	Contents								
3.1	Introduction								
3.2	Parallelogram law of forces								
3.3	Triangle law of forces								
3.4	Polygon law of forces								
3.5	Lami's theorem								
3.6	Parallel forces								
3.7	Moment								
3.8	Couples								
3.9	Triangle theorem of couples								
3.10	Equilibrium of coplanar forces								
3.11	Friction								
3.12	Coefficient of friction								
3.13	Limiting equilibrium on an inclined plane								
3.14	Centre of gravity								
	Assignment (Basic and Advance Level)								
	Answer Sheet of Assignment								

Chapter

 $oldsymbol{H}$ istorically, Mechanics was the earliest branch of Physics to be developed as an exact science. The Laws of levers and of fluids were known to the Greeks in third century B.C. The fundamental theorem of statics, or rather another form of its, viz., the Triangle of Forces was first enunciated by Stevinus of Bruges in the year 1586. It was, however, left to Galileo (1564-1642) and Newton (1642-1727) to formulate the laws of mechanics and to place mechanics on a sound footing as an exact science. Newton was also the first to formulate correctly the law of universal gravitation. Following Newton's time, important contributions to mechanics were made by Euler, D' Alembert, Lagrange, Laplace, Poinsot and Coriolis. All these contributions were however within framework of Newton's laws of motion made.

3.1 Introduction

Statics is that branch of mechanics which deals with the study of the system of forces in equilibrium.

Matter : Matter is anything which can be perceived by our senses of which can exert, or be acted on, by forces.

Force : Force is anything which changes, or tends to change, the state of rest, or uniform motion, of a body. To specify a force completely four things are necessary they are magnitude, direction, sense and point of application. Force is a vector quantity.

3.2 Parallelogram law of Forces

If two forces, acting at a point, be represented in magnitude and direction by the two sides of a parallelogram drawn from one of its angular points, their resultant is represented both in magnitude and direction of the parallelogram drawn through that point.

If *OA* and *OB* represent the forces *P* and *Q* acting at a point *O* and inclined to each other at an angle α . If *R* is the resultant of these forces represented by the diagonal *OC* of the parallelogram *OACB* and *R* makes an angle θ with *P* i.e. $\angle COA = \theta$, then $R^2 = P^2 + Q^2 + 2PQ\cos\alpha$ and $\tan\theta = \frac{Q\sin\alpha}{P + Q\cos\alpha}$

The angle θ_1 which the resultant *R* makes with the direction of the force *Q* is given by

$$\theta_1 = \tan^{-1} \left(\frac{P \sin \alpha}{Q + P \cos \alpha} \right)$$

Case (i) : If P = Q $\therefore R = 2P\cos(\alpha/2)$ and $\tan \theta = \tan(\alpha/2)$ or $\theta = \alpha/2$

Case (ii) : If $\alpha = 90^{\circ}$, *i.e.* forces are perpendicular

$$\therefore R = \sqrt{P^2 + Q^2}$$
 and $\tan \theta = \frac{Q}{P}$

Case (iii) : If $\alpha = 0^{\circ}$, *i.e.* forces act in the same direction

$$\therefore R_{\text{max}} = P + Q$$

Case (iv) : If $\alpha = 180^{\circ}$, *i.e.* forces act in opposite direction

$$\therefore R_{\min} = P - Q$$

Note : \Box The resultant of two forces is closer to the larger force.

- □ The resultant of two equal forces of magnitude *P* acting at an angle α is $2P \cos \frac{\alpha}{2}$ and it bisects the angle between the forces.
- \Box If the resultant *R* of two forces *P* and *Q* acting at an angle α makes an angle θ with the direction

of *P*, then
$$\sin \theta = \frac{Q \sin \alpha}{R}$$
 and $\cos \theta = \frac{P + Q \cos \alpha}{R}$

□ If the resultant *R* of the forces *P* and *Q* acting at an angle α makes an angle θ with the direction of the force *Q*, then $\sin \theta = \frac{P \sin \alpha}{R}$ and $\cos \theta = \frac{Q + P \sin \alpha}{R}$

□ Component of a force in two directions : The component of a force *R* in two directions making angles α and β with the line of action of *R* on and opposite sides of it are

$$F_1 = \frac{OC.\sin\beta}{\sin(\alpha+\beta)} = \frac{R\sin\beta}{\sin(\alpha+\beta)} \text{ and } F_2 = \frac{OC.\sin\alpha}{\sin(\alpha+\beta)} = \frac{R.\sin\alpha}{\sin(\alpha+\beta)}$$

 $\lambda - \mu$ theorem : The resultant of two forces acting at a point *O* in directions *OA* and *OB* represented in magnitudes by $\lambda . OA$ and $\mu . OB$ respectively is represented by $(\lambda + \mu)OC$, where *C* is a point in *AB* such that $\lambda . CA = \mu . CB$

Important Tips

Ŧ	The forces	P, Q, R act along the sides BC, CA, AB of ${\it \Delta}{\it A}$	BC.							
	Their resul	ltant passes through.								
	(a) Incentr	e, if P + Q + R = 0	(b) Circumcentre, if $P \cos A + Q \cos B + R \cos C = 0$							
	(c) Orthoc	entre, if $P \sec A + Q \sec B + R \sec C = 0$	(d) Centroid, if P cosec A +	$Q \operatorname{cosec} B + R \operatorname{cosec} C = 0$						
			$Or \ \frac{P}{a} = \frac{Q}{b} = \frac{R}{c}$							
Examp	le: 1	Forces M and N acting at a point O make	æ an angle 150°. Their resu	tant acts at O has magnitude 2 units and	is					
		perpendicular to <i>M</i> . Then, in the same unit, Ranchi 1993]	the magnitudes of <i>M</i> and <i>N</i>	are [BIT						
		(a) $2\sqrt{3},4$	(b) $\sqrt{\frac{3}{2}}, 2$							
		(c) 3, 4	(d) 4.5							
Solutio	on: (a)	We have, $2^2 = M^2 + N^2 + 2MN \cos 150^\circ \Rightarrow$	$4 = M^2 + N^2 - \sqrt{3}MN$	(i)						
		and, $\tan \frac{\pi}{2} = \frac{M \sin 150^{\circ}}{M + N \cos 150^{\circ}} \Longrightarrow M + N \cos 1$	$50^\circ = 0$							
		$\Rightarrow M - N \frac{\sqrt{3}}{2} = 0 \Rightarrow M = \frac{N\sqrt{3}}{2}$		(ii)						
		Solving (i) and (ii), we get $M = 2\sqrt{3}$ and N	= 4 .							
Examp	le: 2	If the resultant of two forces of magnitude /	Pand 2P is perpendicular to A	P, then the angle between the forces is						
				[Roorkee 199	7]					
		(a) 2π/3 (b) 3π/4	(c) 4π/5	(d) 5π/6						
Solutio	on: (a)	Let the angle between the forces P and 2P to	be α . Since the resultant of <i>P</i>	and 2 <i>P</i> is perpendicular to <i>P</i> . Therefore,						
		$\tan \pi/2 = \frac{2P\sin\alpha}{P+2P\cos\alpha} \Longrightarrow P+2P\cos\alpha = 0$	$\Rightarrow \cos \alpha = \frac{-1}{2} \Rightarrow \alpha = \frac{2\pi}{3}$							
Examp	le: 3	If the line of action of the resultant of two	forces P and Q divides the a	ngle between them in the ratio 1 : 2, then th	ıe					
		magnitude of the resultant is		[Roorkee 199	3]					
		(a) $\frac{P^2 + Q^2}{P}$ (b) $\frac{P^2 + Q^2}{Q}$	(c) $\frac{P^2 - Q^2}{P}$	(d) $\frac{P^2 - Q^2}{Q}$						
Solutio	on: (d)	Let 3θ be the angle between the forces Pa	and Q . It is given that the res	ultant R of P and Q divides the angle betwee	'n					
		them in the ratio 1 : 2. This means that the	e resultant makes an angle $ heta$	with the direction of P and angle 2θ with the direction of P and angle 2θ with the direction of P and P a	١e					
		direction of <i>Q</i> .								

Therefore,
$$P = \frac{R \sin 2\theta}{\sin 3\theta}$$
 and $\theta = \frac{R \sin \theta}{\sin 3\theta}$
 $\Rightarrow \frac{P}{Q} = \frac{\sin 2\theta}{\sin \theta} = 2\cos \theta$ (i)
Also $Q = \frac{R \sin \theta}{\sin 3\theta} \Rightarrow Q = \frac{R}{3 - 4 \sin^2 \theta}$
 $\Rightarrow \frac{R}{Q} = 3 - 4\sin^2 \theta \Rightarrow \frac{R}{Q} = -1 + 4\cos^2 \theta \Rightarrow \frac{R}{Q} + 1 = (2\cos \theta)^2$ (ii)
From (i) and (ii), we get $\left(\frac{P}{Q}\right)^2 = \frac{R}{Q} + 1 \Rightarrow \frac{R}{Q} = \frac{P^2 - Q^2}{Q^2} \Rightarrow R = \frac{P^2 - Q^2}{Q}$
Example: 4 Two forces X and Y have a resultant F and the resolved part of F in the direction of X is of magnitude Y. Then the angle
between the forces is
(a) $\sin^{-1}\sqrt{\frac{X}{2Y}}$ (b) $2\sin^{-1}\sqrt{\frac{X}{2Y}}$ (c) $4\sin^{-1}\sqrt{\frac{X}{2Y}}$ (d) None of these
Solution: (b) Let QA and QB represent two forces X and Y respectively. Let α be the angle between them and θ the angle which the
resultant F (represented by QC) makes with QA .
Now, resolved part of Falong QA
F $\cos \theta = QC \times \frac{Q\theta}{QC} = QD = QA + AD = QA + AC \cos \alpha = X + Y \cos \alpha$
But resolved part of Falong QA is given to by Y.
 $\therefore Y = X + Y \cos \alpha$ or $Y(1 - \cos \alpha) = X \Rightarrow Y.2 \sin^2 \frac{\alpha}{2} = X$, $\therefore \sin^2 \alpha / 2 = \frac{X}{2Y}$
 $ie_e, \sin \frac{\alpha}{2} = \sqrt{\frac{X}{2Y}}$ or $\frac{\alpha}{2} = \sin^{-1}\sqrt{\frac{X}{2Y}}$
Thus, $\alpha = 2\sin^{-1}\sqrt{\frac{X}{2Y}}$
Example: 5 The greatest and least magnitude of the resultant of two forces of constant magnitude are F and G When the forces
act an angle 2α , the resultant in magnitude is equal to
(a) $\sqrt{F^2 \cos^2 \alpha + G^2 \sin^2 \alpha}$ (b) $\sqrt{F^2 \sin \alpha + G^2 \cos^2 \alpha}$ (c) $\sqrt{F^2 + G^2}$ (d) $\sqrt{F^2 - G^2}$
Solution: (a) Greatest resultant $= F - A + B$
Least resultant $= F - A - B$
On solving, we get $A = \frac{F + G}{2}$, $B = \frac{(F - G)}{2}$
where A and B act an angle 2α , the resultant
 $R = \sqrt{A^2 + B^2 + 2AB \cos 2\alpha} \Rightarrow R = \sqrt{F^2 \cos^2 \alpha + G^2 \sin^2 \alpha}$

3.3 Triangle law of Forces

If three forces, acting at a point, be represented in magnitude and direction by the sides of a triangle, taken in order, they will be in equilibrium. A = A = A

Here
$$\overrightarrow{AB} = P$$
, $\overrightarrow{BC} = Q$, $\overrightarrow{CA} = R$

In triangle *ABC*, we have $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$

 $\Rightarrow P + Q + R = 0$

Hence the forces P,Q,R are in equilibrium.

Converse : If three forces acting at a point are in equilibrium, then they can be represented in magnitude and direction by the sides of a triangle, taken in order.

3.4 Polygon law of Forces

If any number of forces acting on a particle be represented in magnitude and direction by the sides of a polygon taken in order, the forces shall be in equilibrium.

Example: 6 D and E are the mid-points of the sides AB and AC respectively of a $\triangle ABC$. The resultant of the forces is represented by \overrightarrow{BE} and \overrightarrow{DC} is

(c) $\frac{3}{2}\overrightarrow{AB}$

(a) $\frac{3}{2}\overrightarrow{AC}$ (b) $\frac{3}{2}\overrightarrow{CA}$ Solution: (d) We have, $\overrightarrow{BE} + \overrightarrow{DC} = (\overrightarrow{BC} + \overrightarrow{CE}) + (\overrightarrow{DB} + \overrightarrow{BC})$ $= 2\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB} = 2\overrightarrow{BC} + \frac{1}{2}(\overrightarrow{CA} + \overrightarrow{AB})$ $= 2\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CB} = 2\overrightarrow{BC} - \frac{1}{2}\overrightarrow{BC} = \frac{3}{2}\overrightarrow{BC}$

Example: 7 *ABCDE* is pentagon. Forces acting on a particle are represented in magnitude and direction by
$$\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CD}, 2\overrightarrow{DE}, \overrightarrow{AD}, \text{ and } \overrightarrow{AE}$$
. Their resultant is given by
(a) \overrightarrow{AE} (b) $2\overrightarrow{AB}$ (c) $3\overrightarrow{AE}$ (d) $4\overrightarrow{AE}$
Solution: (c) We have, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + 2\overrightarrow{DE} + \overrightarrow{AD} + \overrightarrow{AE} = (\overrightarrow{AB} + \overrightarrow{BC}) + (\overrightarrow{CD} + \overrightarrow{DE}) + (\overrightarrow{AD} + \overrightarrow{DE}) + \overrightarrow{AE} = (\overrightarrow{AC} + \overrightarrow{CE}) + \overrightarrow{AE} + \overrightarrow{AE} = 3\overrightarrow{AE}$.

3.5 Lami's Theorem

If three forces acting at a point be in equilibrium, each force is proportional to the sine of the angle between the other two. Thus if the forces are P, Q and R, $\alpha_{\mu}\beta_{\mu}\gamma$ be the angles between Q and R, R and P, P and Q respectively. If the forces are in equilibrium, we have, л

$$\frac{P}{\sin\alpha} = \frac{Q}{\sin\beta} = \frac{R}{\sin\gamma}.$$

The converse of this theorem is also true.

Example: 8 A horizontal force F is applied to a small object P of mass m on a smooth plane inclined to the horizon at an angle θ If F is just enough to keep P in equilibrium, then F =[BIT Ranchi 1993]

(c) $mg \cos \theta$

$$\Rightarrow \frac{R}{1} = \frac{F}{\sin \theta} = \frac{mg}{\cos \theta} \Rightarrow F = mg \tan \theta$$

A kite of weight W is flying with its string along a straight line. If the ratios of the resultant air pressure R to the tension Example: 9 T in the string and to the weight of the kite are $\sqrt{2}$ and $(\sqrt{3} + 1)$ respectively, then [Roorkee 1990]

.....(i)

(a) $T = (\sqrt{6} + \sqrt{2})W$ (b) $R = (\sqrt{3} + 1)W$ (c) $T = \frac{1}{2}(\sqrt{6} - \sqrt{2})W$

(d) $R = (\sqrt{3} - 1)W$

Solution: (b) From Lami's theorem,

$$\frac{R}{\sin(\theta + \phi)} = \frac{T}{\sin(180^{\circ} - \theta)} = \frac{W}{\sin(180^{\circ} - \phi)}$$
$$\Rightarrow \frac{R}{\sin(\theta + \phi)} = \frac{T}{\sin\theta} = \frac{W}{\sin\phi}$$

Given,
$$\frac{R}{T} = \sqrt{2}$$
(ii) and $\frac{R}{W} = \sqrt{3} + 1$ (iii)

Dividing (iii) by (ii), we get $\frac{\frac{R}{W}}{\frac{R}{2}} = \frac{\sqrt{3} + 1}{\sqrt{2}}$

$$\Rightarrow \frac{T}{W} = \frac{\sqrt{3}+1}{\sqrt{2}} \Rightarrow T = \frac{\sqrt{3}+1}{\sqrt{2}} W = \frac{1}{2}(\sqrt{6}+\sqrt{2})W \Rightarrow R = T\sqrt{2} = \frac{\sqrt{2}}{\sqrt{2}}(\sqrt{3}+1)W = (\sqrt{3}+1)W$$

Three forces $\vec{P}, \vec{Q}, \vec{R}$ are acting at a point in a plane. The angles between \vec{P} and \vec{Q} and \vec{Q} and \vec{R} are 150° and 120° Example: 10 respectively, then for equilibrium, forces P, Q, R are in the ratio [MNR 1991; UPSEAT 2000] (d) $\sqrt{3}:2:1$ (a) $1:2:\sqrt{3}$ (b) 1:2:3 (c) 3:2:1

Clearly, the angle between P and R is $360^{\circ} - (150^{\circ} + 120^{\circ}) = 90^{\circ}$. By Lami's theorem, Solution: (d)

$$\frac{P}{\sin 120^{\circ}} = \frac{Q}{\sin 90^{\circ}} = \frac{R}{\sin 150^{\circ}} \Rightarrow \frac{P}{\sqrt{3}/2} = \frac{Q}{1} = \frac{R}{1/2} \Rightarrow \frac{P}{\sqrt{3}} = \frac{Q}{2} = \frac{R}{1}$$

3.6 Parallel Forces

(1) Like parallel forces : Two parallel forces are said to be like parallel forces when they act in the same direction.

The resultant R of two like parallel forces P and Q is equal in magnitude of the sum of the magnitude of forces and R acts in the same direction as the forces P and Q and at the point on the line segment joining the point of action P and Q, which divides it in the ratio Q: P internally.

(2) **Two unlike parallel forces :** Two parallel forces are said to be unlike if they act in opposite directions.

If *P* and *Q* be two unlike parallel force acting at *A* and *B* and *P* is greater in magnitude than *Q*. Then their resultant *R* acts in the same direction as *P* and acts at a point *C* on *BA* produced. Such that R = P - Q and P.CA = Q.CB

Then in this case C divides BA externally in the inverse ratio of the forces,

 $\frac{P}{CB} = \frac{Q}{CA} = \frac{P - Q}{CB - CA} = \frac{R}{AB}$

Important Tips

If three like parallel forces P, Q, R act at the vertices A, B, C repectively of a triangle ABC, then their resultant act at the (i) Incentre of $\triangle ABC$, if $\frac{P}{a} = \frac{Q}{b} = \frac{R}{c}$ (ii) Circumcentre of $\triangle ABC$, if $\frac{P}{\sin 2A} = \frac{Q}{\sin 2B} = \frac{R}{\sin 2C}$ (iii) Orthocentre of $\triangle ABC$, if $\frac{P}{\tan A} = \frac{Q}{\tan B} = \frac{R}{\tan C}$ (iv) Centroid of $\triangle ABC$, if P = Q = R.

Example: 11 Three like parallel forces P, Q, R act at the corner points of a triangle ABC. Their resultant passes through the circumcentre, if [Rookee 1995] (a) $\frac{P}{a} = \frac{Q}{b} = \frac{R}{c}$ (b) P = Q = R (c) P + Q + R = 0(d) None of these Solution: (c) Since the resultant passes through the circumcentre of $\triangle ABC$, therefore, the algebraic sum of the moments about it, is zero. Hence, P + Q + R = 0. Example: 12 P and Q are like parallel forces. If P is moved parallel to itself through a distance x, then the resultant of P and Q moves through a distance. [Rookee 1995] (c) $\frac{Px}{P+2Q}$ (a) $\frac{Px}{P+Q}$ (b) $\frac{Px}{P-Q}$ None of these (d) Solution: (a) Let the parallel forces P and Q act at A and B respectively. Suppose the resultant P + Q acts at C. Then, $AC = \left(\frac{AB}{P+Q}\right)Q$(i) If *P* is moved parallel to itself through a distance *x* i.e. at *A*'. Suppose the resultant now acts at C. Then, $A'C' = \left(\frac{A'B}{P+O}\right)Q \implies A'C' = \left(\frac{AB-x}{P+O}\right)Q$(ii) P+O P+O Now CC' = AC' - AC = AA' + A'C' - AC $\Rightarrow CC' = x + \left(\frac{AB - x}{P + O}\right)Q - \left(\frac{AB}{P + O}\right)Q \Rightarrow CC' = x - \frac{Qx}{P + Q} \Rightarrow CC' = \frac{Px}{P + Q}$

3.7 Moment

The moment of a force about a point O is given in magnitude by the product of the forces and the perpendicular distance of O from the line of action of the force.

If *F* be a force acting a point *A* of a rigid body along the line *AB* and *OM* (= *p*) be the perpendicular distance of the fixed point *O* from *AB*, then the moment of force about $O = F.p = AB \times OM = 2\left[\frac{1}{2}(AB \times OM)\right] = 2(\text{area of } \Delta AOB)$

The S.I. unit of moment is Newton-meter (N-m).

(1) Sign of the moment : The moment of a force about a point measures the tendency of the force to cause rotation about that point. The tendency of the force F_1 is to turn the lamina in the clockwise direction and of the force F_2 is in the anticlockwise direction.

The usual convention is to regard the moment which is anticlockwise direction as positive and that in the clockwise direction as negative.

(2) **Varignon's theorem :** The algebraic sum of the moments of any two coplanar forces about any point in their plane is equal to the moment of their resultant about the same point.

- *Note* : Thy algebraic sum of the moments of any two forces about any point on the line of action of their resultant is zero.
 - □ Conversely, if the algebraic sum of the moments of any two coplanar forces, which are not in equilibrium, about any point in their plane is zero, their resultant passes through the point.
 - If a body, having one point fixed, is acted upon by two forces and is at rest. Then the moments of the two forces about the fixed point are equal and opposite.

3.8 Couples

Two equal unlike parallel forces which do not have the same line of action, are said to form a couple.

Example : Couples have to be applied in order to wind a watch, to drive a gimlet, to push a cork screw in a cork or to draw circles by means of pair of compasses.

(1) **Arm of the couple :** The perpendicular distance between the lines of action of the forces forming the couple is known as the arm of the couple.

(2) Moment of couple : The moment of a couple is obtained in magnitude by multiplying the magnitude of one of the forces forming the couple and perpendicular distance between the lines of action of the force. The perpendicular distance between the forces is called the arm of the couple. The moment of the couple is regarded as positive or negative according as it has a tendency to turn the body in the anticlockwise or clockwise direction.

Moment of a couple = Force \times Arm of the couple = *P.p*

(3) **Sign of the moment of a couple :** The moment of a couple is taken with positive or negative sign according as it has a tendency to turn the body in the anticlockwise or clockwise direction.

Note : \Box A couple can not be balanced by a single force, but can be balanced by a couple of opposite sign.

3.9 Triangle theorem of Couples

If three forces acting on a body be represented in magnitude, direction and line of action by the sides of triangle taken in order, then they are equivalent to a couple whose moment is represented by twice the area of triangle.

Consider the force P along AE, Q along CA and R along AB. These forces are three concurrent forces acting at A and represented in magnitude and direction by the sides *BC*, *CA* and *AB* of $\triangle ABC$. So, by the triangle law of forces, they are in equilibrium.

The remaining two forces *P* along *AD* and *P* along *BC* form a couple, whose moment is m = P.AL = BC.AL

Since
$$\frac{1}{2}(BC.AL) = 2\left(\frac{1}{2} \text{ area of the } \Delta ABC\right)$$

 \therefore Moment = *BC.AL* = 2 (Area of $\triangle ABC$)

Example: 13 A light rod AB of length 30 cm. rests on two pegs 15 cm. apart. At what distance from the end A the pegs should be placed so that the reaction of pegs may be equal when weight 5 W and 3 W are suspended from A and B respectively

(a) 1.75 *cm.*, 15.75 *cm*. (b) 2.75 *cm.*, 17.75 *cm.* (c) 3.75 *cm.*, 18.75 *cm.* (d) None of these Solution: (c) Let *R*, *R* be the reactions at the pegs *P* and *Q* such that AP = xResolving all forces vertically, we get R R $R + R = 8W \Longrightarrow R = 4W$ 15 В Take moment of forces about A, we get R.AP + R.AQ = 3W.AB5 W 3 W \Rightarrow 4W.x + 4W.(x + 15) = 3W.30 $\Rightarrow x = 3.75 cm$

 $\therefore AP = x = 3.75 \, cm$ and $AQ = 18.75 \, cm$

Example: 14 At what height from the base of a vertical pillar, a string of length 6 *metres* be tied, so that a man sitting on the ground and pulling the other end of the string has to apply minimum force to overturn the pillar

(c) $3\sqrt{3}$ metres

Solution: (b) Let the string be tied at the point *C* of the vertical pillar, so that AC = xNow moment of *F* about A = F. AL

$$= F. AP \sin \theta$$
$$= F.6 \cos \theta \sin \theta$$

= 3 *F* sin 2θ

To overturn the pillar with maximum (fixed) force F, moment is maximum if

(b) $3\sqrt{2}$ metres

 $\sin 2\theta = 1$ (max.)

(a) 1.5 metres

$$\Rightarrow 2\theta = 90^{\circ}, i.e. \ \theta = 45^{\circ}$$
$$\therefore AC = PC \sin 45^{\circ} = 6. \frac{1}{\sqrt{2}} = 3\sqrt{2}$$

Example: 15 Two unlike parallel forces acting at points *A* and *B* form a couple of moment *G*. If their lines of action are turned through a right angle, they form a couple of moment *H*. Show that when both act at right angles to *AB*, they form a couple of moment.

(c) $\sqrt{G^2 + H^2}$ (b) $G^2 + H^2$ (a) *GH* (d) None of these We have, Pa = G and Pb = HSolution: (c)(i) Clearly, $a^2 + b^2 = x^2$ $\Rightarrow x = \sqrt{\frac{G^2}{P^2} + \frac{H^2}{P^2}}$ [from (i)] $\Rightarrow Px = \sqrt{G^2 + H^2}$ Hence, required moment = $\sqrt{G^2 + H^2}$ Example: 16 The resultant of three forces represented in magnitude and direction by the sides of a triangle ABC taken in order with BC = 5 cm, CA = 5 cm, and AB = 8 cm, is a couple of moment (b) 24 units (a) 12 units (c) 36 units (d) 16 units Solution: (b) Resultant of three forces represented in magnitude and direction by the sides of a triangle taken in order is a couple of moment equal to twice the area of triangle.

 \therefore the resultant is a couple of moment = 2 × (area of $\triangle ABC$)

Here, *a* = 5 *cm*, *b* = 5 *cm* and c = 8 *cm*

 $\therefore 2S = 5 + 5 + 8 \implies S = 9.$

Area = $\sqrt{S(S-a)(S-b)(S-c)} = \sqrt{9(9-5)(9-5)(9-8)} = 12$

 \therefore Required moment = 2 (12) = 24 units.

3.10 Equilibrium of Coplanar Forces

(1) If three forces keep a body in equilibrium, they must be coplanar.

(2) If three forces acting in one plane upon a rigid body keep it in equilibrium, they must either meet in a point or be parallel.

(3) When more than three forces acting on a rigid body, keep it in equilibrium, then it is not necessary that they meet at a point. The system of forces will be in equilibrium if there is neither translatory motion nor rotatory motion.

i.e. X = 0, Y = 0, G = 0 or R = 0, G = 0.

(4) A system of coplanar forces acting upon a rigid body will be in equilibrium if the algebraic sum of their resolved parts in any two mutually perpendicular directions vanish separately.

and if the algebraic sum of their moments about any point in their plane is zero.

(5) A system of coplanar forces acting upon a rigid body will be in equilibrium if the algebraic sum of the moments of the forces about each of three non-collinear points is zero.

(6) Trigonometrical theorem : If P is any point on the base BC of $\triangle ABC$ such that BP: CP = m: n.

Then, (i) $(m+n)\cot\theta = m\cot\alpha - n\cot\beta$ where $\angle BAP = \alpha, \angle CAP = \beta$

(ii) $(n+n)\cot\theta = n\cot B - m\cot C$

Example: 17Two smooth beads A and B, free to move on a vertical smooth circular wire, are connected by a string. Weights W_1 , W_2
and W are suspended from A, B and a point C of the string respectively.

In equilibrium, A and B are in a horizontal line. If $\angle BAC = \alpha$ and $\angle ABC = \beta$, then the ratio $\tan \alpha : \tan \beta$ is

[Roorkee 1996, UPSEAT 2001]

(a)
$$\frac{\tan \alpha}{\tan \beta} = \frac{W - W_1 + W_2}{W + W_1 - W_2}$$
 (b) $\frac{\tan \alpha}{\tan \beta} = \frac{W + W_1 - W_2}{W - W_1 + W_2}$ (c) $\frac{\tan \alpha}{\tan \beta} = \frac{W + W_1 + W_2}{W + W_1 - W_2}$ (d) None of these

Solution: (a) Resolving forces horizontally and vertically at the points A, B and C respectively, we get

$T\cos\alpha = R_1\sin\gamma$	(i)
$T_1 \sin \alpha + W_1 = R_1 \cos \gamma$	(ii)
$T_1 \cos \beta = R_2 \sin \gamma$	(iii)
$T_2 \sin \beta + W_2 = R_2 \cos \gamma$	(iv)
$T_1 \cos \alpha = T_2 \cos \beta$	(v)

Example: 18

Solution: (a)

Example: 19

Solution: (b)

and $T_1 \sin \alpha + T_2 \sin \beta = W$(vi) Using (v), from (i)and (ii), we get, $R_1 = R_2$:. From (ii) and (vi), we have $T_1 \sin \alpha + W_1 = T_2 \sin \beta + W_2$ or $T_1 \sin \alpha - T_2 \sin \beta = W_2 - W_1$(vii) Adding and subtracting (vi) and (vii), we get $2T_1 \sin \alpha = W + W_2 - W_1$(viii) $2T_2 \sin \beta = W - W_2 + W_1$(ix) Dividing (viii) by (ix), we get $\frac{T_1}{T_2} \cdot \frac{\sin \alpha}{\sin \beta} = \frac{W - W_1 + W_2}{W + W_1 - W_2} \quad \text{or } \frac{\cos \beta}{\cos \alpha} \cdot \frac{\sin \alpha}{\sin \beta} = \frac{W - W_1 + W_2}{W + W_1 - W_2} \quad (\text{from (v)}) \quad \text{or } \frac{\tan \alpha}{\tan \beta} = \frac{W - W_1 + W_2}{W + W_1 - W_2}$ A uniform beam of length 2a rests in equilibrium against a smooth vertical plane and over a smooth peg at a distance h from the plane. If θ be the inclination of the beam to the vertical, then $\sin^3\theta$ is [MNR 1996] (b) $\frac{h^2}{a^2}$ (d) $\frac{a^2}{h^2}$ (a) $\frac{h}{a}$ (C) $\frac{a}{h}$ Let AB be a rod of length 2a and weight W. It rests against a smooth vertical wall at A and over peg C, at a distance h from the wall. The rod is in equilibrium under the following forces : (i) The weight W at G(ii) The reaction Rat A (iii) The reaction S at C perpendicular to AB. Since the rod is in equilibrium. So, the three force are concurrent at O. In $\triangle ACK$, we have, sin $\theta = \frac{h}{AC}$ W ٨/ In $\triangle ACO$, we have, sin $\theta = \frac{AO}{a}$ In $\triangle AGO$, we have $\sin \theta = \frac{AO}{a}$; $\therefore \sin^3 \theta = \frac{h}{AC} \cdot \frac{AO}{AO} \cdot \frac{AO}{a} = \frac{h}{a}$ A beam whose centre of gravity divides it into two portions a and b, is placed inside a smooth horizontal sphere. If θ be its inclination to the horizon in the position of equilibrium and 2α be the angle subtended by the beam at the centre of the sphere, then [Roorkee 1994] (a) $\tan \theta = (b-a)(b+a)\tan \alpha$ (b) $\tan \theta = \frac{(b-a)}{(b+a)}\tan \alpha$ (c) $\tan \theta = \frac{(b+a)}{(b-a)}\tan \alpha$ (d) $\tan \theta = \frac{1}{(b-a)(b+a)}\tan \alpha$ Applying m - n theorem in ΔABC , we get $(AG + GB)\cot \angle OGB = GB\cot \angle OAB - AG\cot \angle OBG$

Μ

W

Tθ

$$\Rightarrow (a+b)\cot(90^\circ - \theta) = b\cot\left(\frac{\pi}{2} - \alpha\right) - a\cot\left(\frac{\pi}{2} - \alpha\right)$$
$$\Rightarrow (a+b)\tan\theta = b\tan\alpha - a\tan\alpha \quad \Rightarrow \tan\theta = \left(\frac{b-a}{a+b}\right)\tan\alpha$$

3 11 Friction

Friction is a retarding force which prevent one body from sliding on another.

It is, therefore a reaction.

When two bodies are in contact with each other, then the property of roughness of the bodies by virtue of which a force is exerted between them to

resist the motion of one body upon the other is called friction and the force exerted is called force of friction.

(1) Friction is a self adjusting force : Let a horizontal force P pull a heavy body of weight W resting on a smooth horizontal table. It will be noticed that up to a certain value of P, the body does not move. The reaction R of the table and the weight W of the body do not have any effect on the horizontal pull as they are vertical. It is the force of friction F, acting in the horizontal direction, which balances P and prevents the body from moving.

As *P* is increased, *F* also increases so as to balance *P*. Thus *F* increases with *P*. A stage comes when *P* just begins to move the body. At this stage *F* reaches its maximum value and is equal to the value of *P* at that instant. After that, if *P* is increased further, *F* does not increase any more and body begins to move.

This shows that friction is self adjusting, *i.e.* amount of friction exerted is not constant, but increases gradually from zero to a certain maximum limit.

(2) **Statical friction :** When one body tends to slide over the surface of another body and is not on the verge of motion then the friction called into play is called statical friction.

(3) **Limiting friction :** When one body is on the verge of sliding over the surface of another body then the friction called into play is called limiting friction.

(4) **Dynamical friction :** When one body is actually sliding over the surface of another body the friction called into play is called dynamical friction.

(5) Laws of limiting friction/statical friction/Dynamical friction :

(i) Limiting friction acts in the direction opposite to that in which the body is about to move.

(ii) The magnitude of the limiting friction between two bodies bears a constant ratio depends only on the nature of the materials of which these bodies are made.

(iii) Limiting friction is independent of the shape and the area of the surfaces in contact, so long as the normal reaction between them is same, if the normal reaction is constant.

(iv) Limiting friction f_s is directly proportional to the normal reaction R, *i.e.* $f_s \propto R$

 $f_s = \mu_s R$; $\mu_s = f_s / R$, where μ_s is a constant which is called coefficient of statical friction.

In case of dynamic friction, $\mu_k = f_k/R$, where μ_k is the coefficient of dynamic friction.

(6) **Angle of friction :** The angle which the resultant force makes with the direction of the normal reaction is called the angle of friction and it is generally denoted by λ .

Thus λ is the limiting value of α , when the force of friction *F* attains its maximum value.

 $\therefore \tan \lambda = \frac{\text{Maximum force of friction}}{\text{Normal reaction}}$

Since R and μ R are the components of S, we have, $S \cos \lambda = R$, $S \sin \lambda = \mu R$.

Hence by squaring and adding, we get $S = R\sqrt{1 + \mu^2}$ and on dividing them, we get $\lambda = \mu$. Hence we see that the coefficient of friction is equal to the tangent of the angle of friction.

3.12 Coefficient of Friction

When one body is in limiting equilibrium in contact with another body, the constant ratio which the limiting force of friction bears to normal reaction at their point of contact, is called the coefficient of friction and it is generally denoted by μ .

Thus, μ is the ratio of the limiting friction and normal reaction.

Hence,
$$\mu = \tan \lambda = \frac{\text{Maximum force of friction}}{\text{Normal reaction}}$$

 $\Rightarrow \mu = \frac{F}{R} \Rightarrow F = \mu R$, where F is the limiting friction and R is the normal reaction.

Note : \Box The value of μ depends on the substance of which the bodies are made and so it differs from one body to the other. Also, the value of μ always lies between 0 and 1. Its value is zero for a perfectly smooth body.

□ Cone of friction : A cone whose vertex is at the point of contact of two rough bodies and whose axis lies along the common normal and whose semi-vertical angle is equal to the angle of friction is called cone of friction.

3.13 Limiting equilibrium on an Inclined Plane

Let a body of weight W be on the point of sliding down a plane which is inclined at an angle α to the horizon. Let R be the normal reaction and μR be the limiting friction acting up the plane.

Thus, the body is in limiting equilibrium under the action of three forces : $R, \mu R$ and W.

Resolving the forces along and perpendicular to the plane, we have

 $\mu R = W \sin \alpha$ and $R = W \cos \alpha$

$$\Rightarrow \frac{\mu R}{R} = \frac{W \sin \alpha}{\cos \alpha} \Rightarrow \mu = \tan \alpha \Rightarrow \tan \lambda = \tan \alpha \Rightarrow \alpha = \lambda$$

Thus, if a body be on the point of sliding down an inclined plane under its own weight, the inclination of the plane is equal to the angle of the friction.

(1) Least force required to pull a body up an inclined rough plane : Let a body of weight W be at point A, α be the inclination of rough inclined plane to the horizontal and λ be the angle of friction. Let P be the force acting at an angle θ with the plane required just to move body up the plane.

$$P = W \frac{\sin(\alpha + \lambda)}{\cos(\theta - \lambda)} \qquad \{:: \mu = \tan \lambda\}$$

Clearly, the force *P* is least when $\cos(\theta - \lambda)$ is maximum, *i.e.* when $\cos(\theta - \lambda) = 1$, *i.e.* $\theta - \lambda = 0$ or $\theta = \lambda$. The least value of *P* is $W \sin(\alpha + \lambda)$

(2) Least force required to pull a body down an inclined plane : Let a body of weight W be at the point A, α be the inclination of rough inclined plane to the horizontal and λ be the angle of friction. Let P be the force acting an angle θ with the plane, required just to move the body up the plane.

$$P = \frac{W\sin(\lambda - \alpha)}{\cos(\theta - \lambda)} \qquad [\because \mu = \tan \lambda]$$

Clearly, *P* is least when $\cos(\theta - \lambda)$ is maximum, *i.e.* when $\theta - \lambda = 0$ or $\theta = \lambda$. The least value of *P* is $W\sin(\lambda - \alpha)$.

Note : \Box If $\alpha = \lambda$, then the body is in limiting equilibrium and is just on the point of moving downwards.

 \Box If $\alpha < \lambda$, then the least force required to move the body down the plane is $W \sin(\lambda - \alpha)$.

 \Box If $\alpha = \lambda, \alpha > \lambda$ or $\alpha < \lambda$, then the least force required to move the body up the plane is $W \sin(\alpha + \lambda)$.

 \Box If $\alpha > \lambda$, then the body will move down the plane under the action of its weight and normal reaction.

Example: 21 A uniform ladder rests in limiting equilibrium, its lower end on a rough horizontal plane and its upper end against a smooth vertical wall. If θ is the angle of inclination of the ladder to the vertical wall and μ is the coefficient of friction, then tan θ is equal to [MNR 1991; UPSEAT 2000]

 $\frac{3\mu}{2}$

.....(i)

(a)
$$\mu$$
 (b) 2μ (c)

(d) µ+1

Solution: (b) Resolving the forces horizontally and vertically, we get

=

$$S = \mu R$$
 and $R = W$

 $\Rightarrow S = \mu W$

Taking moments about A, we get

$$-W.AG\sin\theta + S.AB\cos\theta = 0$$

$$\Rightarrow W.AG\sin\theta = S.AB\cos\theta \Rightarrow W.\frac{AB}{2}\sin\theta = S.AB\cos\theta \quad \left[\because AG = \frac{AB}{2}\right]$$

$$= \frac{W}{2} AB \sin \theta = \mu W.AB \cos \theta \quad [from (i)]$$

$$\Rightarrow \tan \theta = 2\mu.$$
Example: 22 A body of 6 Kg rests in limiting equilibrium on an inclined plane whose slope is 30°. If the plane is raised to slope of 60°, the force in Kg weight along the plane required to support it is
(a) 3 (b) $2\sqrt{3}$
(c) $\sqrt{3}$ (c) $\sqrt{3}$ (d) $3\sqrt{3}$
Solution: (b) In case (i),
$$R = 6 \cos 30^{\circ}, \mu R = 6 \sin 30^{\circ}.$$

$$\therefore \mu = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$
In case (ii),
$$S = 6 \cos 60^{\circ}$$

$$P + \mu S = 6 \sin 60^{\circ}$$

$$\therefore P = 3\sqrt{3} - \frac{1}{\sqrt{3}} 6 \times \frac{1}{2} = 3\sqrt{3} - \frac{3}{\sqrt{3}} = 3\sqrt{3} - \sqrt{3} = 2\sqrt{3}.$$
Example: 23 The coefficient of friction between the floor and a box weighing 1 ton if a minimum force of 600 Kg/is required to start the box moving is
(a) $\frac{1}{4}$ (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) 1
Solution: (b) Resolving horizontally and vertically
$$P \cos \theta = \mu R; P \sin \theta + R = W$$

$$\therefore P \cos \theta = \mu (W - P \sin \theta)$$

or
$$P[\cos \theta + \mu \sin \theta] = \mu W$$

or $P = \frac{\mu W}{\cos \theta + \frac{\sin \lambda}{\cos \lambda} \cdot \sin \theta} = \frac{\mu W \cos \lambda}{\cos(\theta - \lambda)} = \frac{W \sin \lambda}{\cos(\theta - \lambda)}$

Now *P* is minimum when $\cos(\theta - \lambda)$ is maximum, *i.e.* when $\cos(\theta - \lambda) = 1$

$$\therefore \operatorname{Min} P = W \sin \lambda$$

But W = 1 ton wt. = 1000 Kg. and P = 600 kg

$$\therefore \sin \lambda = \frac{P}{W} = \frac{600}{1000} = \frac{3}{5}; \quad \therefore \tan \lambda = \frac{3}{4}, \therefore \mu = \frac{3}{4}$$

Solution: (c)

Example: 24 A block of mass 2 Kg. slides down a rough inclined plane starting from rest at the top. If the inclination of the plane to the horizontal is θ with $\tan \theta = \frac{4}{5}$, the coefficient of friction is 0.3 and the acceleration due to gravity is g = 9.8. The velocity of the block when it reaches the bottom is

(c) 7

Let P be the position of the man at any time.

Clearly, $R = 2g\cos\theta$

Let *f* be acceleration down the plane.

Equation of motion is $2f = 2g \sin \theta - \mu R$

 $2f = 2g\sin\theta - \mu(2g\cos\theta)$

 $2f = 2g(\sin\theta - \mu\cos\theta)$

Here, $\tan \theta = \frac{4}{5}$, $\sin \theta = \frac{4}{\sqrt{41}}$, $\cos \theta = \frac{5}{\sqrt{41}}$

Now,
$$2f = 2g\left(\frac{4}{\sqrt{41}} - \frac{3}{10} \cdot \frac{5}{\sqrt{41}}\right)$$

 $2f = \frac{2g}{\sqrt{41}}\left(4 - \frac{3}{2}\right) = \frac{2g}{\sqrt{41}} \cdot \frac{5}{2} = \frac{5g}{\sqrt{41}}, \quad \therefore f = \frac{5g}{2\sqrt{41}}$

Let v be the velocity at C.

Then,
$$v^2 = u^2 + 2fS = 0 + 2\frac{5g}{2\sqrt{41}}AC$$

$$v^{2} = \frac{5g}{\sqrt{41}} \sqrt{41}$$
 {we can take $AC = \sqrt{41}$, since $\tan \theta = \frac{4}{5}$
 $v^{2} = 5g = 5 \times 9.8 = 49.0$, *i.e.*, $v^{2} = 7m / \sec$

Example: 25A circular cylinder of radius r and height h rests on a rough horizontal plane with one of its flat ends on the plane. A
gradually increasing horizontal force is applied through the centre of the upper end. If the coefficient of friction is μ .
The cylinder will topple before sliding of[UPSEAT 1994]

(a)
$$r < \mu h$$
 (b) $r \ge \mu h$ (c) $r \ge 2\mu h$ (d) $r = 2\mu h$

Solution: (b) Let base of cylinder is AB.

 $\therefore BC = r$

Let force *P* is applied at *O*.

Let reaction of plane is R and force of friction is μR . Let weight of cylinder is W. In equilibrium condition,

$$R = W$$
(i) and $P = \mu R$ (ii)

From (i) and (ii), we have $P = \mu W$

Taking moment about the point O,

We have $W \times BC - P \times OC = 0 \implies P = \frac{W \times BC}{OC} = \frac{W \times r}{h}$

$$\text{If } \frac{W \times r}{h} \geq \mu W \ \text{ or } r \geq \mu h$$

The cylinder will be topple before sliding.

3.14 Centre of Gravity

The centre of gravity of a body or a system of particles rigidly connected together, is that point through which the line of action of the weight of the body always passes in whatever position the body is placed and this point is called centroid. A body can have one and only one centre of gravity.

If w_1, w_2, \dots, w_n are the weights of the particles placed at the points

 $A_1(x_1, y_1), A_2(x_2, y_2), \dots, A_n(x_n, y_n)$ respectively, then the centre of gravity $G(\overline{x}, \overline{y})$ is given by

$$\overline{x} = \frac{\sum w_1 x_1}{\sum w_1}, \overline{y} = \frac{\sum w_1 y_1}{\sum w_1}.$$

(1) Centre of gravity of a number of bodies of different shape :

(i) C.G. of a uniform rod : The C.G. of a uniform rod lies at its mid-point.

(ii) **C.G. of a uniform parallelogram :** The C.G. of a uniform parallelogram is the point of inter-section of the diagonals.

(iii) **C.G. of a uniform triangular lamina :** The C.G. of a triangle lies on a median at a distance from the base equal to one third of the medians.

(2) Some Important points to remember :

(i) The C.G. of a uniform tetrahedron lies on the line joining a vertex to the C.G. of the opposite face, dividing this line in the ratio 3 : 1.

(ii) The C.G. of a right circular solid cone lies at a distance h/4 from the base on the axis and divides it in the ratio 3 : 1.

(iii) The C.G. of the curved surface of a right circular hollow cone lies at a distance h/3 from the base on the axis and divides it in the ratio 2 : 1

(iv) The C.G. of a hemispherical shell at a distance a/2 from the centre on the symmetrical radius.

(v) The C.G. of a solid hemisphere lies on the central radius at a distance 3a/8 from the centre where *a* is the radius.

(vi) The C.G. of a circular arc subtending an angle 2α at the centre is at a distance $\frac{a \sin \alpha}{\alpha}$ from the centre on the symmetrical radius, *a* being the radius, and α in radians.

(vii) The C.G. of a sector of a circle subtending an angle 2α at the centre is at a distance $\frac{2a}{3}\frac{\sin \alpha}{\alpha}$ from the centre on the symmetrical radius, *a* being the radius and α in radians.

(viii) The C.G. of the semi circular arc lies on the central radius at a distance of $\frac{2a}{\pi}$ from the boundry diameter, where *a* is the radius of the arc.

Important Tips

- The control of the remaining portion is given by $x_2 = \frac{wx w_1x_1}{w w_2}$
- Let x be the C.G. of a body of weight w. If $x_{\downarrow} x_{2} x_{3}$ are the C.G. of portions of weights $w_{\downarrow} w_{2} w_{3}$ respectively, which are removed from the body, then the C.G. of the remaining body is given by $x_{4} = \frac{wx w_{1}x_{1} w_{2}x_{2} w_{3}x_{3}}{w w_{1} w_{2} w_{3}}$

Two uniform solid spheres composed of the same material and having their radii 6 cm and 3 cm respectively are firmly Example: 26 united. The distance of the centre of gravity of the whole body from the centre of the larger sphere is [MNR 1980] (a) 1 cm. (b) 3 *cm*. (c) 2 cm. (d) 4 cm. Weights of the spheres are proportional to their volumes. Solution: (a) Let *P* be the density of the material, then w_1 = Weight of the sphere of radius $6cm = \frac{4}{3}\pi(6^3)\rho = 288\pi\rho$ 6 *cm* 3 cm w_2 = Weight of the sphere of radius $3cm = \frac{4}{3}\pi (3^3)\rho = 36\pi\rho$ x_1 = Distance of the *C.G.* of the larger sphere from its centre O = 0 x_2 = Distance of the *C.G.* of smallar sphere from *O* = 9 *cm.* \overline{x} = Distance of the *C.G.* of the whole body from *O* Now $\overline{x} = \frac{w_1 x_1 + w_2 x_2}{w_1 + w_2} = \frac{288 \, \pi \rho \times 0 + 36 \, \pi \rho \times 9}{288 \, \pi \rho + 36 \, \pi \rho}$ $\overline{x} = \frac{36 \times 9}{324} = 1$ Example: 27 A solid right circular cylinder is attached to a hemisphere of equal base. It the C.G. of combined solid is at the centre of

- Example: 27 A solid right circular cylinder is attached to a hemisphere of equal base. It the C.G. of combined solid is at the centre of the base, then the ratio of the radius and height of cylinder is
 - (a) 1:2 (b) $\sqrt{2}:1$ (c) 1:3 (d) None of these

Solution: (b)

Let *a* be the radius of the base of the cylinder and *h* be the height of the cylinder. Let w_1 and w_2 be the weight of the cylinder and hemisphere respectively. These weights act at their centres of gravity G_1 and G_2 respectively.

Now, w_1 = weight of the cylinder = $\pi a^2 h \rho g$

 w_2 = weight of the hemisphere = $\frac{2}{3}\pi a^3 \rho g$

$$O_1G_1 = \frac{h}{2}$$
 and $O_1G_2 = h + \frac{3a}{8}$

Since the combined C.G. is at O2. Therefore

$$O_1O_2 = \frac{w_1 \times O_1G + w_2 + O_1G_2}{w_1 + w_2}$$

$$\Rightarrow h = \frac{(\pi a^2 h \rho g) \times \frac{h}{2} + \left(\frac{2}{3}\pi a^3 \rho g\right) \times \left(h + \frac{3a}{8}\right)}{\pi a^2 h \rho g + \frac{2}{3}\pi a^3 \rho g} \Rightarrow h = \frac{\frac{h^2}{2} + \frac{2}{3}a\left(h + \frac{3a}{8}\right)}{h + \frac{2}{3}a} \Rightarrow h^2 + \frac{2ah}{3} = \frac{h^2}{2} + \frac{2ah}{3} + \frac{a^2}{4}$$

$$\Rightarrow 2h^2 = a^2 \Rightarrow \frac{a}{h} = \sqrt{2} \Rightarrow a : h = \sqrt{2} : 1$$

Example: 28On the same base AB and on opposite side of it, isosceles triangles CAB and DAB are described whose altitudes are 12
cm and 6 cm respectively. The distance of the centre of gravity of the quadrilateral CADB from AB, is

(a) 0.5 cm (b) 1 cm (c) 1.5 cm Solution: (b) Let L be the midpoint of AB. Then $CL \perp AB$ and $DL \perp AB$. Let G_1 and G_2 be the centres of gravity of triangular lamina CAB and DAB respectively. Then, $LG_1 = \frac{1}{3}CL = 4 cm$. and $LG_2 = \frac{1}{3}DL = 2 cm$. The C.G. of the quadrilateral ABCD is at G, the mid point of $G_1 G_2$. $\therefore G_1G_2 = GG_1 = 3 cm$. $\Rightarrow GL = G_1L - GG_1 = (4 - 3)cm = 1 cm$.

Gı

(d) 2 cm

(d) $\frac{1}{6}AG$

D

Example: 29 *ABC* is a uniform triangular lamina with centre of gravity at *G*. If the portion *GBC* is removed, the centre of gravity of the remaining portion is at *G*. Then *GG* is equal to [UPSEAT 1994]

(a)
$$\frac{1}{3}AG$$
 (b) $\frac{1}{4}AG$ (c) $\frac{1}{5}AG$

Solution: (d) Since *G* and *G* are the centroids of $\triangle ABC$ and *GBD* respectively. Therefore $AG = \frac{2}{3}AD$,

$$GD = \frac{1}{3}AD$$
 and $GG'' = \frac{2}{3}GD = \frac{2}{3}\left(\frac{1}{3}AD\right) = \frac{2}{9}AD$
Now, $AG = \frac{2}{3}AD$ and $GD = \frac{1}{3}AD$
 \Rightarrow Area of $\Delta GBC = \frac{1}{3}$ Area of ΔABC

 \Rightarrow Weight of triangular lamina *GBC* = $\frac{1}{3}$ (weight of triangle lamina *ABC*)

Thus, if *W* is the weight of lamina *GBC*, then the weight of lamina *ABC* is 3 *W*.

Now, G is the C.G. of the remaining portion ABGC.

Therefore,

$$AG' = \frac{3W(AG) - W(AG'')}{3W - W}$$

= $\frac{1}{2}(3AG - AG'')$
= $\frac{1}{2}(3 \times \frac{2}{3}AD - \frac{8}{9}AD) = \frac{5}{9}AD$
 $\therefore GG' = AG - AG' = \frac{2}{3}AD - \frac{5}{9}AD = \frac{1}{9}(AD) = \frac{1}{9}(\frac{3}{2}AG) = \frac{1}{6}AG$.

		Composition a	and resolution of forces and	condition of equilibrium of
			Basic Level	
1.	The resultant of tw	vo forces 3P and 2P is R, if th	he first force is doubled, the re	sultant is also doubled. The angle
	(a) π/3	(b) $2\pi/3$	(c) $\pi/6$	[MNR 1985; UPSEAT 2000 (d) $5\pi/6$
2.	The resultant of tw resultant will be	vo forces \vec{P} and \vec{Q} is of magn	itude <i>P</i> . If the force \vec{P} is double	ed, \vec{Q} remaining unaltered, the new
	(a) Along \vec{P}	(b) Along \vec{Q}	(c) At 60° to \vec{Q}	[MNR 1995] (d) At right angle to \vec{Q}
3.	If the resultant of t	two forces 2 <i>P</i> and $\sqrt{2}P$ is $\sqrt{10}$	\overline{OP} , then the angle between the	em will be
	(a) <i>π</i>	(b) $\pi/2$	(c) $\pi/3$	(d) $\pi/4$
4.	The maximum resultant is	iltant of two forces is P and	the minimum resultant is Q , t	the two forces are at right angles,
				[Roorkee 1990]
	(a) $P + Q$	(b) $P - Q$	(c) $\frac{1}{2}\sqrt{P^2+Q^2}$	(d) $\sqrt{\frac{P^2 + Q^2}{2}}$
5.	Two equal forces a their magnitudes, t	ect at a point. If the square of the angle between the forces	of the magnitude of their resul is	tant is three times the product of
	(a) 30°	(b) 45°	(c) 90°	(d) 60°
6.	A force is resolved	into components P and Q equ	ually inclined to it. Then	
	(a) $P = 2Q$	(b) $2P = Q$	(c) $P = Q$	(d) None of these
7.	If the square of the the forces is	e resultant of two equal force	es is equal to $(2-\sqrt{3})$ times thei	r product, then the angle between
	(a) 60°	(b) 150°	(c) 120°	(d) 30°
8.	The resultant of tw	o equal forces is equal to eit	her of these forces. The angle b	between them is
	(a) $\pi/4$	(b) $\pi/3$	(c) $\pi/2$	(d) $2\pi/3$
9.	When two equal for angle 2β , then	prces are inclined at an ang	le 2α , their resultant is twice	e as great as when they act at an
				[UPSEAT 1999]
	(a) $\cos \alpha = 2 \sin \beta$	(b) $\cos \alpha = 2\cos \beta$	(c) $\cos\beta = 2\cos\alpha$	(d) $\sin\beta = 2\cos\alpha$
10.	Two forces of 13 N between the forces	and $3\sqrt{3}$ N act on a particle is	at an angle θ and are equal to	a resultant force of 14N, the angle
	(a) 30°	(b) 60°	(c) 45°	(d) 90°
11.	If two forces $P + Q$	and $P-Q$ make an angle $2d$	α with each other and their res	sultant makes an angle θ with the
	bisector of the ang	le between the two forces, th	hen $\frac{P}{Q}$ is equal to	

	z statics			
	(a) $\frac{\tan\theta}{\tan\alpha}$	(b) $\frac{\tan \alpha}{\tan \theta}$	(c) $\frac{\sin\theta}{\sin\alpha}$	(d) $\frac{\sin \alpha}{\sin \theta}$
12.	A force <i>F</i> is resolved that of <i>F</i> , then the m	into two components <i>P</i> and agnitude of <i>Q</i> is	d Q. If P be at right angles to	F and has the same magnitude as
	(a) $\frac{F}{2}$	(b) $\frac{F}{\sqrt{2}}$	(c) 2 <i>F</i>	(d) $\sqrt{2}F$
13.	The direction of thre taken in order, The r	e forces 1N, 2N and 3N acti nagnitude of their resultant	ing at a point are parallel to is	the sides of an equilateral triangle
	(a) $\frac{\sqrt{3}}{2}N$	(b) 3 <i>N</i>	(c) $\sqrt{3}N$	(d) $\frac{3}{2}N$
14.	Forces of magnitude respectively. The ma	s 5, 10, 15 and 20 <i>Newton</i> a gnitude of their resultant is	ct on a particle in the direction	ons of North, South, East and West
	(a) $15\sqrt{2}N$	(b) 10 <i>N</i>	(c) $25\sqrt{2}N$	(d) $5\sqrt{2}N$
15.	Forces of magnitude	es $P-Q$, P and $P+Q$ act at a	point parallel to the sides of	of an equilateral triangle taken in
	order. The resultant	of these forces, is		
	(a) $\sqrt{3}P$	(b) $\sqrt{3}Q$	(c) $3\sqrt{3}P$	(d) 3 <i>P</i>
16.	Two forces acting in	n opposite directions on a	particle have a resultant of	34 Newton; if they acted at right
	angles to one anothe	r, their resultant would hav	e a magnitude of 50 <i>Newton</i> .	The magnitude of the forces are
	(a) 48, 14	(b) 42, 8	(c) 40, 6	(d) 36, 2
17.	Three forces of mag	nitude 30, 60 and <i>P</i> acting a	at a point are in equilibrium.	If the angle between the first two
	is 60° , the value of I	Pis		
				[Roorkee 1991]
	(a) 30√7	(b) 30√3	(c) $20\sqrt{6}$	(d) $25\sqrt{2}$
18.	The resultant of two	forces <i>P</i> and <i>Q</i> acting at an	angle θ is equal to $(2m+1)\sqrt{2}$	$P^2 + Q^2$; when they act at an angle
			•	
	$90^{\circ} - \theta$, the resultant	t is $(2m-1)\sqrt{P^2+Q^2}$; then t	an θ =	[UPSEAT 2000; SCRA
	$90^{\circ} - \theta$, the resultan	t is $(2m-1)\sqrt{P^2+Q^2}$; then the	$an \theta =$	[UPSEAT 2000; SCRA
	90° – θ , the resultan 1995]	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $m+1$	$an \theta = (c) \frac{m-1}{2}$	[UPSEAT 2000; SCRA (d) $\sqrt{1 + m^2}$
	90° - θ , the resultan 1995] (a) $\frac{1}{m}$	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$	an θ = (c) $\frac{m-1}{m+1}$	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$
19.	90° - θ , the resultan 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ de <i>P</i> , <i>Q</i> and <i>R</i> act at a point point part of the point point of the point of	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> ar	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then
19.	90° - θ , the resultan 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ de <i>P</i> , <i>Q</i> and <i>R</i> act at a point point resultant is	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> ar (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ \cos C - 2QR \cos A - 2PR \cos B}$
19.	90° - θ , the resultant 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$ (c) $P + Q + R$	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ le <i>P</i> , <i>Q</i> and <i>R</i> act at a point point resultant is	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> ar (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$ (d) None of these	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ\cos C - 2QR\cos A - 2PR\cos B}$
19.	90° - θ , the resultan 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$ (c) $P + Q + R$ Two forces of magnitude	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ de <i>P</i> , <i>Q</i> and <i>R</i> act at a point point resultant is tudes <i>P</i> + <i>Q</i> and <i>P</i> - <i>Q</i> Newth	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> and (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$ (d) None of these on are acting at an angle of 1	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ \cos C - 2QR \cos A - 2PR \cos B}$ 35° . If their resultant is a force of
19. 20.	90° - θ , the resultan 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$ (c) $P + Q + R$ Two forces of magnitude 2 <i>Newton</i> perpendicu	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ le <i>P</i> , <i>Q</i> and <i>R</i> act at a point particular term of the second s	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> ar (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$ (d) None of these on are acting at an angle of 1 he second force, then	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ\cos C - 2QR\cos A - 2PR\cos B}$ 35°. If their resultant is a force of
19. 20.	90° - θ , the resultan 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$ (c) $P + Q + R$ Two forces of magnitic 2 <i>Newton</i> perpendict (a) $P = (\sqrt{2} + 1) Q = (\sqrt{2} + 1) Q$	t is $(2m-1)\sqrt{P^2 + Q^2}$; then the (b) $\frac{m+1}{m-1}$ le <i>P</i> , <i>Q</i> and <i>R</i> act at a point provide the provided of the second s	an θ = (c) $\frac{m-1}{m+1}$ barallel to the sides <i>BC</i> , <i>CA</i> and (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$ (d) None of these on are acting at an angle of 1 he second force, then (c) $P = (\sqrt{3} + 1) Q = (\sqrt{3} + 1) Q$	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ \cos C - 2QR \cos A - 2PR \cos B}$ 35° . If their resultant is a force of $\overline{3} = 1$) (d) $P = (\sqrt{3} = 1) \ O = (\sqrt{3} + 1)$
19. 20.	90° - θ , the resultant 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$ (c) $P + Q + R$ Two forces of magnitude 2 <i>Newton</i> perpendicut (a) $P = (\sqrt{2} + 1), Q = (\sqrt{2} + 1)$	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ le <i>P</i> , <i>Q</i> and <i>R</i> act at a point part of the part of the line of action of the line of the li	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> and (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$ (d) None of these <i>on</i> are acting at an angle of 1 he second force, then (c) $P = (\sqrt{3} + 1), Q = (\sqrt{3} + 2)$	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ\cos C - 2QR\cos A - 2PR\cos B}$ 35^{o} . If their resultant is a force of $\overline{3}$ -1) (d) $P = (\sqrt{3} - 1), Q = (\sqrt{3} + 1)$
19. 20. 21.	90° - θ , the resultant 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$ (c) $P + Q + R$ Two forces of magnitude (a) $P = (\sqrt{2} + 1), Q = ($	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ de <i>P</i> , <i>Q</i> and <i>R</i> act at a point provide the provided of the provided	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> ar (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$ (d) None of these on are acting at an angle of 1 he second force, then (c) $P = (\sqrt{3} + 1), Q = (\sqrt{2} + 1)$ (c) $P = (\sqrt{3} + 1), Q = (\sqrt{2} + 1)$	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ \cos C - 2QR \cos A - 2PR \cos B}$ 35° . If their resultant is a force of $\overline{3}$ -1) (d) $P = (\sqrt{3} - 1), Q = (\sqrt{3} + 1)$ and <i>R</i> is
19. 20. 21.	90° - θ , the resultant 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$ (c) $P + Q + R$ Two forces of magnitude (a) $P = (\sqrt{2} + 1), Q = ($	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ le <i>P</i> , <i>Q</i> and <i>R</i> act at a point provide the provided of the second sec	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> and (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$ (d) None of these <i>on</i> are acting at an angle of 1 he second force, then (c) $P = (\sqrt{3} + 1), Q = (\sqrt{3} $	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ \cos C - 2QR \cos A - 2PR \cos B}$ 35^{o} . If their resultant is a force of $\overline{3} - 1$) (d) $P = (\sqrt{3} - 1), Q = (\sqrt{3} + 1)$ and <i>R</i> is (d) $\frac{5\pi}{6}$
19. 20. 21. 22.	90° - θ , the resultant 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$ (c) $P + Q + R$ Two forces of magnitude (a) $P = (\sqrt{2} + 1), Q = ($	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ le <i>P</i> , <i>Q</i> and <i>R</i> act at a point provide the provided of the second sec	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> ar (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$ (d) None of these on are acting at an angle of 1 he second force, then (c) $P = (\sqrt{3} + 1), Q = (\sqrt{3} + 1$	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ \cos C - 2QR \cos A - 2PR \cos B}$ 35° . If their resultant is a force of $\overline{3} - 1$) (d) $P = (\sqrt{3} - 1), Q = (\sqrt{3} + 1)$ and <i>R</i> is (d) $\frac{5\pi}{6}$ 4. <i>Q'</i> acting at the same angle α is at
19. 20. 21. 22.	90° - θ , the resultant 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$ (c) $P + Q + R$ Two forces of magnitive (a) $P = (\sqrt{2} + 1), Q = ($	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ le <i>P</i> , <i>Q</i> and <i>R</i> act at a point provide the provided of the second difter the second differ the second difter the second differ the se	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> ar (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$ (d) None of these on are acting at an angle of 1 he second force, then (c) $P = (\sqrt{3} + 1), Q = (\sqrt{3} + 1$	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ \cos C - 2QR \cos A - 2PR \cos B}$ 35° . If their resultant is a force of $\overline{3} - 1$) (d) $P = (\sqrt{3} - 1), Q = (\sqrt{3} + 1)$ and <i>R</i> is (d) $\frac{5\pi}{6}$ 4. <i>Q'</i> acting at the same angle α is at
19. 20. 21. 22.	90° - θ , the resultant 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$ (c) $P + Q + R$ Two forces of magnitude (a) $P = (\sqrt{2} + 1), Q = ($	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ le <i>P</i> , <i>Q</i> and <i>R</i> act at a point provide the provided of the second sec	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> ar (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$ (d) None of these <i>on</i> are acting at an angle of 1 he second force, then (c) $P = (\sqrt{3} + 1), Q = (\sqrt{3} +$	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ \cos C - 2QR \cos A - 2PR \cos B}$ 35° . If their resultant is a force of $\overline{3} - 1$) (d) $P = (\sqrt{3} - 1), Q = (\sqrt{3} + 1)$ and <i>R</i> is (d) $\frac{5\pi}{6}$ 4. <i>Q'</i> acting at the same angle α is at (d) None of these
19. 20. 21. 22.	90° - θ , the resultant 1995] (a) $\frac{1}{m}$ If forces of magnitude the magnitude of the (a) $\sqrt{P^2 + Q^2 + R^2}$ (c) $P + Q + R$ Two forces of magnitude (a) $P = (\sqrt{2} + 1), Q = ($	t is $(2m-1)\sqrt{P^2+Q^2}$; then the (b) $\frac{m+1}{m-1}$ le <i>P</i> , <i>Q</i> and <i>R</i> act at a point present is tudes <i>P</i> + <i>Q</i> and <i>P</i> - <i>Q</i> Newton the present of the second s	an θ = (c) $\frac{m-1}{m+1}$ parallel to the sides <i>BC</i> , <i>CA</i> ar (b) $\sqrt{P^2 + Q^2 + R^2 - 2A}$ (d) None of these on are acting at an angle of 1 he second force, then (c) $P = (\sqrt{3} + 1), Q = (\sqrt{3} + 1$	[UPSEAT 2000; SCRA (d) $\sqrt{1+m^2}$ and <i>AB</i> respectively of a $\triangle ABC$, then $\overline{PQ \cos C - 2QR \cos A - 2PR \cos B}$ 35° . If their resultant is a force of $\overline{3} - 1$) (d) $P = (\sqrt{3} - 1), Q = (\sqrt{3} + 1)$ and <i>R</i> is (d) $\frac{5\pi}{6}$ 4. <i>Q'</i> acting at the same angle α is at (d) None of these between the forces is

24. The sum of the two forces is 18 and their resultant perpendicular to the lesser of the forces is 12, then the lesser force is

				[MNR 1987, 1989; UPSEAT
2000	(a) E	(b) 2	(c) 7	(d) 15
25	(a) 5 The magnitudes of two	forces are 2 5 and the direction	(c) /	angles to that of the smaller
23.	force. The ratio of the m	agnitude of the larger force and	d of the resultant is	angles to that of the smaller
	(a) 5:3	(b) 5:4	(c) 4:5	(d) 4:3
26.	If the resultant of two fo	prces <i>P</i> and <i>Q</i> is $\sqrt{3}Q$ and makes	an angle 30° with the direct	tion of P, then
	(a) $P = 2Q'$	(b) $Q = 2P$	(c) $P = 3Q$	(d) None of these
27.	The resolved part of a f resolved part with the d	Force of 16 <i>Newton</i> in a directio lirection of the force is	n is $8\sqrt{3}$ <i>Newton</i> . The inclir	nation of the direction of the
	(a) 30°	(b) 60°	(c) 120°	(d) 150°
28.	Let <i>P</i> , 2 <i>P</i> and 3 <i>P</i> be the their resultant and θ the	forces acting along <i>AB</i> , <i>BC</i> , <i>CA</i> e angle made by the resultant w	of an equilateral $\triangle ABC$. Su ith the side <i>BC</i> , then	ppose R is the magnitude of
	(a) $R = P\sqrt{3}, \theta = \pi/2$	(b) $R = 2P\sqrt{3}, \theta = \pi/2$	(c) $R = P\sqrt{3}, \theta = \pi/6$	(d) $R = 2P\sqrt{3}, \theta = \pi/6$
29.	When a particle be kept	at rest under the action of the f	ollowing forces	
-	(a) $\uparrow 8N \uparrow 5N 13N \downarrow$	(b) $\uparrow 7N \uparrow 4N \downarrow 12N$	(c) $\uparrow 5N \uparrow 8N \downarrow 10N$	(d) $\uparrow 4N \uparrow 2\sqrt{5}N \downarrow 6N$
30.	respectively. If the resu	e forces of magnitudes $3AB$, 2. Itant meets AC at D_1 , then the r	AC and 6CB are acting alor atio DC : AD will be equal to	ig the sides AB, AC and CB
	(a) 1:1	(b) 1:2	(c) 1: 3	(d) 1: 4
31.	ABC is a triangle. Force ΔABC then	es P , Q , R act along the lines OA	A, OB and OC and are in eq	uilibrium. If <i>O</i> is incentre of
				[UPSEAT 1998]
	(a) $\frac{P}{\cos A/2} = \frac{Q}{\cos B/2} = \frac{Q}{\cos B/2}$	$\frac{R}{\cos C/2}$	(b) $\frac{P}{OA} = \frac{Q}{OB} = \frac{R}{OC}$	
	(c) $\frac{P}{\sin A/2} = \frac{Q}{\sin B/2} = \frac{Q}{\sin B/2}$	$\frac{R}{\ln C/2}$	(d) None of these	
32.	If the forces of 12, 5 and	13 units weight balance at a po	int, two of them are incline	d at
5	(a) 30°	(b) 45°	(c) 90°	(d) 60°
33.	Forces of 1, 2 units act a	along the lines $x = 0$ and $y = 0$. T	The equation of the line of a	ction of the resultant is
55.	1 01 000 01 1, 2 units use d		ne equation of the line of a	[MNR 1081: UPSFAT 2000]
	(a) $y - 2x = 0$	(b) $2y - x = 0$	(c) $y + x = 0$	(d) $y - x = 0$
34.	If N is resolved in two c	omponents such that first is twi	ce of other, the components	are
34	· · · · · · · · · · · · · · · · · · ·		N = 2N	
	(a) $5N, 5\sqrt{2N}$	(b) $10N, 10\sqrt{2N}$	(c) $\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}$	(d) None of these
35.	<i>O</i> is the circumcentre of $O: R$ is	$f \Delta ABC$. If the forces <i>P</i> , <i>Q</i> and <i>R</i>	acting along <i>OA</i> , <i>OB</i> , and <i>O</i>	PC are in equilibrium then P :
	(a) $\sin A : \sin B : \sin C$	(b) $\cos A : \cos B : \cos C$	(c) $a\cos A : b\cos B : c\cos C$	(d) $a \sec A : b \sec B : c \sec C$
36.	Three forces <i>P</i> , <i>Q</i> and <i>R</i> between <i>P</i> and <i>R</i> , then <i>F</i>	acting on a particle are in equil	ibrium. If the angle between	P and Q is double the angle
	$Q^{2} + R^{2}$	$Q^2 - R^2$	$Q^2 - R^2$	$Q^2 + R^2$
	(a) $\frac{e}{R}$	(b) $\frac{\varepsilon}{O}$	(c) $\frac{\varepsilon}{R}$	(d) $\frac{\varepsilon}{O}$
37.	A smooth sphere is sur	\sim	oth vertical wall by a strin	\tilde{z}
5/•	surface, the other end b	being attached to a point in the	wall. If the length of the st	ring is equal to the radius of
	the sphere, the tension	of the string is	0	
	(a) $\frac{2W}{2W}$	(b) $\frac{2W}{2}$	$(c) \frac{W}{W}$	(d) None of those
	(a) $\frac{1}{\sqrt{3}}$	$\left(0\right)$ ${3}$	$\left(\cup \right) \frac{1}{2}$	(u) none of these

38. Three forces *P*, *Q*, *R* are acting at a point in a plane. The angle between *P*, *Q* and *Q*, *R* are 150° and 120° respectively, then for equilibrium; forces *P*, *Q*, *R* are in the ratio

	(a) 1:2:3	(b) 1:2: $3^{1/2}$	(c) 3:2:1	(d) $(3)^{1/2}:2:1$
39.	If A, B ,C are three t	forces in equilibrium acting	g at a point and if 60^{o} , 15	50^{o} and 150^{o} respectively denote the
	angles between A and	d B, B and C and C and A, th $-$	en the forces are in propor	tion of
	(a) $\sqrt{3}:1:1$	(b) $1:1:\sqrt{3}$	(c) $1:\sqrt{3}:1$	(d) 1:2.5:2.5
40.	The resultant of two	forces P and Q is R. If Q is o	doubled, <i>R</i> is doubled and i	f Q is reversed, R is again doubled. If
	the ratio $P^2: Q^2: R^2$	= 2:3:x, then x is equal to)	[MNR 1993; UPSEAT 2001; AIEEE 2003]
	(a) 5	(b) 4	(c) 3	(d) 2
41.	If the angle α betw	veen two forces of equal n -	nagnitude is reduced to a	$x - \pi/3$, then the magnitude of their
	resultant becomes $\sqrt{3}$	3 times of the earlier one. T	The angle α is	
	(a) $\pi/2$	(b) $2\pi/3$	(c) $\pi/4$	(d) $4\pi/5$
42.	The resultant of two then	forces <i>P</i> and <i>Q</i> is <i>R</i> . If one of	of the forces is reversed in	direction, the resultant becomes R' ,
	(a) $R'^2 = P^2 + Q^2 + 2R$	$PQ\cos\alpha$	(b) $R'^2 = P^2 - Q^2 - Q^2$	$-2PQ\cos\alpha$
	(c) $R'^2 + R^2 = 2(P^2 + q^2)$	Q^2)	(d) $R'^2 + R^2 = 2(P$	$(2^{2}-Q^{2})$
43.	Forces proportional t	to AB, BC and 2CA act along	the sides of triangle ABC i	n order, their resultants represented
	in magnitude and dir	ection is		
	(a) <i>CA</i>	(b) <i>AC</i>	(c) <i>BC</i>	(d) <i>CB</i>
		11	war as I aval	
		Ad	vance Level	
44.	The resultant of <i>P</i> a perpendicular to R' , (a) $2P = Q$	and Q is R. If P is reverse then (b) $P = Q$	ed, Q remaining the same (c) $P = 2Q$, the resultant becomes <i>R</i> '. If <i>R</i> is (d) None of these
45.	<i>ABCD</i> is a parallelo respectively and repe	ogram, a particle <i>P</i> is attr elled from <i>B</i> and <i>D</i> by forces	acted towards <i>A</i> and <i>C</i> b s proportional to <i>PB</i> and <i>Pl</i>	y forces proportional to <i>PA</i> and <i>PC</i> D. The resultant of these forces is
	(a) $2\overrightarrow{PA}$	(b) $2\overrightarrow{PB}$	(c) $2\overrightarrow{PC}$	(d) None of these
46.	A particle is acted up	on by three forces P, Q and	R. It cannot be in equilibri	um, if $P:Q:R =$
	(a) 1:3:5	(b) 3:5:7	(c) 5:7:9	(d) 7:9:11
47.	Forces of 7 N, 5N and	l 3 <i>N</i> acting on a particle are	e in equilibrium, the angle l	between the pair of forces 5 and 3 is
	(a) 30°	(b) 60°	(c) 90°	(d) 120°
48.	<i>ABCD</i> is a quadrilat forces is	teral. Forces represented b	by $\overrightarrow{DA}, \overrightarrow{DB}, \overrightarrow{AC}$ and \overrightarrow{BC} act of	on a particle. The resultant of these
	(a) \overrightarrow{DC}	(b) $2\overrightarrow{DC}$	(c) \overrightarrow{CD}	(d) $2\overrightarrow{CD}$
49.	With two forces actiright angles, then the	ng at a point, the maximu eir resultant is 3N. Then the	m effect is obtained when e forces are	their resultant is $4N$. If they act at
	(a) $\left(2+\frac{1}{2}\sqrt{3}\right)N$ and $\left(2+\frac{1}{2}\sqrt{3}\right)N$	$\left(2-\frac{1}{2}\sqrt{3}\right)N$	(b) $(2+\sqrt{3})N$ and	$(2-\sqrt{3})N$
	(c) $\left(2+\frac{1}{2}\sqrt{2}\right)N$ and $\left(2+\frac{1}{2}\sqrt{2}\right)N$	$\left(2-\frac{1}{2}\sqrt{2}\right)N$	(d) $(2+\sqrt{2})N$ and	$(2-\sqrt{2})N$
50.	The resultant of two	forces <i>P</i> and <i>Q</i> is equal to $$	$\sqrt{3}Q$ and makes an angle of	30° with the direction of <i>P</i> , then $\frac{P}{Q}$ =
	(a) 1 or 2	(b) 3 or 5	(c) 3 or 4	(d) 4 or 5
51.	Two men carry a we inclined at 60° to the	ight of 240 <i>Newton</i> betwee vertical and the other at 30	n them by means of two reprint D^{o} . The tensions in the rope	opes fixed to the weight. One rope is es are
	(a) 120 <i>N</i> ,120 <i>N</i>	(b) $120 N, 120 \sqrt{3} N$	(c) $120\sqrt{3}N.120\sqrt{3}$	N (d) None of these

52. Three forces keep a particle in equilibrium. One acts towards west, another acts towards north-east and the third towards south. If the first be 5N, then other two are

	(a) $5\sqrt{2}N, 5\sqrt{2}N$	(b) $5\sqrt{2}N, 5N$	(c) 5 <i>N</i> ,5 <i>N</i>	(d) None of these
53.	A particle is attracted	l to three points A, B and	C by forces equal to $\overrightarrow{PA}, \overrightarrow{PB}$ and	\overrightarrow{PC} respectively such that their
	resultant is $\lambda \overrightarrow{PG}$, whe	re G is the centroid of $\triangle ABC$	C. Then $\lambda =$	
	(a) 1	(b) 2	(c) 3	(d) None of these
5 4 .	Three forces of magn	itudes 8 Newton, 5N and 4	IN acting at a point are in equ	ilibrium, then the angle between
		(22)	(22)	
	(a) $\cos^{-1}\left(\frac{23}{40}\right)$	(b) $\cos^{-1}\left(\frac{-23}{40}\right)$	(c) $\sin^{-1}\left(\frac{23}{40}\right)$	(d) None of these
55.	<i>ABC</i> is an equilateral magnitudes 4 <i>N</i> , <i>PN</i> , 2 the system is in equili	triangle. <i>E</i> and <i>F</i> are the <i>N</i> , P <i>N</i> and Q <i>N</i> act at a pointrium, then	middle- points of the sides <i>C</i> . Int and are along the lines <i>BC</i> , <i>I</i>	A and AB respectively. Forces of BE, CA, CF and AB respectively. If
	(a) $P = 2\sqrt{3}N$, $Q = 6N$	(b) $P = 6N Q = 2\sqrt{3}N$	(c) $P = \sqrt{3}N Q = 6N$	(d) $P = 2\sqrt{3}N, Q = 3N$
56.	The resultant of force	es P and O acting at a point	at including a certain angle α	is R that of the forces $2P$ and Q
JU.	acting at the same an	gle is $2R$ and that of P and	2Q acting at the supplementar	y angle is $2R$. Then $P:Q:R =$
	(a) 1:2:3	(b) $\sqrt{6}:\sqrt{2}:\sqrt{5}$	(c) $\sqrt{2}:\sqrt{3}:\sqrt{5}$	(d) None of these
57.	The resultant of <i>P</i> an	d Q is R. If Q is doubled, F	R is also doubled and if Q is re	versed, <i>R</i> is again doubled. Then
	P:Q:R is given by			
	(a) 1 : 1: 1	(b) $\sqrt{2}:\sqrt{2}:\sqrt{3}$	(c) $\sqrt{2}:\sqrt{3}:\sqrt{2}$	(d) $\sqrt{3}:\sqrt{2}:\sqrt{2}$
58.	The resultant of two	forces acting on a particle	is at right angles to one of the	m and its magnitude is one third
	of the magnitude of th	ne other. The ratio of the la	arger force to the smaller is	-
	(a) $3:2\sqrt{2}$	(b) $3\sqrt{3}:2$	(c) 3:2	(d) 4:3
59.	ABCD is a rigid squa	re, on which forces 2, 3 a	and 5 kg. wt; act along AB, A	D and CA respectively. Then the
	magnitude of the resu	Iltant correct to one decima	al place in <i>kg</i> . <i>wt</i> . is	
60	(a) 1 A uniform rod of we	(b) 2 ight W rests with its ends	(C) 16	(d) None of these α and β
00.	β respectively to the	horizon, and intersecting in	n a horizontal line. The inclinat	tion θ of the rod to the vertical is
	given by			
	(a) $2 \cot \theta = \cot \beta - \cot \theta$	χ · · · · ·	(b) $\tan \theta = 2 \tan \alpha \tan \beta / \beta$	$(\tan \alpha - \tan \beta)$
6 .	(c) $\cot \theta = \sin(\alpha - \beta)/2s$	$\sin \alpha \sin \beta$	(d) All of these	
61.	Two forces $P + Q, P -$	Q make an angle 2α with	i one another and their resu	Itant make an angle θ with the
	bisector of the angle I (a) $P \tan \theta = O \tan \alpha$	(b) $P \cot \alpha = 0 \cot \theta$	(c) $P \tan \alpha = O \tan \theta$	(d) None of these
62	(a) $T \tan \theta = Q \tan \theta$	(b) $T \cot a = Q \cot b$	d point by strings fastened to it	(u) None of these
02.	12 cm. If θ be the ang	le at which the rod is inclir	ned to the vertical, then	ts ends, then lengths being 9 and
	(a) $\cos\theta = 7/25$	(b) $\sin\theta = 8/9$	(c) $\sin\theta = 19/20$	(d) $\sin\theta = 24/25$
63.	A uniform triangular middle point of the la	lamina whose sides are of rgest side. In equilibrium p	lengths 3 <i>cm</i> , 4 <i>cm</i> and 5 <i>cm</i> , is position the inclination of this s	suspended by a string tied at the side to the vertical is
	(a) $\sin^{-1}(24/25)$	(b) $\sin^{-1}(12/25)$	(c) $\cos^{-1}(7/25)$	(d) None of these
64.	Three forces \vec{P}, \vec{Q} and	\vec{R} acting along <i>IA</i> , <i>IB</i> and <i>IA</i>	C, where I is the incentre of a	ΔABC , are in equilibrium. Then
	$\vec{P}: \vec{Q}: \vec{R}$ is			
				[AIEEE 2004]
	(a) $\operatorname{cosec} \frac{A}{2} : \operatorname{cosec} \frac{B}{2} : c$	$\operatorname{osec} \frac{C}{2}$	(b) $\sec \frac{A}{2} : \sec \frac{B}{2} : \sec \frac{C}{2}$	
	(c) $\sin \frac{A}{2} : \sin \frac{B}{2} : \sin \frac{C}{2}$		(d) $\cos \frac{A}{2} : \cos \frac{B}{2} : \cos \frac{C}{2}$	
65.	If two forces P and Q	act on such an angle that	their resultant force R is equa	al to force P , then if P is doubled

then the angle between new resultant force and Q will be

10	6 Statics									
66.	(a) 30° What will be that for	(b) 60° and the second s	(c) 45°	(d) 90° kilogram weight it is given that						
	force, reaction of pla	ane and weight of body are in arithmetic (b) 6 kilogram weight	hmetic series	(d) 7 kilogram weight						
67.	A bead of weight W thread to the highes and the reaction of t	t can slide on a smooth circular st point of the wire, and in equili he wire on the bead, if the length	wire in a vertical plane, brium the thread is taut. of the string is equal to the string i	the bead is attached by a light. Then the tension of the thread he radius of the wire, are						
	(4) 11,211	(0) "',"		anal Moment and Counter						
<u> </u>		Protection	Parallel F	orces, moment and couples						
		Basic	Level							
68.	Like parallel forces and <i>AB</i> respectively.	act at the vertices <i>A</i> , <i>B</i> and <i>C</i> of The centre of the force is at the (b) Circum- centre	a triangle <i>ABC</i> and are pr	coportional to the lengths <i>BC</i> , <i>AC</i>						
69.	Three forces P , Q , R centroid of $\triangle ABC$, th	act along the sides <i>BC</i> , <i>CA</i> , <i>AB</i> of a en	a $\triangle ABC$ taken in order, if	their resultant passes through the						
	(a) $P + Q + R = 0$	(b) $\frac{P}{a} + \frac{Q}{b} + \frac{R}{c} = 0$	(c) $\frac{P}{\cos A} + \frac{Q}{\cos B} + \frac{R}{\cos C}$	$\overline{C} = 0$ (d) None of these						
7 0.	P, Q, R are the poin	ts on the sides BC, CA, AB of the	triangle ABC such that B	BP: PC = CQ: QA = AR: RB = m:n. It						
	Δ denotes the area of the ΔABC , then the forces $\overrightarrow{AP}, \overrightarrow{BQ}, \overrightarrow{CR}$ reduce to a couple whose moment is									
	(a) $2\frac{m+n}{m-n}$	(b) $2\frac{n-m}{n+m}$	(c) $2(m^2 - n^2)\Delta$	(d) $2(m^2 + n^2)\Delta$						
71.	If the resultant of f then	orces <i>P,Q,R</i> acting along the side	es BC, CA, AB of a $\triangle ABC$]	passes through its circumcentre						
	(a) $P \sin A + Q \sin B +$	$R\sin C = 0$	(b) $P\cos A + Q\cos B + R$	$\cos C = 0$						
	(c) $P \sec A + Q \sec B +$	$R \sec C = 0$	(d) $P \tan A + Q \tan B + I$	$R \tan C = 0$						
72.	The resultant of two	unlike parallel forces of magnitu	de P each acting at a dista	ance of p is a p						
	(a) Force P	(b) Couple of moment <i>p</i> . <i>P</i>	(c) Force 2P	(d) Force $\frac{1}{2}$						
73.	The moment of a system G_1, G_2, G_3 then,	stem of coplanar forces (not in eo	quilibrium) about three co	ollinear points <i>A,B,C</i> in the plane						
	(a) $G_1.AB + G_2.BC + G_2.BC$	$G_3.AC = 0$	(b) $G_1.BC + G_2.CA + G_3$	AB = 0						
	(c) $G_1.CA + G_2.AB + G_2.AB$	$G_3.BC = 0$	(d) None of these							
74.	A rod can turn freel weight of the body i	y about one of its ends which is f s acting. In the position of equilib	ixed. At the other end a l rium, the rod is inclined t	norizontal force equal to half the to the vertical at an angle						
	(a) 30°	(b) 45 [°]	(c) 60°	(d) None of these						
75.	The resultant of two when Q and R replace	b like parallel forces <i>P</i> , <i>Q</i> passes be <i>P</i> and <i>Q</i> respectively, then	through a point <i>O</i> . If the	resultant also passes through C						
-6	(a) P, Q, R are in G.P	. (b) Q, P, K are in G.P.	(c) R, P, Q are in G.P.	(d) P,Q,R are in A.P.						
70.	(a) Balance each oth	uples of equal moments her (b) Are equivalent	(c) Need not be equiv	alent (d) None of these						
77.	Two like parallel f interchanged in posi	orces P and $3P$ act on a rigid tion, the resultant will be displac	body at points A and B ed through a distance of	respectively. If the forces are						
	(a) $\frac{1}{2}AB$	(b) $\frac{1}{3}AB$	(c) $\frac{1}{4}AB$	(d) $\frac{3}{4}AB$						
-	_, ,,									

78. Three like parallel forces *P*,*Q*, *R* act at the corners *A*,*B*,*C* of a $\triangle ABC$. If their resultant passes through the incentre of $\triangle ABC$, then

(a)
$$\frac{p}{a} + \frac{Q}{b} + \frac{R}{c} = 0$$
 (b) $P_{a} + Q_{b} + R_{c} = 0$ (c) $\frac{p}{a} = \frac{Q}{b} = \frac{R}{c}$ (d) $P_{a} = Q_{b} = R_{c}$
79. If the sum of the resolved parts of a system of coplanar forces along two mutually perpendicular direction is zero, then the sum of the moment of the forces about a given point
(a) is zero always (b) is positive always (c) is negative always (d) May have any value
80. Three forces P , Q , R act along the sides BC , CA , AB of triangle ABC , taken in order. If their resultant passes through the incentre of ABC , then
(a) $P + Q = R = 0$ (b) $\frac{P}{a} + \frac{Q}{b} + \frac{R}{c}$ (c) $a^{P} + bQ + cR = 0$ (d) None of these
81. If the resultant of two unlike parallel forces of magnitudes 10 N and 16 N act along a line at a distance of 24 cm from the line of action of the smaller force, then the distance between the lines of action of the forces is (a) 12 cm (b) 8 cm (c) 9 m (d) 16 cm
82. If the position of the resultant of two like parallel forces P and Q is unaltered, when the positions of P and Q are interchanged, then
(a) $P = Q$ (b) $P = 2Q$ (c) $2P = Q$ (d) None of these
83. Three parallel forces PQ , R at at three points AR , C of a rod at distances of $2m$, $8m$ and $6m$ respectively from one end. If the rod be in equilibrium, then $P:Q:R =$
(a) $1:2:3$ (b) $1:7 \times \overline{P}$ (c) $1\frac{r \times \overline{P}}{|\overline{P}|}$ (d) $\frac{r \times \overline{P}}{|\overline{P}|}$
84. The magnitude of the moment of a force \overline{C} about a point is
(a) $|\overline{R}|$ (b) $|\overline{r} \times \overline{R}|$ (c) $|\overline{r \times \overline{P}|}|$ (d) $\frac{r \times \overline{P}}{|\overline{P}|}$
85. The resultant of two like parallel forces is $12N$. The distance between the forces is $18M$. If one of these
86. Force forming a couple are of magnitude (2) $2R = Q$ (d) None of these
87. The resultant of the equal like parallel forces acting at the writces of a triangle act at its
(a) Am (b) $4M$ (b) $4M$
87. The resultant of the equal like parallel forces acting at the writces of a triangle act at its
(a) $R = Q$ (b) $P = 2Q$ (c) $2^{P} = Q$ (d) N

95 ∙	If the resultant of two action of the smaller f	like parallel forces of magnit orce, then the distance betwee	udes 6 <i>N</i> and 4 <i>N</i> acts at a di en the lines of action of the f	stance of 12 <i>cm</i> from the line of forces is
96.	 (a) 18 cm Two like parallel force resultant force and the (a) 10 N,4.5m 	 (b) 24 cm es of 5N and 15 N, act on a l e distance of its point of a app (b) 20 N,4.5m 	 (c) 20 cm ight rod at two points A an lication from the point A are (c) 20 N,1.5m 	 (d) None of these (d) B respectively 6m apart. The [Roorkee Screning 1993] (d) 10 N,15m
97.	Two weights of 10gms The point in the lever (a) 5 cm	and 2 <i>gms</i> hang from the en about which it will balance is (b) 25 <i>cm</i>	nds of a uniform lever one m from the weight of 10 <i>gms</i> at (c) 45 cm	neter long and weighting 4 <i>gms</i> . a distance of (d) 65 <i>cm</i>
98.	In a right angle $\triangle ABC$,	$\angle A = 90^{\circ}$ and sides <i>a,b,c</i> are r	espectively 5 cm, 4 cm and	3 cm. If a force \vec{F} has moments
99.	0, 9 and 16 in N-cm (a) 9 If the forces $6W$, $5W$ a and y axis respectively	 n. units respectively about ver (b) 4 acting at a point (2, 3) in cart <i>t</i>, then the moment of the resu 	rtices <i>A</i> , <i>B</i> and <i>C</i> , then magn (c) 5 tesian rectangular coordinat altant force about the origin	itude of \vec{F} is (d) 3 res are parallel to the positive x is (d) 844
100.	A man carries a ham changes the point of s point of support, then	(b) – 3W ner on his shoulder and hold support of the handle at the s the pressure on his shoulder i	(c) $3W$ is it at the other end of its shoulder and if x is the dist s proportional to	(d) – 8W light handle in his hand. If he ance between his hand and the
	(a) <i>x</i>	(b) x^2	(c) 1/x	(d) $1/x^2$
101.	If the force represente	d by $3\hat{j} + 2\hat{k}$ is acting through t	the point $5\hat{i} + 4\hat{j} - 3\hat{k}$, then it	s moment about the point (1, 3,
	1) is			
	(a) $14\hat{i} - 8\hat{j} + 12\hat{k}$	(b) $-14\hat{i} + 8\hat{j} - 12\hat{k}$	(c) $-6\hat{i}-\hat{j}+9\hat{k}$	(d) $6\hat{i} + \hat{j} - 9\hat{k}$
102.	If a couple is acting on the end and the angula	2 particles of mass 1 kg attained ar acceleration of system about	ched with a rigid rod of leng	th $4m$, fixed at centre, acting at agnitude of force is
	(a) 2N	(b) 4N	(c) 1N	(d) None of these
		Advan	ce Level	
103.	Forces <i>P</i> , 3 <i>P</i> , 2 <i>P</i> and groduced at the point	5P act along the sides AB, BC E, then AD : DE is	, CD and DA of the square Δ	ABCD. If the resultant meets AD
	(a) 1:2	(b) 1:3	(c) 1:4	(d) 1:5
104.	If R and R' are the result of R' R' are the result of R' are the result of R' are the result of R' are the result of R' are the result of R'' are the result of R''' are the result of R'''' are the result of R'''' are the result of R''''' are the result of R'''''''''''''''''''''''''''''''''''	esultants of two forces $\frac{P}{Q}$ as	nd $\frac{Q}{P}(P > Q)$ according as th	ey are like or unlike such that
	R: R' = 25:7, then $P:Q$	= (b) 2 : 4	(a) (b)	
105.	Two like parallel force positions, show that the where $d =$	es <i>P</i> and <i>Q</i> act on a rigid bo the point of application of the	dy at <i>A</i> and <i>B</i> respectively. e resultant will be displace	If <i>P</i> and <i>Q</i> be interchanged in d through a distance along <i>AB</i> ,
	(a) $\frac{P+Q}{P-Q}AB$	(b) $\frac{2P+Q}{2P-Q}AB$	(c) $\frac{P-Q}{P+Q}AB$	(d) $\frac{P-Q}{2P+Q}AB$
106.	A rigid wire, without r two weights <i>P</i> and <i>Q</i> a inclination to the verti	weight, in the form of the arc at its extremities rests with its acal of the radius to the end at	of a circle subtending an a sconvexity downwards upon which <i>P</i> is suspended, then	ngle α at its centre and having n a horizontal plane. If θ be the tan θ =

(a)
$$\frac{Q \sin \alpha}{P + Q \cos \alpha}$$
 (b) $\frac{P \sin \alpha}{Q + P \cos \alpha}$ (c) $\frac{Q \cos \alpha}{P + Q \sin \alpha}$ (d) $\frac{P \cos \alpha}{Q + P \sin \alpha}$

107. *ABCD* is a rectangle such that AB = CD = a and BC = DA = b. Forces *P*, *P* act along *AD* and *CB*, and forces *Q*,*Q* act along *AB* and *CD*. The perpendicular distance between the resultant of forces *P*, *Q* at *A* and the resultant of forces *P*,*Q* at *C* is

A heavy uniform rod, 15 cm long, is suspended from a fixed point by strings fastened to its ends, their lengths 119. being 9 and 12 cm. If θ be the angle at which the rod is inclined to the vertical, then $\sin \theta =$ (c) $\frac{19}{20}$ (a) $\frac{4}{5}$ (d) $\frac{24}{25}$ (b) $\frac{8}{0}$ **120.** A light string of length *l* is fastened to two points *A* and *B* at the same level at a distance 'a' apart. A ring of weight W can slide on the string, and a horizontal force P is applied to it such that the ring is in equilibrium vertically below *B*. The tension in the string is equal to (c) $\frac{W(l^2 + a^2)}{2t^2}$ (d) $\frac{2W(l^2 + a^2)}{2a^2}$ (a) $\frac{aW}{l}$ (b) *law* **121.** Two forces *P* and *Q* acting parallel to the length and base of an inclined plane respectively would each of them singly support a weight *W*, on the plane , then $\frac{1}{P^2} - \frac{1}{O^2} =$ (a) $1/W^2$ (b) $2/W^2$ (c) $3/W^2$ (d) None of these 122. The resultant of the forces 4, 3, 4 and 3 units acting along the lines AB, BC, CD and DA of a square ABCD of side 'a' respectively is [MNR 1988] (a) A force $5\sqrt{2}$ through the centre of the square (b) A couple of moment 7a (c) A null force (d) None of these **123.** A body of 6.5 kg is suspended by two strings of lengths 5 and 12 metres attached to two points in the same horizontal line whose distance apart is 13 m. The tension of the strings in kg wt. are (a) 3,5 (b) 2.5, 6 (c) 4, 5 (d) 3, 4 124. A body of mass 10 kg is suspended by two strings 7 cm and 24 cm long, their other ends being fastened to the extremities of a rod of length 25 cm. If the rod be so held that the body hangs immediately below its middle point, then the tension of the strings in kg wt. are (a) 7/5, 24/5 (b) 14/5, 48/5 (d) None of these (c) 3/5,7/5 **125.** A sphere of radius *r* and weight *W* rests against a smooth vertical wall, to which is attached a string of length *l* where one end is fastened to a point on the wall and the other to the surface of the sphere. Then the tension in the string is (b) $\frac{W(l-r)}{l+r}$ (c) $\frac{W(l+r)}{\sqrt{(l^2+2lr)}}$ (a) $\frac{W(l-r)}{\sqrt{(l^2+2lr)}}$ (d) None of these 126. A system of five forces whose directions and non-zero magnitudes can be chosen arbitrarily, will never be in equilibrium if *n* of the forces are concurrent, where (a) n = 2(b) n = 3(c) n = 4(d) n = 5127. A string ABC has its extremities tied to two fixed points A and B in the same horizontal line. If a weight W is knotted at a given point C, then the tension in the portion CA is (where a, b, c and the sides and Δ is the area of triangle *ABC*) (a) $\frac{Wb}{4c\Lambda}(a^2 + b^2 + c^2)$ (b) $\frac{Wb}{4c\Lambda}(b^2 + c^2 - a^2)$ (c) $\frac{Wb}{4c\Lambda}(c^2 + a^2 - b^2)$ (d) $\frac{Wb}{4c\Lambda}(a^2 + b^2 - c^2)$ 128. A uniform rod of weight W and length 2l is resting in a smooth spherical bowl of radius r. The rod is inclined to the horizontal at an angle of (d) $l/\sqrt{(r^2 - l^2)}$ (c) $\tan^{-1}(l/r)$ (a) 0° (b) $\pi/4$ **129.** There are three coplanar forces acting on a rigid body. If these are in equilibrium, then they are (a) Parallel (b) Concurrent (c) Concurrent or parallel (d) All of these 130. There is a system of coplaner forces acting on a rigid body represented in magnitude, direction and sense by the sides of a polygon taken in order, then the system is equivalent to (a) A single non-zero force (b) A zero force

Statics 111 (c) A couple, where moment is equal to the area of polygen (d) A couple, where moment is twice the area of polygen **131.** A weight of 10 N is hanged by two ropes as shown in fig., find tensions T_1 and T_2 . [UPSEAT 2002] 60 (b) $5\sqrt{3}N.5N$ (d) $5\sqrt{3}N 5\sqrt{3}N$ (a) $5N.5\sqrt{3}N$ (c) 5N.5N**132.** Three coplanar forces each equal to *P*, act at a point. The middle one makes an angle of 60° with each one of the remaining two forces. If by applying force Q at that point in a direction opposite to that of the middle force, equilibrium is achieved, then (a) P = Q(c) 2P = Q(d) None of these (b) P = 2Q**133.** A 2*m* long uniform rod ABC is resting against a smooth vertical wall at the end A and on a smooth peg at a point B. If distance of B from the wall is 0.3m, then (a) AB < 0.3m(b) *AB* < 1.0*m* (c) AB > 0.3m(d) AB > 1.0mAdvance Level 134. A uniform rod AB movable about a hinge at A rests with one end in contact with a smooth wall. If α be the inclination of the rod to the horizontal, then reaction at the hinge is (a) $\frac{W}{2}\sqrt{3 + \cos ec^2\alpha}$ (b) $\frac{W}{2}\sqrt{3 + \sin^2\alpha}$ (c) $W\sqrt{3 + \cos ec^2\alpha}$ (b) $\frac{W}{2}\sqrt{3+\sin^2\alpha}$ (a) $\frac{W}{2}\sqrt{3+\cos ec^2\alpha}$ (d) None of these 135. A uniform rod AB, 17m long whose mass in 120kg rests with one end against a smooth vertical wall and the other end on a smooth horizontal floor, this end being tied by a chord 8m long, to a peg at the bottom of the wall, then the tension of the chord is (a) 32 kg wt (b) 16 kg wt (c) 64 kg wt (d) 8 kg wt 136. Forces of magnitudes 3, P, 5, 10 and Q Newton are respectively acting along the sides AB, BC, CD, AD and the diagonal CA of a rectangle ABCD, where AB = 4 m and BC = 3m. If the resultant is a single force along the other diogonal *BD* then *P*,*Q* and the resultant are (a) $4,10\frac{5}{12},12\frac{11}{12}$ (c) $3\frac{1}{2}, 8, 9\frac{1}{2}$ (b) 5, 6, 7 (d) None of these 137. A uniform rod AB of length a hangs with one end against a smooth vertical wall, being supported by a string of length *l*, attached to the other end of the rod and to a point of the rod vertically above *B*. If the rod rests inclined to the wall at an angle θ , then $\cos^2 \theta =$ (b) $(l^2 - a^2)/2a^2$ (c) $(l^2 - a^2)/3a^2$ (a) $(l^2 - a^2)/a^2$ (d) None of these 138. The resultant of two forces sec B and sec C along sides AB, AC of a triangle ABC is a force acting along AD, where D is [MNR 1995] (a) Middle point of BC (b) Foot of perpendicular from A on BC (c) D divides BC in the ratio cos B: cos C (d) D divides BC in the ratio cos C: cos B 139. Three coplanar forces each of weight 10 kilogram are acting at a particle. If their line of actions make same angle, then their resultant force will be (c) $10\sqrt{2}$ (a) Zero (b) $5\sqrt{2}$ (d) 20 Friction **Basic Level**

140. A rough plane is inclined at an angle α to the horizon. A body is just to slide due to its own weight. The angle of friction would be

[BIT Ranchi 1994] (a) $\tan^{-1} \alpha$ (b) α (c) $\tan \alpha$ (d) 2α **141.** A particle is resting on a rough inclined plane with inclination α . The angle of friction is λ , the particle will be at rest if and only if, [UPSEAT 2000; MNR 1991] (a) $\alpha > \lambda$ (b) $\alpha \geq \lambda$ (c) $\alpha \leq \lambda$ (d) $\alpha < \lambda$ **142.** The relation between the coefficient of friction (μ) and the angle of friction (λ) is given by (a) $\mu = \cos \lambda$ (b) $\mu = \sin \lambda$ (c) $\mu = \tan \lambda$ (d) $\mu = \cot \lambda$ 143. A rough inclined plane has its angle of inclination equal to 45 ° and $\mu = 0.5$. The magnitude of the least force in kg wt, parallel to the plane required to move a body of 4kg up the plane is (d) $\frac{1}{\sqrt{2}}$ (a) $3\sqrt{2}$ (b) $2\sqrt{2}$ (c) $\sqrt{2}$ 144. A body of weight W rests on a rough plane, whose coefficient of friction is $\mu(=\tan \lambda)$ which is inclined at an angle α with the horizon. The least force required to pull the body up the plane is (a) $W \sin \lambda$ (b) $W \cos \lambda$ (c) $W \tan \lambda$ (d) $W \cot \lambda$ 145. The minimum force required to move a body of weight W placed on a rough horizontal plane surface is (a) $W \sin \lambda$ (c) $W \tan \lambda$ (b) $W \cos \lambda$ (d) $W \cos \lambda$ 146. A body of weight 4 kg is kept in a plane inclined at an angle of 30° to the horizontal. It is in limiting equilibrium. The coeffiecient of friction is then equal to (d) $\frac{\sqrt{3}}{4}$ (c) $\frac{1}{4\sqrt{3}}$ (a) $\frac{1}{\sqrt{3}}$ (b) $\sqrt{3}$ 147. A cubical block rests on an inclined plane with four edges horizontal. The coefficient of friction is $\frac{1}{\sqrt{2}}$. The block just slides when the angle of inclination of the plane is (a) 0° (b) 30° (c) 60° (d) 45° 148. A weight W can be just supported on a rough inclined plane by a force P either acting along the plane or horizontally. The ratio $\frac{P}{W}$, for the angle of friction ϕ , is (a) $\tan \phi$ (b) $\sec \phi$ (c) $\sin \phi$ (d) None of these 149. A ball *AB* of weight *W* rests like a ladder, with upper end *A* against a smooth vertical wall and the lower end *B* on a rough horizontal plane. If the bar is just on the point of sliding, then the reaction at A is equal to (μ is the coeffcient of friction) (c) Normal reaction at *B* (d) W/μ (a) μW (b) W **150.** A body is in equilibrium on a rough inclined plane of which the coeffcient of friction is $(1/\sqrt{3})$. The angle of inclination of the plane is gradually increased. The body will be on the point of sliding downwards, when the inclinician of the plane reaches [MNR 1995] (a) 15° (c) 45° (d) 60° (b) 30° 151. A body of weight 40 kg rests on a rough horizontal plane, whose coefficient of friction is 0.25. The least force

(a) 10 kg wt (b) 20 kg wt (c) 30 kg wt (d) 40 kg wt **152.** The least force required to pull a body of weight W up an inclined rough plane is (a) $W \sin(\alpha + \lambda)$ (b) $2W \sin(\alpha - \lambda)$ (c) $W \sin(\alpha - \lambda)$ (d) $2W \sin(\alpha + \lambda)$

which acting horizontally would move the body is

153. The foot of a uniform ladder is on a rough horizontal ground and the top rests against a smooth vertical wall. The weight of the ladder is 400 units. A man weighing 800 units stands on the ladder at one quarter of its length from the bottom. If the inclination of the ladder to the horizontal is 30°, the reaction at the wall is

Basic Level

165.	The C.G. of three particle	es placed at the vertices of a tri	angle is at its	
166	(a) Incentre	(b) Centroid	(c) Circumcentre Q two circular	(d) Orthocentre
100.	are punched. The centre	G_1 and G_2 of the wholes are on	the same diameter of the c	ircular disc. If G is the centre
	of gravity of the punched	d disc, then <i>OG</i> =		
	(a) $\frac{22}{25}$ cm	(b) $\frac{55}{22}$ cm	(c) $\frac{25}{22}$ cm	(d) None of these
167.	The centre of mass of a will be at a distance	rod of length 'a' cm whose der	nsity varies as the square o	f the distance from one end,
	(a) $\frac{a}{2}$ from this end	(b) $\frac{a}{3}$ from this end	(c) $\frac{2a}{3}$ from this end	(d) $\frac{3a}{4}$ from this end
168.	AB is a straight line of le A and 50 cm from B res system is at the middle p	ength 150 <i>cm</i> . Two particles of m pectively. The distance of the the point of <i>AB</i> is	nasses 1kg and 3kg are place hird particle of mass 2kg fr	ed at a distance of 15 <i>cm</i> form from <i>A</i> , so that the C.G. of the
	(a) 40 <i>cm</i>	(b) 50 <i>cm</i>	(c) 67.5 <i>cm</i>	(d) None of these
169.	A solid right circular cyl centre of the base, then	linder is attached to a hemisph the ratio of the radius and heigh	ere of equal base. If the C. nt of cylinder is	G of combined solid is at the
	(a) 1:2	(b) $\sqrt{2}:1$	(c) 1: 3	(d) None of these
17 0.	In a right angled triang attached at the right ang	gle one side is thrice the other gle. The angle that the hypotenu	r side in length. The trian se of the triangle will make	gle is suspended by a string with the vertical is
	(a) $\sin^{-1}(3/5)$	(b) $\sin^{-1}(4/5)$	(c) 60°	(d) None of these
171.	A square hole is punched the circle. Centroid of th	l out of a circular lamina of dia e remainder from the centre of	meter 4 <i>cm,</i> the diagonal of the circle is at a distance	f the square being a radius of
	(a) $\frac{1}{2\pi + 1}$	(b) $\frac{1}{2\pi - 1}$	(c) $\frac{1}{\pi + 1}$	(d) $\frac{1}{\pi - 1}$
172.	The centre of gravity of	the surface of a hollow cone lies	s on the axis and divides it i	n the ratio
		(b) 1:3	(c) 2:3	(d) 1:1
150	(a) 1:2	lid aulindan with radius a and	height a together with a	alid homicrohoro of radius a
173.	(a) 1:2 A body consists of a sol placed on the base of the	lid cylinder with radius <i>a</i> and e cylinder. The centre of gravity	height a together with a s of the complete body is	solid hemisphere of radius a
173.	(a) 1:2A body consists of a sol placed on the base of the(a) Inside the cylinder	lid cylinder with radius a and e cylinder. The centre of gravity	height a together with a s y of the complete body is (b) Inside the hemisphere	solid hemisphere of radius a
173.	 (a) 1:2 A body consists of a sol placed on the base of the (a) Inside the cylinder (c) On the interface betw 	lid cylinder with radius a and cylinder. The centre of gravity ween the two	height a together with a s y of the complete body is (b) Inside the hemisphere (d) Outside both	solid hemisphere of radius a
173. 174.	 (a) 1:2 A body consists of a sol placed on the base of the (a) Inside the cylinder (c) On the interface between the centre of gravity <i>G</i> triangle whose hypotene 	lid cylinder with radius <i>a</i> and e cylinder. The centre of gravity ween the two of three particles of equal mass use is equal to 8 units is on the n	height a together with a s y of the complete body is (b) Inside the hemisphere (d) Outside both s placed at the three vertice median through A such that	solid hemisphere of radius a es of a right angled isosceles AG is
173. 174.	 (a) 1:2 A body consists of a solplaced on the base of the (a) Inside the cylinder (c) On the interface betw The centre of gravity <i>G</i> triangle whose hypotenu (a) 4/3 Weights 2, 3, 4 and 5 <i>lb</i> 	lid cylinder with radius a and e cylinder. The centre of gravity ween the two of three particles of equal mass use is equal to 8 units is on the n (b) 5/3 s are suspended from a uniform	height a together with a s y of the complete body is (b) Inside the hemisphere (d) Outside both s placed at the three vertice median through A such that (c) 8/3 h lever 6 <i>ft</i> long at distance	solid hemisphere of radius a es of a right angled isosceles AG is (d) 10/3 (c) 10
173. 174. 175.	 (a) 1:2 A body consists of a solplaced on the base of the (a) Inside the cylinder (c) On the interface betw The centre of gravity <i>G</i> triangle whose hypotent (a) 4/3 Weights 2, 3, 4 and 5 <i>lbs</i> end. If the weight of the 	lid cylinder with radius <i>a</i> and e cylinder. The centre of gravity ween the two of three particles of equal mass use is equal to 8 units is on the n (b) 5/3 s are suspended from a uniform lever is 11 <i>lbs</i> , then the distance	height a together with a s y of the complete body is (b) Inside the hemisphere (d) Outside both s placed at the three vertice median through A such that (c) 8/3 h lever 6 <i>ft</i> long at distance e of the point at which it with	solid hemisphere of radius a es of a right angled isosceles AG is (d) 10/3 s of 1, 2, 3 and 4 <i>ft</i> from one ill balance from this end is
173. 174. 175.	 (a) 1:2 A body consists of a solplaced on the base of the (a) Inside the cylinder (c) On the interface between the centre of gravity <i>G</i> triangle whose hypotenue (a) 4/3 Weights 2, 3, 4 and 5 <i>lbs</i> end. If the weight of the (a) 53/25 	lid cylinder with radius <i>a</i> and e cylinder. The centre of gravity ween the two of three particles of equal mass use is equal to 8 units is on the n (b) 5/3 s are suspended from a uniform lever is 11 <i>lbs</i> , then the distance (b) 63/25	height a together with a sy of the complete body is (b) Inside the hemisphere (d) Outside both s placed at the three vertice median through A such that (c) $8/3$ h lever 6 <i>ft</i> long at distance e of the point at which it with (c) $73/25$	es of a right angled isosceles <i>AG</i> is (d) 10/3 s of 1, 2, 3 and 4 <i>ft</i> from one Ill balance from this end is (d) None of these
173. 174. 175.	 (a) 1:2 A body consists of a solplaced on the base of the (a) Inside the cylinder (c) On the interface between the centre of gravity <i>G</i> triangle whose hypotened (a) 4/3 Weights 2, 3, 4 and 5 <i>lbs</i> end. If the weight of the (a) 53/25 	lid cylinder with radius <i>a</i> and e cylinder. The centre of gravity ween the two of three particles of equal mass use is equal to 8 units is on the n (b) 5/3 s are suspended from a uniform lever is 11 <i>lbs</i> , then the distance (b) 63/25 Advance 1	height a together with a s y of the complete body is (b) Inside the hemisphere (d) Outside both s placed at the three vertice median through A such that (c) 8/3 n lever 6 <i>ft</i> long at distance e of the point at which it with (c) 73/25	es of a right angled isosceles AG is (d) 10/3 (d) 10/3 (d) 10/3 (e) 10/3 (f) 10/3
173. 174. 175. 176.	 (a) 1:2 A body consists of a solplaced on the base of the (a) Inside the cylinder (c) On the interface between the centre of gravity <i>G</i> triangle whose hypotened (a) 4/3 Weights 2, 3, 4 and 5 <i>lbs</i> end. If the weight of the (a) 53/25 <i>ABC</i> is a uniform triang gravity of the remaining 	lid cylinder with radius a and e cylinder. The centre of gravity ween the two of three particles of equal mass use is equal to 8 units is on the r (b) 5/3 s are suspended from a uniform lever is 11 <i>lbs</i> , then the distance (b) 63/25 Advance I ular lamina with centre of gra portion is at G' . Then GG' is ed	height a together with a s y of the complete body is (b) Inside the hemisphere (d) Outside both s placed at the three vertice median through A such that (c) 8/3 h lever 6 <i>ft</i> long at distance e of the point at which it with (c) 73/25	es of a right angled isosceles <i>AG</i> is (d) 10/3 s of 1, 2, 3 and 4 <i>ft</i> from one Ill balance from this end is (d) None of these <i>BC</i> is removed, the centre of
173. 174. 175. 176.	(a) 1:2 A body consists of a sol placed on the base of the (a) Inside the cylinder (c) On the interface betw The centre of gravity <i>G</i> triangle whose hypotent (a) 4/3 Weights 2, 3, 4 and 5 <i>lbs</i> end. If the weight of the (a) 53/25 <i>ABC</i> is a uniform triang gravity of the remaining (a) $\frac{1}{3}AG$	lid cylinder with radius <i>a</i> and e cylinder. The centre of gravity ween the two of three particles of equal mass use is equal to 8 units is on the r (b) $5/3$ s are suspended from a uniform lever is 11 <i>lbs</i> , then the distance (b) $63/25$ Advance I ular lamina with centre of gra portion is at <i>G'</i> . Then <i>GG'</i> is eq (b) $\frac{1}{4}AG$	height a together with a s y of the complete body is (b) Inside the hemisphere (d) Outside both s placed at the three vertice median through A such that (c) $8/3$ n lever 6 <i>ft</i> long at distance e of the point at which it with (c) $73/25$ Level wity at <i>G</i> . If the portion <i>G</i> , qual to (c) $\frac{1}{2}AG$	solid hemisphere of radius a es of a right angled isosceles AG is (d) 10/3 (d) 10/3 (d) 10/3 (es of 1, 2, 3 and 4 <i>ft</i> from one (from this end is (from the se (from the se) BC is removed, the centre of (from the se) (from the se) (from the se)
173. 174. 175. 176.	(a) 1 : 2 A body consists of a sol placed on the base of the (a) Inside the cylinder (c) On the interface betw The centre of gravity <i>G</i> triangle whose hypotenu (a) $4/3$ Weights 2, 3, 4 and 5 <i>lbs</i> end. If the weight of the (a) $53/25$ <i>ABC</i> is a uniform triang gravity of the remaining (a) $\frac{1}{3}AG$ On the same base <i>AB</i> , an are 12 <i>cm</i> and 6 <i>cm</i> respectively.	lid cylinder with radius <i>a</i> and e cylinder. The centre of gravity ween the two of three particles of equal mass use is equal to 8 units is on the n (b) $5/3$ s are suspended from a uniform lever is 11 <i>lbs</i> , then the distance (b) $63/25$ Advance 1 ular lamina with centre of gra portion is at <i>G'</i> . Then <i>GG'</i> is eac (b) $\frac{1}{4}AG$ d on opposite side of it, isoscellectively. The distance of the cent	height a together with a s y of the complete body is (b) Inside the hemisphere (d) Outside both s placed at the three vertice median through A such that (c) $8/3$ h lever 6 <i>ft</i> long at distance e of the point at which it wit (c) $73/25$ Level wity at <i>G</i> . If the portion <i>G</i> qual to (c) $\frac{1}{2}AG$ les triangles <i>CAB</i> and <i>DAB</i> a thre of gravity of the quadri	solid hemisphere of radius a es of a right angled isosceles AG is (d) 10/3 (d) 10/3 (d) None of the rom this end is (d) None of these BC is removed, the centre of (d) $\frac{1}{6}AG$ are described whose altitudes lateral <i>CADB</i> from <i>AB</i> , is

- 178. A straight rod AB of length 1ft balances about a point 5 inches from A when masses of 9 and 6 lbs are suspended from A and B respectively. It balances about a point 3 1/2 inches from B when the mass of 6 lbs is replaced by one of 23 lbs. The distance of C.G. of the rod from the end B is

 (a) 3 1/2 inches
 (b) 5 1/2 inches
 (c) 2 1/2 inches
 (d) None of these

 179. A uniform rod of length 2l and weight W is lying across two pegs on the same level 'a' ft apart. If neither peg can bear a pressure greater than P, then the greatest length of the rod which may be projected beyond either peg is

 (a) 1 a(W+P)/W
 (b) 1 a(W-P)/W
 (c) 1 + a(W-P)/W
 (d) None of these
- **180.** A rod $2\frac{1}{2}ft$ long rests on two pegs 10 inches apart with its centre mid way between them. The greatest masses that can be suspended in succession from the two ends without disturbing equilibrium are 4 and 6 *lbs*. respectively. The weight of the rod is (a) 2 *lbs* (b) 4 *lbs* (c) 3 *lbs* (d) None of these
- **181.** A heavy rod *ACDB*, where AC=a and DB=b rests horizontally upon two smooth pegs *C* and *D*. If a load *P* were applied at *A*, it would just disturb the equilibrium. Similar would do the load *Q* applied to *B*. If CD=c, then the weight of the rod is
 - (a) $\frac{Pa+Qb}{c}$ (b) $\frac{Pa-Qb}{c}$ (c) $\frac{Pa+Qb}{2c}$ (d) None of these

* * *

Assignment (Basic and Advance Level)

Statics

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	d	d	d	d	С	b	d	b	d	b	d	С	d	b	а	а	C	b	а
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
C	b	b	а	b	а	а	а	а	b	а	C	b	С	C	b	а	d	b	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	С	а	b	d	а	b	b	С	а	b	b	С	а	а	b	C	а	С	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a,b	a,d	a,c	b	d	b	b	C	b	b	b	b	b	b	а	b	а	C	d	а
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
C	а	а	b	С	b	d	b	а	d	а	а	b	b	С	b	b	C	d	С
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
а	а	С	C	С	а	b	d	а	С	d	C	С	а	С	b	a,b,c	С	d	С
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
а	b	b	b	C	С	С	а	d	b	b	С	b,c	а	а	а	С	b	а	b
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160

	Indices and Surds 1															ds 115			
С	С	а	b	а	а	b	а	а	b	а	а	d	а	С	а	а	b	а	а
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
а	b	С	b	b	С	d	С	b	а	b	а	а	С	С	d	d	b	b	b

181 a