and sodium thiosulphate is oxidized.

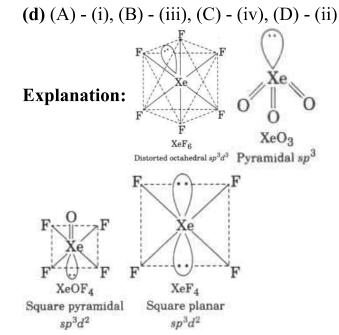
60.

(d) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$

Explanation: In (A), Fe^{+2} is oxidized to Fe^{+3} which shows the oxidizing nature of H₂O₂.

In (B), I_2 is reduced to I^- which shows the reducing nature of H_2O_2 .

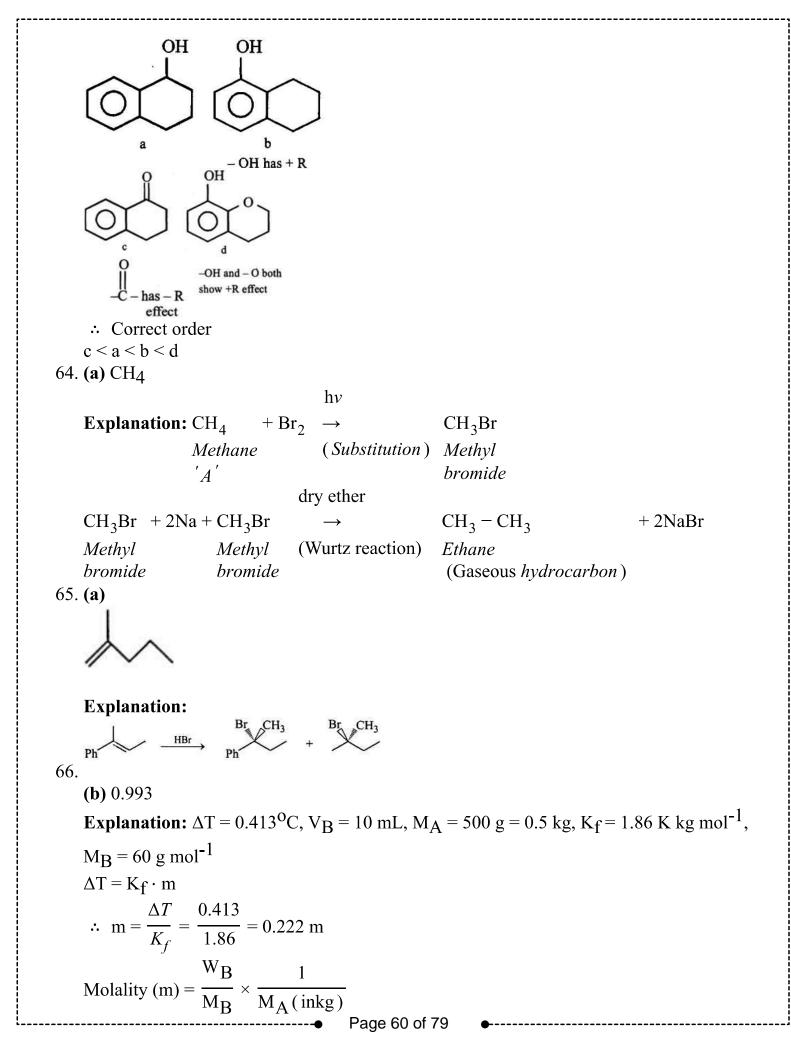
In (C), Mn^{+2} is oxidized to Mn^{+4} which shows the oxidizing nature of H₂O₂.


In (D), S^{2-} is oxidized to S^{+6} which shows the oxidizing nature of H_2O_2 .

61.

(**d**) M₂

Explanation: Negative electrode potential indicates that the reaction as written is less favorable, thus, M_2 has a greater tendency to undergo oxidation, i.e., to donate electrons and thus M_2 is the most electropositive metal.


62.

63.

(c) c, a, b, d

Explanation: Benzene becomes more reactive towards EAS when any substituent raises the electron density.

 $0.222 = \frac{W_B}{60} \times \frac{1}{0.5}$: $W_B = 0.222 \times 60 \times 0.5 = 6.66 \text{ g}$ Molarity (M) = $\frac{W_B}{M_B} \times \frac{1}{Volume of solution (in L)}$ Total volume of the solution = Volume of solvent + Volume of non-volatile solute =500+10=510mL = 0.51 L:. Molarity (M) = $\frac{6.66}{60} \times \frac{1}{0.51} = 0.218 \text{ M}$ Relation between molality (m) and mole fraction of solute (x_B) , m = $\frac{x_{\rm B} \times 1000}{x_{\rm A} \times M_{\rm A}} = \frac{x_{\rm B} \times 1000}{\left(1 - x_{\rm B}\right) \times M_{\rm A}} \text{ where, } x_{\rm A} = \text{mole fraction of solvent, MA} = \text{Molar mass}$ of solvent in g mol⁻¹ $\frac{\mathrm{d}}{\mathrm{M}} = \frac{1}{\mathrm{m}} + \frac{\bar{\mathrm{M}}_{\mathrm{B}}}{1000}$ $\therefore \ d = \frac{M}{m} + \frac{M \times M_B}{1000}$ $=\frac{0.218}{0.222}+\frac{0.218\times 60}{1000}$ = 0.982 + 0.013 $= 0.995 \approx 0.993 \text{ g mL}^{-1}$

67. (a) reverse osmosis

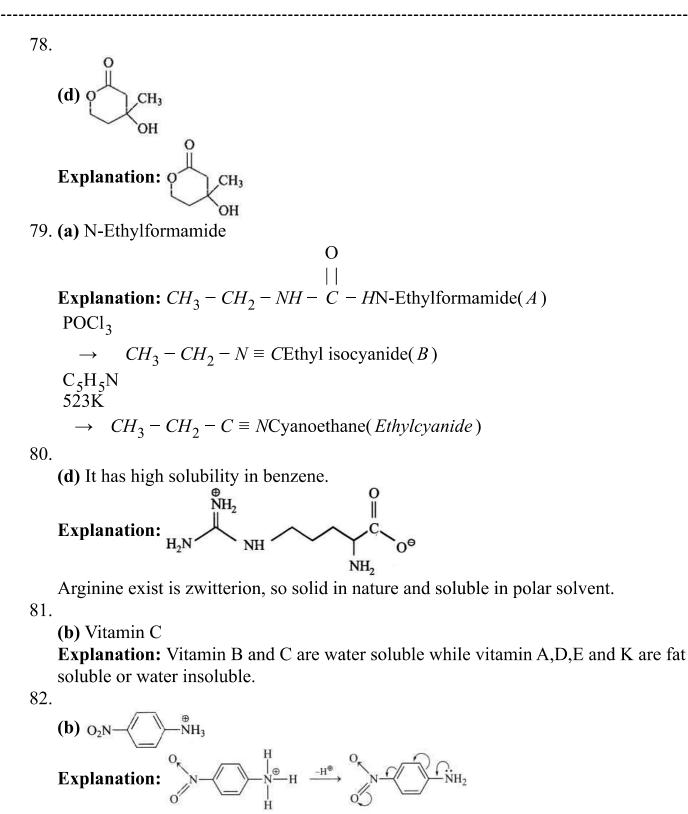
Explanation: The osmotic pressure of sea water is 25 atm at 15^o C. When pressure greater than 26 atm is applied on sea water separated by a rigid semipermeable membrane. Pure water is obtained. This is also called desalination of sea water.

68.

(b) 1.73 A Explanation: Specific conductance $= \frac{equivalent \ conductance}{1000} \times \text{Concentration}$ $= \frac{95.2\Omega^{-1} \ \text{cm}^2 \text{eq}^{-1}}{1000 \ \text{cm}^3 \ \text{L}^{-1}} \times 1 \ \text{eq} \ \text{L}^{-1}$ $= 0.0952 \ \Omega^{-1} \ \text{cm}^{-1}$ $= 0.0952 \ \Omega^{-1} \ \text{cm}^{-1}$ $= \frac{specific \ conductance}{cell \ constant}$ Page 61 of 79

$$= \frac{0.0952\Omega^{-1} \text{ cm}^{-1}}{0.33 \text{ cm}^{-1}} = 0.288 \ \Omega^{-1}$$
Resistance $= \frac{1}{conductance} = \frac{1}{0.288\Omega^{-1}}$

$$= 3.47 \ \Omega$$
Now,
V = IR
 $\therefore 1 = \frac{V}{R} = \frac{6V}{3.47\Omega} = 1.73 \ \Lambda$
69.
(b) Rate = k[A]² [B]
Explanation: Lct, $r = K \ [\Lambda]^{\text{II}} \ [B]^{\text{II}}$
 $r_1 = K \ [\Lambda]^{\text{II}} \ [2B]^{\text{II}}$
 $r_2 = K \ [2A]^{\text{II}} \ [2B]^{\text{II}}$
Also, $\frac{r_1}{r} = 2 \ \text{and} \frac{r_2}{r} = 8 \ (\text{given})$
Therefore $m = 2 \ \text{and} n = 1$
 $\therefore r = K \ [\Lambda]^2 \ [B]^{\text{I}}$
(b) 106.25 mm Hg
Explanation: Rate law for first order reaction = [N_2O_5]
 $2N_2O_5(g) \longrightarrow 4NO_5(g) + O_2(g)$
 $t^{=0} \ \text{om} \ M_{20} \ 50 \ -2p \ 4p \ p = 50 \ +3p = 87.5 \ \text{mm Hg}$
 $\therefore p = 12.5 \ \text{mm Hg}$
 $\therefore P_0 = 50$
 $p \ (t = 30 \ \text{min}) = 50 \ -2 \times 12.5 \ -25 \ \text{for N}_2O_5 \ \text{reactant}$
 $\therefore K = \frac{2.303}{30 \ \text{mm Hg}} \times \log\left(\frac{50}{22}\right) = \frac{2.303}{60 \ \text{mm Hg}} \times \log\left(\frac{50}{x}\right)$
On solving $x - 12.5 \ \text{mm Hg}$
 $\therefore \ Total pressure $= 50 \ + 3p = 106.25 \ \text{mm Hg}$
 $\therefore \ Total pressure $= 50 \ + 3p = 106.25 \ \text{mm Hg}$$$


Page 62 of 79

Mn (25) = [Ar]_{18} 3d⁵ 4s²
3d 4s
(1) (1) (1) (1) (1) (1)
72.
(d) Red hot CuO + NH₃
$$\rightarrow$$

A
Explanation: Ba(N₃)₂(s) \rightarrow Ba(s) + 3N₂(g) (Pure)
 Δ
NaN₃(s) \rightarrow Na(s) + $\frac{3}{2}$ N₂(g) (Pure)
73. (a) Ni²⁺
Explanation: Magnetic moment is given by
 $\mu = \sqrt{n(n + 2)}$ B.M.
[where n = no. of unpaired electrons]
When n = 2, then $\mu = 2.83$ B.M.
For Ti³⁺ (3d¹), n = 1; Cr³⁺ (3d³), n = 3
Ni²⁺ (3d⁸), n - 2; Mn²⁺ (3d⁵), n = 5
Hence, Ni²⁺ has two unpaired electrons, with magnetic moment 2.83 B.M.
74. (a) [PtCl₄1₂]
Explanation: [PtCl₄1₂]
75.
(b) [Ti(CO)₆]²⁻
Explanation: [Ti(CO)₆]²⁻
76.
(d) Gammaxene
Explanation: Gammaxene
Cl
(c) $\int_{CCH_{2}CH_{3}} \int_{U_{2-n}} \int_{U_{2-n}$

Explanation:

OCH2CH3

(**d**) 5

Explanation: $Mn^{7+} + 5e \rightarrow Mn^{2+}$ Thus 5 mole electron = 5 faraday.

84. (a) Sublimation

Explanation: Sublimation

85.

(c) $Pb(NO_3)_2$, $PbCl_2$, $PbCrO_4$

Explanation:
$$Pb^{2+} + 2HCl \rightarrow PbCl_2 \downarrow + 2H^+$$

White ppt
(B)
 $PbCl_2 + K_2CrO_4 \rightarrow PbCrO_4 \downarrow + 2KCl$
Yellow ppt.
(C)
 $PbCl_2 + K_2CrO_4 \rightarrow PbCrO_4 \downarrow + 2KCl$
Yellow ppt.
(C)
 $NO_3^- + H_2SO_4 \rightarrow HSO_4^- + HNO_3 \rightarrow NO_2 gas$
(Brown fumes)
CHEMISTRY (Section-B)

(c) all are correct

Explanation: all are correct

87.

(b) V is reduced to + 5 state

Explanation: V is reduced to + 5 state

88.

(b) PbCl₂

Explanation: Pb is most stable in its +2 form.

89.

(c) H < S < Cl < O < F

Explanation: Paulings electronegativity of some elements.

Н							
2.1							
Li	Be	В	С	Ν	0	F	
1.0	1.5	2.0	2.5	3.0	3.5	4.0	
Na	Mg	Al	Si	Р	S	Cl	
0.9	1.2	1.5	1.8	2.1	2.5	3.0	

90.

(b) 39.2% more than the number of protons. Explanation: number of electrons (e) = 54 number of protons (p) = 54 - 3 = 51 number of neutrons (n) = 122 - 51 = 71

Now, $n = p + \frac{x}{100}p$

$$71 = 51 + \frac{x}{100} \times 51$$

x = 39.2%

(c) B

Explanation: The element M in the complex ion MF_6^{3-} has a coordination number of six. Since B has only s- and p-orbitals and no d-orbitals, therefore, at the maximum it can show a coordination number of 4. Thus, B cannot form complex of the type MF_6^{3-} .

92.

(**d**)
$$N_2O_5 \rightarrow N_2O_4 + \frac{1}{2}O_2$$

Explanation: $N_2O_5 \rightarrow N_2O_4 + \frac{1}{2}O_2$

93.

(c) 1.10 V

Explanation:
$$E_{cell} = E_{OP_{Zn/Zn}+2} + E_{RP_Ag^+Ag}$$

$$= E_{OPZn}^{0} + E_{RPAg}^{0} + \frac{0.059}{2} \log \frac{\left[Ag^{+}\right]^{2}}{\left[Zn^{+2}\right]}$$
$$= 0.76 + 0.34 + \frac{0.059}{2} \log \frac{0}{\left[Zn^{2+}\right]}$$

 $E_{\text{cell}}^{\circ} = 1.10 \text{ V}$

This is E_{cell}° and not E_{cell} since $[Zn^{2+}]$ is not given.

94.

(d) Co (Z = 27)

Explanation: Reduction potential of all species:

$$E_{Mn}^{0}3^{+}/Mn^{2} = 1.57 \text{ V}$$

 $E_{F}^{0}e^{3^{+}}/Fe^{2^{+}} = 0.77 \text{ V}$
 $E_{Cn}^{0}3^{+}/Co^{2^{+}} = 1.97 \text{ V}$

 $E_{\rm Cr}^{\rm 0}3 + /_{\rm Cr}2 + = -0.41 \, {\rm V}$

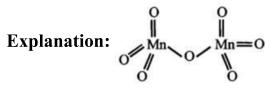
from their standard reduction potential it can be seen that Co has highest tendency to reduce into +2 oxidation state.

95.

(b) independent of temperature

Explanation: independent of temperature Page 66 of 79

(b) He < Xe < Kr < NeExplanation:


Element	$\Delta_{eg}\mathrm{H}[\mathrm{KJ/mol}]$	
Не	+48	
Ne	+116	
Kr	+96	
Xe	+77	

97. (a) HCl and HOCl

Explanation: HCl and HOCl

98.

(b) A and C only

99.

(c) 6 and + 3 **Explanation:**

$$\begin{array}{c}
0 & 0 \\
\| & \| \\
C - C \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-} \\
0^{-} & 0^{-}$$

 $K_3[Cr(C_2O_4)_3]$

As the number of atoms of the ligands that are directly bound to the central metal is known as coordination number. It is six here (see in figure).

Oxidation state :

Let oxidation state of Cr be x.

 $\Rightarrow 3(+1) + x + 3(-2) = 0$ $\Rightarrow 3 + x - 6 = 0 \Rightarrow x = 3$

100.

(c)
$$P_1 = C_6H_5 - N = N - C_6H_5$$

 $P_2 = C_6H_5 - NH_2$

 $LiAlH_A$

Explanation: $C_6H_5 - N = N - C_6H_5$ Diazobenzene(P_1)

Fe/conc.HCl

 \rightarrow

dry ether

 $C_6H_5 - NO_2$ Nitrobenzene

 $C_6H_5 - NH_2$ Aniline (P_2) **BOTANY (Section-A)**

101.

(b) Class

Explanation: Class contain organisms least similar to one another. The class represents organisms of related orders. However, species constitutes group of closely related individuals which can interbreed together. Hence, species contains organisms most similar to one another.

102.

(c) All of these

Explanation: Some organism do not reproduce throughout their life like mules, sterile worker bees, infertile human couples, etc., although they have characteristics of living organisms.

103. (a) oxygenic with nitrogenase

Explanation: Cyanobacteria are gram negative prokaryotes which are popularly known as blue-green algae.

Although cyanobacteria are true prokaryotes, but their photosynthetic system closely resembles with that of eukaryotes because they have chlorophyll a and photosystem II and they carry out oxygenic photosynthesis.

Like the red algae, cyanobacteria use phycobiliproteins as accessory pigments. Photosynthetic pigments and electron transport chain components are in thylakoid membranes lined with particles called phycobilisomes, which contain phycobilin pigments, particularly phycocyanin and transfer energy to photosystem II.

They contain nitrogenase enzyme for nitrogen fixation. This enzyme becomes inactive in the presence of oxygen but the thick walled heterocysts provide suitable anaerobic enviornment for nitrogenase activity even in aerobic conditions.

104.

(c) Bacteria

Explanation: Rickettsia is a genus of non-motile, Gram-negative, non-spore forming, highly pleomorphic bacteria that may occur in the forms of cocci, bacilli, or threads. The term "rickettsia" has nothing to do with rickets which is a deficiency disease resulting from lack of vitamin D the bacterial genus Rickettsia was named after Howard Taylor Ricketts in honour of his pioneering work on tick-borne spotted fever.

105. (a) A-(iii), B-(i), C-(iv), D-(ii)

Explanation: Tapetum nourishes the developing pollen grains, Oxalis, and Commelina produce chasmogamous flowers with exposed anthers and stigma, hydrophily occurs in Vallisneria and Hydrilla and Zostera and xenogamy is an allogamy in which pollen grains are transferred from the anther to the stigma of a different plant.

106.

(b) Both (Attached to the photosynthetic gametophyte) and (Derives nourishment from Page 68 of 79

gametophyte) are correct

Explanation: The plant body of bryophytes is more differentiated than that of algae. It is thallus-like and prostrate or erect and attached to the substratum by unicellular or multicellular rhizoids. They lack true roots, stem, or leaves. They may possess root-like, leaf-like, or stem-like structures. The main plant body of the bryophyte is haploid. It produces gametes, hence it is called a gametophyte. An antherozoid (male gamete) fuses with the egg (female gamete) to produce the zygote. Zygotes do not undergo a reduction division immediately. They produce a multicellular body called a sporophyte. The sporophyte is not free-living but attached to the photosynthetic gametophyte and derives nourishment from it. Some cells of the sporophyte undergo reduction division (meiosis) to produce haploid spores.

107.

(c) Chromosome number

Explanation: Karyotaxonomy (karyon means nucleus) of organisms is based on the chromosome number in the nucleus.

108. (a) Pteris

Explanation: Pteris

109.

(c) Snail

Explanation: Snail

110.

(d) They are types of parenchyma

Explanation: They are types of parenchyma

Sclereids is a type of sclerenchyma with a highly reduced lumen and a very thick and strongly lignified secondary wall. These cells are dead and empty at maturity sclereids may occur singly or in groups. They vary in shape.

111.

(d) position

Explanation: Apical, intercalary and lateral meristems are differentiated based on position. Apical meristem is situated at the shoot apex and the root apex. Intercalary meristem is present at the base of internodes, e.g. in grasses or at the base of leaves e.g. in Pinus or at the base of nodes, e.g., mint. Lateral meristems are present along the lateral sides of stem and roots.

112. (a) Endodermis

Explanation: The innermost layer of the cortex is the endodermis. It is structurally and physiologically different from the cells on either side of it. The radial and transverse walls of the endodermal cells contain a band of lignin and suberin known as Casparian strip.

113.

(b) Crossing one F, progeny with recessive parent

Explanation: In order to find genotype, test cross is followed i.e., crossing the F₁ progeny with recessive parent.

114.

(c) Holandric

Explanation: All genes carried on Y-chromosome are known as holandric genes. ------

115. (a) 5' - GCAUUCGGCUAGUAAC - 3'

Explanation: mRNA strand is complementary to template strand of DNA, while coding strand has same sequence as RNA (except thymine at the place of uracil). Hence, the sequence of bases in RNA will be 5' - GCAUUCGGCUAGUAAC - 3'.

116.

(d) 61

Explanation: 61

117. (a) Plasmodesmata

Explanation: Two cells are connected by the help of Plasmodesmata. They are cytoplasmic bridges between adjacent plant cell.

118.

(d) Glyoxysomes

Explanation: In germinating seeds fatty acids are degraded exclusively in the Glyoxysomes. The latter is metabolised in glyoxylate cycle to produce carbohydrates.

119.

(c) Smallpox

Explanation: In Ascariasis internal bleeding, muscular pain, fever, anaemia, and blockage of the intestinal passage. The eggs of the parasite are excreted along with the faeces of infected persons which contaminate soil, water, plants, etc. A healthy person acquires this infection through contaminated water, vegetables, fruits, etc.

120.

(c) increased number of WBCs.

Explanation: A person suffering from leukaemia has abnormal increase in the number of WBCs due to their increased formation in the bone marrow.

121.

(d) Na^+ and Ca^{2+}

Explanation: Microtubules are unbranched hollow submicroscopic tubules of protein tubulin. They develop on specific nucleating regions and can undergo quick growth or

dissolution at their ends by assembly or disassembly of monomers. Ca^{2+} , Mg^{2+} , GTP and calcium binding protein calmodium play important role in assembly of microtubules.

122.

(c) Grassland with scattered trees

Explanation: Grassland with scattered trees

123.

(c) Primary producers are more than primary consumers.

Explanation: Primary producers are more than primary consumers.

124. (a) Eukaryote

Explanation: Eukaryote

125.

(d) Habitat loss

Explanation: Habitat loss is the most serious threat to biodiversity leading to extinction of animals and plants species. Since human population is growing so rapidly and consuming so many natural resources, habitat loss is occurring at a rapid pace.

Page 70 of 79

(b) high altitude to low altitude and high latitude to low latitude.

Explanation: The variety in the number and richness of the species of a region is called species diversity. Species diversity increases from high altitude to low altitude and from high latitude to low latitude.

127.

(c) 34

Explanation: 34

128.

(c) Chromomeres

Explanation: A chromomere is one of the serially aligned beads or granules of a eukaryotic chromosome, resulting from local coiling of a continuous DNA thread. It is visible on a chromosome during the prophase of meiosis and mitosis.

129.

(b) Anaphase - I

Explanation: Anaphase- I: two homologous chromosomes of each bivalent (tetrad) separate and start moving toward opposite poles of the cell as a result of the action of the spindle, while sister chromatids remain associated at centromeres. During Anaphase- I, sister chromatids remain associated with centromeres.

130.

(b) Malic acid

Explanation: In C4 cycle, PEP carboxylase fixes CO_2 with PEP in the mesophyll cells and forms a 4-carbon compound, oxaloacetic acid (OAA). Then, another 4-carbon compound, malic acid or aspartic acid, is formed from OAA. These compounds are transported to the bundle sheath cells where, C4 acid is broken down to form C3 acid and CO_2 . The bundle sheath cells are rich in RuBisCObut lack PEPcase. So, CO_2 released in the bundle sheath cells enters the C3 or the Calvin pathway, a pathway common to all plants. C3 acid, so formed, is again transported to the mesophyll cells and regenerated back into PEP.

131. (a) A simple sugar

Explanation: A simple sugar, glucose, is formed as the first substance by green plants during photosynthesis. Starch is synthesised later from glucose.

Page 71 of 79

132.

(b) Priestley Explanation: Priestley

133.

(d) Potassium hydroxide solution

Explanation: KOH is helpful because in this case KOH and CO₂ gas act as acid-base neutralization reactions. In this case, KOH is a strong base (alkali) and carbon dioxide is an acidic oxide. So, base and acid react to give salt and water. Hence, $2KOH + CO_2 \rightarrow$

 $K_2CO_3 + H_2O$

134.

(b) Glyceraldehyde - 3 - phosphate

Explanation: Glyceraldehyde - 3 - phosphate is required for the only oxidative reaction that occurs in the process of glycolysis.

135.

(c) (ii) and (iii)

Explanation: ABA is produced in many parts of green plants. Its presence is suspicious in lower plants (bryophytes and pteridophytes). ABA is formed by melvonic acid pathway, not by glycolysis.

BOTANY (Section-B)

136. (a) This species was first described by Linnaeus

Explanation: Mangifera indica Linn indicates that this species was first described by Linnaeus as in binomial nomenclature, the name of author appears after the species name. This method of mentioning the author's name is called a citation.

137.

(b) Only asexual phases are known

Explanation: The fungi imperfecti or imperfect fungi, also known as Deuteromycota, are fungi which do not fit into the commonly established taxonomic classifications of fungi that are based on biological species concepts or morphological characteristics of sexual structures because their sexual form of reproduction has never been observed. Only their asexual form of reproduction is known, meaning that these fungi produce their spores asexually, in the process called sporogenesis.

138.

(d) Both Cedrus and Pinus

Explanation: Both Cedrus and pinus are typical gymnosperms, which have a branched stem.

139. (a) Wind pollinated

Explanation: Wind pollinated

140.

(b) false fruits

Explanation: In false fruits, there is involvement of other parts along with ovary in formation of fruit.

141.

(d) (B)

 $\label{eq:explanation:(B)} \textbf{Explanation:(B)}$

142.

(d) Fuchsin Explanation: Fuchsin

(c) Only (vi)

Explanation: Only (vi) is an incorrect statement.

Matrix does not include enzymes for carbohydrate synthesis.

144.

(b) TMV

Explanation: TMV

145.

(d) Glycolysis

Explanation: Glycolysis breaks one molecule of glucose into two molecules of pyruvic acid in the cytoplasm, in absence of oxygen. Thus pyruvic acid is the end product of glycolysis.

146.

(c) culture media

Explanation: The nutritive medium for growing bacteria and many fungi in the laboratory is called culture media.

147.

(c) Third trophic level

Explanation: Plants occupy first trophic level in a food chain and all the organisms grazing on plants occupy second trophic level. Also the products(curd) of grazing animals occupy the same trophic level as grazing animals. Thus a person eating curd will occupy third trophic level.

148. (a) All of these

Explanation: All of these

149.

(c) cytokinins

Explanation: Cytokinins are plant growth hormones which are basic in nature, cytokinins induce formation of new leaves, chloroplasts in leaves, which in turn keeps the leaves green for a longer duration of time. Cytokinins applied to marketed vegetables can keep them fresh for several days. Shelf life of cut shoots and flowers is prolonged by employing the hormones.

150.

(c) CAM and C₄

Explanation: CAM and C₄

ZOOLOGY (Section-A)

```
151.
```

(b) Cat

Explanation: Cat

152.

(b) I- Saw fish - Chondrichthyes, II- Dog fish - Chondrichthyes Explanation: The image I, Pristis (Saw fish) and image II, Scoliodon (Dog fish) are both Chondrichthyes.

153. (a) Absence of body cavity

Explanation: Platyhelminthes are acoelomate animals whereas Annelids are coelomate Page 73 of 79

animals.

154. (a) Areolar tissue

Explanation: In areolar tissue, there is more intercellular space, so largest quantity of extracellular material is present in this tissue. It contains all cell types and fibres of connective tissue. There is a thin layer of extracellular fluid in stratified epithelium whereas striated muscle is attached with tendons and there is very less amount of extracellular fluid in myelinated nerve fibre.

155.

(b) Neurons

Explanation: The basic unit of the nervous or neural system is a nerve cell or neuron. The human brain contains about 100 billion neurons. The neuroglial cell constitutes the neural system that protects and supports neurons. Neuroglia makes up more than one half the volume of neural tissue in our body.

156. (a) (A)-(iv), (B)-(i), (C)-(ii), (D)-(iii)

Explanation: (A)-(iv), (B)-(i), (C)-(ii), (D)-(iii)

157.

(d) A - (iii), B - (i), C - (iv), D - (ii)

Explanation: The correct option is A - (iii), B - (i), C - (iv), D - (ii)

The small hair presents in the nasal cavity (nose) help to filter particles of dust and other foreign matter.

Epiglottis, a leaf shaped cartilage, acts as a switch between the larynx and the oesophagus to permit air to enter the airway to the lungs and food to pass into the gastrointestinal tract. It also protects the body from choking on food that would normally obstruct the airway. Pharynx is a cone-shaped passageway leading from the oral and nasal cavities in the head to the oesophagus and larynx. The pharynx chamber serves both respiratory and digestive functions.

Larynx (voice box) holds the vocal cords. It is responsible for producing voice, helping us swallow and breathe. Air passes in and out of the larynx each time the body inhales or exhales.

158.

(c) oxygenation

Explanation: Bulk of oxygen diffuses from the plasma into the red blood corpuscles where it joins loosely with Fe^{2+} ions of hemoglobin (Hb) to form bright red oxyhemoglobin (HbO₂). The process is called oxygenation.

159.

(b) $pO_2 = 104$ and $pCO_2 = 40$

Explanation: The pressure exerted by an individual gas in a mixture of gases is called the partial pressure of that gas. It is represented with the letter 'p', The partial pressure of oxygen and carbon dioxide at the alveoli are $pO_2 = 104$ and $pCO_2 = 40$, respectively.

160.

(d) C-Alveoli - thin walled vascular bag like structures for exchange of gases **Explanation:** In the given figure A, B, C and D are respectively trachea, pleural membranes, alveoli and diaphragm.

Page 74 of 79

Trachea is supported by incomplete cartilaginous rings which prevent its collapse during inspiration and abdominal cavities. It is the principal muscle of respiration.

161. (a) Size does not increase

Explanation: The cleavage division is short and does not involve growth so that the resulting blastomeres become smaller in size as their number increases. Thus, the size of the cells (blastomeres) does not increase during cleavage.

162.

(d) Statement (a) is false.

Explanation: The cervix is the part of uterus opens into vagina. The cavity of the cervix is called cervical canal.

163.

(d) Placenta

Explanation: Placenta

164.

(c) Artificial introduction of sperms of a healthy donor into the vagina **Explanation:** In this technique, the semen collected either from the husband or a healthy donor is artificially introduced either into the vagina or into the uterus (lUI- intra-uterine insemination) of the female.

165.

(b) (i) and (ii)

Explanation: In test tube baby, the ovum is fertilised with the sperm outside the body of a woman under the same environmental conditions as that in the body. The zygote formed is grown inside a culture and when embryo is formed, it is then implanted into the fallopian tube or uterus where it develops into foetus.

166.

(b) Mutation of single Mendelian gene for survival in smoke-laden Industrial environment **Explanation:** A black form of the peppered moth rapidly took over in industrial parts of the UK during the 1800s, as soot blackened the tree trunks and walls of its habitat. The difference between the forms was due to variants of a single gene.

167.

(d) 1350-1500 cc

Explanation: 1350-1500 cc

168.

(d) Hypertonic

Explanation: Hypertonic is the solution that contains more solute as compared to the solvent. Humans can survive with limited fluid intake because the kidneys can produce highly concentrated urine more than 4 times as concentrated as blood. The osmolarity of human blood is about 300 milliosmols per liter (mOsm /L). The kidneys can produce urine with an osmolarity of about 1200 mOsm/L. As the initial filtrate passes through various regions of the renal tubule, salt (NaCl) is reabsorbed into the interstitial fluid, and a salt concentration gradient is established. The gradient is used to produce concentrated urine and makes it more hypertonic.

169.

(b) (i) and (ii)

Explanation: The increase in osmolarity from outer to inner medullary interstitium, i.e., from 300 m OsmolL⁻¹ in the cortex to about 1200 m OsmolL⁻¹ in the inner medulla is maintained due to close proximity between henle's loop and vasa recta as well as counter-current mechanism.

Other statements can be corrected as- PCT helps in selective secretion of H⁺, ammonia and

K⁺ ions and absorption of HCO₃⁻ from the filtrate. Blood pressure in glomerular

capillaries is responsible for glomerular filtration and not for counter current mechanism. 170.

(c) (A)-(iv), (B)-(iii), (C)-(ii), (D)-(i) Explanation: (A)-(iv), (B)-(iii), (C)-(ii), (D)-(i)

171.

(d) Humerus and ulna

Explanation: Humerus and ulna

172.

(d) Pronator

Explanation: Muscle is a bundle of fibrous tissue in a body that has the ability to contract, producing movement in or maintaining the position of parts of the body. The total number of muscles in the human body comes in the range of 640-850. The forearm is rotated to turn the palm downward or backward by muscle pronator. So, the correct answer is 'Pronator'.

173.

(c) pectoral girdle of mammals.

Explanation: An acromion process is characteristically found in the pectoral girdle of mammals. The acromion is a bony process on the scapula (shoulder blade). Together with the coracoid process it extends laterally over the shoulder joint. It articulates with the clavicle (collar bone) to form the acromioclavicular joint.

174.

(b) Chemical-electrical process

Explanation: Chemical-electrical process

175.

(d) Sympathetic nerves

Explanation: During stress condition, stimulation of the sympathetic nerves to adrenal medulla causes large quantities of adrenaline to be released into the blood circulation and then this hormone is carried to the specific tissues of the body where it produces its effects, e.g., increase in heartbeat.

176. (a) Cerebral hemisphere, Thalamus, corpus callosum and Cerebellum aqueduct **Explanation:** Cerebral hemisphere, Thalamus, corpus callosum and Cerebellum aqueduct

177.

(d) All of these

Explanation: All of these

178.

(d) Thyroxine Explanation: Thyroxine

Page 76 of 79

179. (a) Toad and lizard

Explanation: The amphibians and reptiles have incomplete double circulation. The left atrium receives oxygenated blood from the respiratory organs - gills/lungs/skin and the right atrium gets the deoxygenated blood from other body parts which get mixed up in the single ventricle and hence pump out mixed blood.

180.

(d) Thrombocytes Explanation: Thrombocytes

181.

(d) Aorta > artery > arteriole > capillary > venule > vein

Explanation: Blood pressure is highest at the origin of the aorta. As blood flows from the heart, the blood flow into progressively smaller vessels, however, the vessels also split into numerous branches. Because of the branching, resistance drops considerably. The low-pressure environment is favourable for gas exchange in the capillaries. Blood pressure decreases continuously along the path from aorta to vena cava.

Aorta > artery > arteriole > capillary > venule > vein

182.

(b) Restriction enzymes

Explanation: Restriction enzymes are called molecular scissors as they are used to cut the DNA segments at specific points. There are two kinds of restriction enzymes exonucleases and endonucleases enzymes.

183.

(c) Retrovirus

Explanation: Retrovirus has the ability to transform normal cells into cancerous cells. Hence, it can be used as a vector for cloning desirable genes into animal cells.

184. (a) Foreign DNA in all its cells

Explanation: Foreign DNA in all its cells

185.

(d) Getting insulin assembled into mature form

Explanation: The main challenge for the production of insulin using rDNA technique was getting insulin assembled into a mature form.

ZOOLOGY (Section-B)

186.

(c) All of these

Explanation: All of these

187.

(c) Bronchioles and Fallopian tubes

Explanation: Bronchioles and Fallopian tubes are lined with ciliated epithelium to move particles or mucus in a specific direction.

188.

(c) T-cells

Explanation: T cells or T lymphocyte is a type of lymphocyte (a subtype of white blood cell) that plays a central role in cell-mediated immunity. T cells can be distinguished from

other lymphocytes, such as B cells and natural killer cells, by the presence of a T-cell receptor on the cell surface.

189.

(b) Po_2 is low and Pco_2 is high in alveoli

Explanation: Dissociation of CO_2 from carbamino-haemoglo-bin takes place when pCO_2 is low and pO_2 is hig in alveoli.

190.

(d) Secretions of acrosome helps one sperm enter cytoplasm of ovum through zona pellucida

Explanation: Secretions of acrosome helps one sperm enter cytoplasm of ovum through zona pellucida

191.

(c) AIDS

Explanation: Syphilis is a bacterial infection usually spread by sexual contact. The disease starts as a painless sore — typically on your genitals, rectum, or mouth. Gonorrhea is an infection caused by a sexually transmitted bacterium that infects both males and females. Gonorrhea most often affects the urethra, rectum, or throat. Genital warts are soft growths that appear on the genitals. They can cause pain, discomfort, and itching. Genital warts a sexually transmitted infection (STI) caused by certain low-risk strains of the human papillomavirus (HPV).

AIDS does not affect genital parts directly. It affects our immune system.

192.

(b) Only (D)

Explanation: Oparin of Russia and Haldane of England proposed that the first form of life could have come from pre-existing non-living organic molecules (e.g., RNA, protein, etc.) and that formation of life was preceded by chemical evolution, i.e., formation of diverse organic molecules from inorganic constituents. The conditions on earth were - high temperature, volcanic storms, reducing atmosphere containing CH₄, NH₃, etc.

193. (a) Calcium

Explanation: Calcium

194.

(b) A.F. Huxley

Explanation: Sliding filament theory explains the mechanism of muscle contraction. It states that the contraction of a muscle fibre takes place by the sliding of the thin filaments(actin) over the thick filaments (myosin). It was proposed by A.F. Huxley.

195.

(b) Efferent

Explanation: Efferent

196.

(c) Aldosterone

Explanation: Aldosterone

197. (a) Thymus

Explanation: A child with a weak immune system could have problem in his thymus

gland. Thymus gland is a lymphoid organ situated in the neck of vertebrates which produces T-lymphocytes for the immune system. The human thymus becomes much smaller at the approach of puberty.

198.

(c) All of these

Explanation: All of these

199. (a) Origin of replication (ori)

Explanation: Origin of replication (ori), a selectable marker, sites for restriction endonuclease, and its size, all are important features required to facilitate cloning into vector.

200.

(c) (A) - (iii), (B) - (iv), (C) - (ii), (D) - (i) Explanation: (A) - (iii), (B) - (iv), (C) - (ii), (D) - (i)