Chapter

6

Binomial Theorem and Mathematical Induction

	Contents				
	6.1 Binomial Theorem				
6.1.1	Binomial theorem				
6.1.2	Binomial theorem for positive integral index				
6.1.3	Some important expansions				
6.1.4	General term				
6.1.5	Independent term or constant term				
6.1.6	Number of terms in the expansion of $(a + b + c)^n$ and $(a + b + c + d)^n$				
6.1.7	Middle term				
6.1.8	To determine a particular term in the expansion				
6.1.9	6.1.9 Greatest term and greatest coefficient				
6.1.10	Properties of binomial coefficients				
6.1.11	An important theorem				
6.1.12	Multinomial theorem (For positive integral index)				
6.1.13	Binomial theorem for any index				
6.1.14	Three/four consecutive terms or coefficients				
6.1.15	Some important points				
	6.2 Mathematical Induction				
6.2.1	First principle of mathematical induction				
6.2.2	Second principle of mathematical induction				
6.2.3	Some formulae based on principle of induction				
As	ssignment (Basic and Advance Level)				
	Answer Sheet of Assignment				

The ancient Indian mathematicians knew the coefficient in the expansion of $(x+y)^n$, $0 \le n \le 7$. The arrangement of these coefficient was in the form of a diagram called Meru-Prastara, provided by Pingla in his book Chhanda-shastra (200 B.C.). The term binomial coefficients was first introduced by the German mathematician. Michael Stipel (1486-1567 A.D.)

The arithmetic triangle popularly known as pascal triangle was constructed by the French mathematician Blaise Pascal (1623-1662 A.D.) He used the triangle to derive coefficients of a binomial expansion. It was printed in 1665 A.D. The present form of the binomial theorem for integral values of n appeared in Trate du triange arithmetic written by Pascal and published posthumously in 1665 A.D. The generalization of the binomial theorem for negative integral and rational exponents is due to Sir Isaac Newton1 (642-1727 A.D) in the same year 1665.

6.1.1 Binomial Expression

An algebraic expression consisting of two terms with +ve or -ve sign between them is called a binomial expression.

For example :
$$(a + b), (2x - 3y), \left(\frac{p}{x^2} - \frac{q}{x^4}\right), \left(\frac{1}{x} + \frac{4}{y^3}\right)$$
 etc.

6.1.2 Binomial Theorem for Positive Integral Index

The rule by which any power of binomial can be expanded is called the binomial theorem. If n is a positive integer and x, $y \in C$ then

$$(x+y)^{n} = {}^{n}C_{0}x^{n-0}y^{0} + {}^{n}C_{1}x^{n-1}y^{1} + {}^{n}C_{2}x^{n-2}y^{2} + \dots + {}^{n}C_{r}x^{n-r}y^{r} + \dots + {}^{n}C_{n-1}xy^{n-1} + {}^{n}C_{n}x^{0}y^{n}$$
i.e.,
$$(x+y)^{n} = \sum_{n=0}^{\infty} {}^{n}C_{r}x^{n-r}y^{r} + \dots + {}^{n}C_{n-1}xy^{n-1} + {}^{n}C_{n}x^{0}y^{n}$$

$$\dots (i)$$

Here nC_0 , nC_1 , nC_2 ,..... nC_n are called binomial coefficients and ${}^nC_r = \frac{n!}{r!(n-r)!}$ for $0 \le r \le n$.

Important Tips

- The number of terms in the expansion of $(x + y)^n$ are (n + 1).
- The expansion contains decreasing power of x and increasing power of y. The sum of the powers of x and y in each term is equal to n.
- The binomial coefficients ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$ equidistant from beginning and end are equal i.e., ${}^{n}C_{r} = {}^{n}C_{n-r}$.
- \mathscr{F} $(x+y)^n = Sum \ of \ odd \ terms + sum \ of \ even \ terms.$

6.1.3 Some Important Expansions

(1) Replacing
$$y$$
 by $-y$ in (i), we get, $(x-y)^n = {}^nC_0 x^{n-0}.y^0 - {}^nC_1 x^{n-1}.y^1 + {}^nC_2 x^{n-2}.y^2.... + (-1)^r {}^nC_r x^{n-r}.y^r + + (-1)^n {}^nC_n x^0.y^n$
i.e., $(x-y)^n = \sum_{r=0}^n (-1)^r {}^nC_r x^{n-r}.y^r$ (ii)

The terms in the expansion of $(x-y)^n$ are alternatively positive and negative, the last term is positive or negative according as n is even or odd.

(2) Replacing x by 1 and y by x in equation (i) we get,

$$(1+x)^n = {^nC_0}x^0 + {^nC_1}x^1 + {^nC_2}x^2 + \dots + {^nC_r}x^r + \dots + {^nC_r}x^n \text{ i.e., } (1+x)^n = \sum_{r=0}^n {^nC_r}x^r$$

This is expansion of $(1+x)^n$ in ascending power of x.

(3) Replacing x by 1 and y by – x in (i) we get,

$$(1-x)^n = {^nC_0}x^0 - {^nC_1}x^1 + {^nC_2}x^2 - \dots + (-1)^r {^nC_r}x^r + \dots + (-1)^n {^nC_n}x^n \quad i.e., \quad (1-x)^n = \sum_{r=0}^n (-1)^r {^nC_r}x^r + \dots + (-1)^n {^nC_r}x^r + \dots + (-1)^n {^nC_n}x^n \quad i.e., \quad (1-x)^n = \sum_{r=0}^n (-1)^r {^nC_r}x^r + \dots + (-1)^n {^nC_n}x^n + \dots +$$

(4)
$$(x+y)^n + (x-y)^n = 2[^nC_0x^ny^0 + ^nC_2x^{n-2}y^2 + ^nC_4x^{n-4}y^4 + \dots]$$
 and

$$(x+y)^{n} - (x-y)^{n} = 2[{}^{n}C_{1}x^{n-1}y^{1} + {}^{n}C_{3}x^{n-3}y^{3} + {}^{n}C_{5}x^{n-5}y^{5} + \dots]$$

- (5) The coefficient of $(r+1)^{th}$ term in the expansion of $(1+x)^n$ is nC_r .
- (6) The coefficient of x^r in the expansion of $(1+x)^n$ is nC_r .

Note: \square If n is odd, then $(x+y)^n + (x-y)^n$ and $(x+y)^n - (x-y)^n$, both have the same number of terms equal to $\left(\frac{n+1}{2}\right)$.

 \square If *n* is even, then $(x+y)^n + (x-y)^n$ has $\left(\frac{n}{2}+1\right)$ terms and $(x+y)^n - (x-y)^n$ has $\frac{n}{2}$ terms.

Example: 1 $x^5 + 10x^4a + 40x^3a^2 + 80x^2a^3 + 80xa^4 + 32a^5 =$

(a)
$$(x+a)^5$$

(b)
$$(3x + a)^5$$

(c)
$$(x+2a)^5$$

(d)
$$(x+2a)^3$$

Solution: (c) Conversely $(x+y)^n = {}^nC_0 + {}^nC_1x^{n-1}y^1 + {}^nC_2x^{n-2}y^2 + \dots + {}^nC_nx^0y^n$

$$(x+2a)^5 = {}^5C_0x^5 + {}^5C_1x^4(2a)^1 + {}^5C_2x^3(2a)^2 + {}^5C_3x^2(2a)^3 + {}^5C_4x^1(2a)^4 + {}^5C_5x^0(2a)^5$$

= $x^5 + 10x^4a + 40x^3a^2 + 80x^2a^3 + 80xa^4 + 32a^5$.

Example: 2 The value of $(\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6$ will be

$$(a) - 198$$

$$(d) - 99$$

Solution: (b) We know that, $(x+y)^n + (x-y)^n = 2[x^n + {}^nC_2x^{n-2}y^2 + {}^nC_4x^{n-4}y^4 +]$

$$(\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6 = 2[(\sqrt{2})^6 + {}^6C_2(\sqrt{2})^4(1)^2 + {}^6C_4(\sqrt{2})^2(1)^4 + {}^6C_6(\sqrt{2})^0(1)^6] = 2[8 + 15 \times 4 + 30 + 1] = 198$$

Example: 3 The larger of $99^{50} + 100^{50}$ and 101^{50} is

(a) $99^{50} + 100^{50}$

(b) Both are equal (c)
$$101^{50}$$

(d) None of these

[IIT 1980]

Solution: (c) We have, $101^{50} = (100 + 1)^{50} = 100^{50} + 50.100^{49} + \frac{50.49}{2.1}100^{48} + \dots$ (i)

and
$$99^{50} = (100 - 1)^{50} = 100^{50} - 50.100^{49} + \frac{50.49}{2.1} \cdot 100^{48} - \dots$$
 (ii)

Subtracting,
$$101^{50} - 99^{50} = 100^{50} + 2.\frac{50.49.48}{3.2.1}100^{47} + > 100^{50}$$
. Hence $101^{50} > 100^{50} + 99^{50}$.

Example: 4 Sum of odd terms is A and sum of even terms is B in the expansion of $(x+a)^n$, then

(a)
$$AB = \frac{1}{4}(x-a)^{2n} - (x+a)^{2n}$$

(b)
$$2AB = (x+a)^{2n} - (x-a)^{2n}$$

(c)
$$4AB = (x+a)^{2n} - (x-a)^{2n}$$

(d) None of these

Solution: (c)
$$(x+a)^n = {}^nC_0x^n + {}^nC_1x^{n-1}a^1 + {}^nC_2x^{n-2}a^2 + ... + {}^nC_nx^{n-n}.a^n = (x^n + {}^nC_2x^{n-2}a^2 + ...) + ({}^nC_1x^{n-1}a^1 + {}^nC_3x^{n-3}a^3 +) = A + B \dots$$
 (i) Similarly, $(x-a)^n = A - B$ (ii)

From (i) and (ii), we get $4AB = (x+a)^{2n} - (x-a)^{2n}$

Trick: Put n=1 in $(x+a)^n$. Then, x+a=A+B. Comparing both sides A=x, B=a.

Option (c) L.H.S.
$$4AB = 4xa$$
, R.H.S. $(x + a)^2 - (x - a)^2 = 4ax$. i.e., L.H.S. = R.H.S

6.1.4 General Term

$$(x+y)^n = {}^nC_0x^ny^0 + {}^nC_1x^{n-1}y^1 + {}^nC_2x^{n-2}y^2 + \dots + {}^nC_rx^{n-r}y^r + \dots + {}^nC_nx^0y^n$$

The first term = ${}^{n}C_{0}x^{n}y^{0}$

The second term = ${}^{n}C_{1}x^{n-1}y^{1}$. The third term = ${}^{n}C_{2}x^{n-2}y^{2}$ and so on

The term ${}^{n}C_{r}x^{n-r}y^{r}$ is the $(r+1)^{th}$ term from beginning in the expansion of $(x+y)^{n}$.

Let T_{r+1} denote the $(r + 1)^{th}$ term $\therefore T_{r+1} = {}^{n}C_{r}x^{n-r}y^{r}$

This is called general term, because by giving different values to r, we can determine all terms of the expansion.

In the binomial expansion of $(x-y)^n$, $T_{r+1} = (-1)^{r-n} C_r x^{n-r} y^r$

In the binomial expansion of $(1+x)^n$, $T_{r+1} = {}^nC_rx^r$

In the binomial expansion of $(1-x)^n$, $T_{r+1} = (-1)^r {}^n C_r x^r$

Note: \square In the binomial expansion of $(x+y)^n$, the p^{th} term from the end is $(n-p+2)^{th}$ term from beginning.

Important Tips

In the expansion of $(x + y)^n$, $n \in \mathbb{N}$

$$\frac{T_{r+1}}{T_r} = \left(\frac{n-r+1}{r}\right) \frac{y}{x}$$

- The coefficient of x^{n-1} in the expansion of (x-1)(x-2)..... $(x-n) = -\frac{n(n+1)}{2}$
- The coefficient of x^{n-1} in the expansion of $(x+1)(x+2)....(x+n) = \frac{n(n+1)}{2}$

If the 4th term in the expansion of $(px + x^{-1})^m$ is 2.5 for all $x \in R$ then Example: 5

(a)
$$p = 5/2, m = 3$$

(b)
$$p = \frac{1}{2}, m = 6$$

(a)
$$p = 5/2, m = 3$$
 (b) $p = \frac{1}{2}, m = 6$ (c) $p = -\frac{1}{2}, m = 6$

(d) None of these

Solution: (b) We have $T_4 = \frac{5}{2} \Rightarrow T_{3+1} = \frac{5}{2} \Rightarrow {}^m C_3 (px)^{m-3} \left(\frac{1}{x}\right)^3 = \frac{5}{2} \Rightarrow {}^m C_3 p^{m-3} x^{m-6} = \frac{5}{2}$

Clearly, R.H.S. of the above equality is independent of x

$$m - 6 = 0$$
, $m = 6$

Putting m = 6 in (i) we get ${}^{6}C_{3}p^{3} = \frac{5}{2} \Rightarrow p = \frac{1}{2}$. Hence p = 1/2, m = 6.

Example: 6 If the second, third and fourth term in the expansion of $(x+a)^n$ are 240, 720 and 1080 respectively, then the value of n is

[Kurukshetra CEE 1991; DCE 1995, 2001]

Solution: (d) It is given that $T_2 = 240, T_3 = 720, T_4 = 1080$

Now, $T_2 = 240 \implies T_2 = {}^nC_1x^{n-1}a^1 = 240$ (i) and $T_3 = 720 \implies T_3 = {}^nC_2x^{n-2}a^2 = 720$

....(ii)

$$T_4 = 1080 \implies T_4 = {}^{n}C_3 x^{n-3} a^3 = 1080$$
(iii)

To eliminate x, $\frac{T_2.T_4}{T_2^2} = \frac{240.1080}{720.720} = \frac{1}{2} \implies \frac{T_2}{T_3}.\frac{T_4}{T_3} = \frac{1}{2}$.

Now $\frac{T_{r+1}}{T_r} = \frac{{}^nC_r}{{}^nC_{r+1}} = \frac{n-r+1}{r}$. Putting r=3 and 2 in above expression, we get $\frac{n-2}{3} \cdot \frac{2}{n-1} = \frac{1}{2} \Rightarrow n=5$

The 5th term from the end in the expansion of $\left(\frac{x^3}{2} - \frac{2}{x^3}\right)^9$ is Example: 7

(a)
$$63x^3$$

(b)
$$-\frac{252}{x^3}$$

(c)
$$\frac{672}{x^{18}}$$

(d) None of these

(d) 6

Solution: (b) 5th term from the end = $(9-5+2)^{th}$ term from the beginning in the expansion of $\left(\frac{x^3}{2} - \frac{2}{x^3}\right)^9 = T_6$

$$\Rightarrow T_6 = T_{5+1} = {}^9C_5 \left(\frac{x^3}{2}\right)^4 \left(-\frac{2}{x^3}\right)^5 = -{}^9C_4.2.\frac{1}{x^3} = -\frac{252}{x^3} \,.$$

If $\frac{T_2}{T_2}$ in the expansion of $(a+b)^n$ and $\frac{T_3}{T_4}$ in the expansion of $(a+b)^{n+3}$ are equal, then n=1

[Rajasthan PET 1987, 96]

(a) 3 (b) 4 (c) 5

Solution: (c)
$$\therefore \frac{T_2}{T_3} = \frac{2}{n-2+1} \cdot \frac{b}{a} = \frac{2}{n-1} \left(\frac{b}{a} \right) \text{ and } \frac{T_3}{T_4} = \frac{3}{n+3-3+1} \cdot \left(\frac{b}{a} \right) = \frac{3}{n+1} \left(\frac{b}{a} \right)$$

$$\therefore \frac{T_2}{T_3} = \frac{T_3}{T_4} \quad \text{(given)} \; ; \; \therefore \; \frac{2}{n-1} \left(\frac{b}{a} \right) = \frac{3}{n+1} \left(\frac{b}{a} \right) \Rightarrow 2n+2=3n-3 \Rightarrow n=5$$

6.1.5 Independent Term or Constant Term

Independent term or constant term of a binomial expansion is the term in which exponent of the variable is zero.

Condition: (n-r) [Power of x] + r. [Power of y] = 0, in the expansion of $[x+y]^n$.

The term independent of x in the expansion of $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$ will be Example: 9

[IIT 1965; BIT Ranchi 1993; Karnataka CET 2000; UPSEAT 2001]

(a)
$$\frac{3}{2}$$

(b)
$$\frac{5}{4}$$

(c)
$$\frac{5}{2}$$

(d) None of these

Solution: (b)
$$(10-r)\left(\frac{1}{2}\right)+r(-2)=0 \Rightarrow r=2$$
 : $T_3={}^{10}C_2\left(\frac{1}{3}\right)^{8/2}\left(\frac{3}{2}\right)^2=\frac{5}{4}$

The term independent of x in the expansion of $(1+x)^n \left(1+\frac{1}{x}\right)^n$ is Example: 10

[EAMCET 1989]

(a)
$$C_0^2 + 2C_1^2 + \dots + (n+1)C_n^2$$
 (b)

$$(C_0 + C_1 + \dots + C_n)^2$$

$$(C_0 + C_1 + \dots + C_n)^2$$
 (c) $C_0^2 + C_1^2 + \dots + C_n^2$ (d)

We know that, $(1+x)^n = {}^nC_0 + {}^nC_1x^1 + {}^nC_2x^2 + \dots + {}^nC_nx^n$ Solution: (c)

$$\left(1 + \frac{1}{x}\right)^n = {^nC_0} + {^nC_1} \frac{1}{x^1} + {^nC_2} \frac{1}{x^2} + \dots + {^nC_n} \frac{1}{x^n}$$

Obviously, the term independent of *x* will be ${}^{n}C_{0}$. ${}^{n}C_{0} + {}^{n}C_{1} + \dots + {}^{n}C_{n}$. ${}^{n}C_{n} = C_{0}^{2} + C_{1}^{2} + \dots + C_{n}^{2}$

Trick: Put
$$n = 1$$
 in the expansion of $(1+x)^1 \left(1+\frac{1}{x}\right)^1 = 1+x+\frac{1}{x}+1=2+x+\frac{1}{x}$(i)

We want coefficient of x^0 . Comparing to equation (i). Then, we get 2 *i.e.*, independent of x. Option (c): $C_0^2 + C_1^2 + \dots + C_n^2$; Put n = 1; Then ${}^1C_0^2 + {}^1C_1^2 = 1 + 1 = 2$.

The coefficient of x^{-7} in the expansion of $\left(ax - \frac{1}{bx^2}\right)^{11}$ will be Example: 11

[IIT 1967; Rajasthan PET

1996]

(a)
$$\frac{462a^6}{b^5}$$

(b)
$$\frac{462 a^5}{b^6}$$

(b)
$$\frac{462 a^5}{b^6}$$
 (c) $\frac{-462 a^5}{b^6}$ (d) $-\frac{462 a^6}{b^5}$

(d)
$$-\frac{462 a^6}{b^5}$$

Solution: (b) For coefficient of x^{-7} , $(11-r)(1)+(-2).r=-7 \Rightarrow 11-r-2r=-7 \Rightarrow r=6$; $T_7={}^{11}C_6(a)^5\left(-\frac{1}{h}\right)^6=\frac{462\ a^5}{h^6}$

Example: 12 If the coefficients of second, third and fourth term in the expansion of $(1+x)^{2n}$ are in A.P., then $2n^2 - 9n + 7$ is equal to

[AMU 2001]

(a) -1

(b) o

(d) 3/2

Solution: (b) $T_2 = {}^{2n}C_1$, $T_3 = {}^{2n}C_2$, $T_4 = {}^{2n}C_3$ are in A.P. then, $2 \cdot {}^{2n}C_2 = {}^{2n}C_1 + {}^{2n}C_3$

$$2.\frac{2n(.2n-1)}{2.1} = \frac{2n}{1} + \frac{2n(2n-1)(2n-2)}{3.2.1}$$

On solving, $2n^2 - 9n + 7 = 0$

The coefficient of x^5 in the expansion of $(1+x^2)^5(1+x)^4$ is Example: 13

[EAMCET 1996;

UPSEAT 2001; Pb. CET 2002]

(d) None of these

(a) 30 (b) 60 (c) 40 **Solution:** (b) We have $(1+x^2)^5(1+x)^4 = ({}^5C_0 + {}^5C_1x^2 + {}^5C_2x^4 +) ({}^4C_0 + {}^4C_1x^1 + {}^4C_2x^2 +)$

So coefficient of x^5 in $[(1+x^2)^5(1+x)^4] = {}^5C_2 \cdot {}^4C_1 + {}^4C_3 \cdot {}^5C_1 = 60$

If A and B are the coefficient of x^n in the expansions of $(1+x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then [MP PET 1999 Example: 14

(a) A = B

(d) None of these

Solution: (b) $A = \text{coefficient of } x^n \text{ in } (1+x)^{2n} = {}^{2n}C_n = \frac{(2n)!}{n!n!} = \frac{2.(2n-1)!}{(n-1)!n!}$

....(ii)

....(i)

 $B = \text{ coefficient of } x^n \text{ in } (1+x)^{2n-1} = \frac{2n-1}{n!} C_n = \frac{(2n-1)!}{n!(n-1)!}$

By (i) and (ii) we get, A = 2B

The coefficient of x^n in the expansion of $(1+x)(1-x)^n$ is Example: 15

(a) $(-1)^{n-1}n$

(b) $(-1)^n(1-n)$

(c) $(-1)^{n-1}(n-1)^2$

(d) (n-1)

Solution: (b) Coefficient of x^n in $(1+x)(1-x)^n$ = Coefficient of x^n in $(1-x)^n$ + coefficient of x^{n-1} in $(1-x)^n$

= Coefficient of x^n in $[{}^nC_n(-x)^n + x.{}^nC_{n-1}(-x)^{n-1}] = (-1)^n {}^nC_n + (-1)^{n-1}.{}^nC_1 = (-1)^n + (-1)^n.(-n) = (-1)^n[1-n]$.

6.1.6 Number of Terms in the Expansion of $(a + b + c)^n$ and $(a + b + c + d)^n$

can

be

expanded as : $(a+b+c)^n = \{(a+b)+c\}^n$

 $= (a+b)^n + {}^nC_1(a+b)^{n-1}(c)^1 + {}^nC_2(a+b)^{n-2}(c)^2 + \dots + {}^nC_n c^n = (n+1) \text{ term } + n \text{ term } + (n-1) \text{ term } + \dots + 1 \text{ term } + n \text{$

:. Total number of terms = $(n+1)+(n)+(n-1)+.....+1=\frac{(n+1)(n+2)}{2}$.

Similarly, Number of terms in the expansion of $(a+b+c+d)^n = \frac{(n+1)(n+2)(n+3)}{c}$.

Example: 16 If the number of terms in the expansion of $(x-2y+3z)^n$ is 45, then n=

(a) 7

(d) None of these

Solution: (b) Given, total number of terms = $\frac{(n+1)(n+2)}{2} = 45 \implies (n+1)(n+2) = 90 \implies n=8$.

The number of terms in the expansion of $[(x+3y)^2(3x-y)^2]^3$ is Example: 17

[Rajasthan PET 1986]

Solution: (b) We have $[(x+3y)(3x-y)]^6 = [3x^2 + 8xy - 3y^2]^6$; Number of terms $= \frac{(6+1)(6+2)}{2} = 28$

6.1.7 Middle Term

The middle term depends upon the value of n.

- (1) When *n* is even, then total number of terms in the expansion of $(x+y)^n$ is n+1 (odd). So there is only one middle term *i.e.*, $\left(\frac{n}{2}+1\right)^{\text{th}}$ term is the middle term. $T_{\left\lceil\frac{n}{2}+1\right\rceil}={}^{n}C_{n/2}x^{n/2}y^{n/2}$
- (2) **When** *n* **is odd**, then total number of terms in the expansion of $(x+y)^n$ is n+1 (even). So, there are two middle terms i.e., $\left(\frac{n+1}{2}\right)^{\text{th}}$ and $\left(\frac{n+3}{2}\right)^{\text{th}}$ are two middle terms. $T_{\left(\frac{n+1}{2}\right)} = {}^{n}C_{\frac{n-1}{2}}x^{\frac{n+1}{2}}y^{\frac{n-1}{2}}$ and $T_{\left(\frac{n+3}{2}\right)} = {}^{n}C_{\frac{n+1}{2}}x^{\frac{n-1}{2}}y^{\frac{n+1}{2}}$

 ${\it Note}: \square$ When there are two middle terms in the expansion then their binomial coefficients are equal.

Binomial coefficient of middle term is the greatest binomial coefficient.

Example: 18 The middle term in the expansion of $\left(x + \frac{1}{r}\right)^{10}$ is [BIT Ranchi 1991; Rajasthan PET 2002; Pb. CET 1991]

(a)
$${}^{10}C_4 \frac{1}{x}$$

(b)
$${}^{10}C_5$$

(c)
$${}^{10}C_5x$$

(d)
$${}^{10}C_7x^4$$

Solution: (b) : n is even so middle term $T_{\left(\frac{10}{2}+1\right)} = T_6 \Rightarrow T_6 = T_{5+1} = {}^{10}C_5 x^5 \cdot \frac{1}{x^5} = {}^{10}C_5$

The middle term in the expansion of $(1+x)^{2n}$ is

(a)
$$\frac{1.3.5....(2n-1)}{n!}x^{2n+1}$$

(b)
$$\frac{2.4.6.....2n}{n!} x^{2n+1}$$

(c)
$$\frac{1.3.5....(2n-1)}{n!}x^n$$

(a)
$$\frac{1.3.5....(2n-1)}{n!}x^{2n+1}$$
 (b) $\frac{2.4.6.....2n}{n!}x^{2n+1}$ (c) $\frac{1.3.5....(2n-1)}{n!}x^n$ (d) $\frac{1.3.5....(2n-1)}{n!}x^n.2^n$

Solution: (d) Since 2n is even, so middle term = $T_{\frac{2n}{n+1}} = T_{n+1} \Rightarrow T_{n+1} = {}^{2n}C_nx^n = \frac{(2n)!}{n! \cdot n!}x^n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!} \cdot 2^nx^n$.

6.1.8 To Determine a Particular Term in the Expansion

In the expansion of $\left(x^{\alpha} \pm \frac{1}{x^{\beta}}\right)^n$, if x^m occurs in T_{r+1} , then r is given by $n\alpha - r(\alpha + \beta) = m \implies$ $r = \frac{n\alpha - m}{\alpha + \beta}$

Thus in above expansion if constant term which is independent of x, occurs in T_{r+1} then r is determined by

$$n\alpha - r(\alpha + \beta) = 0 \Rightarrow r = \frac{n\alpha}{\alpha + \beta}$$

Example: 20 The term independent of x in the expansion of $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^2$ is

$$(c) - 7/12$$

$$(d) = 7/16$$

(a)
$$7/12$$
 (b) $7/18$ (c) $-7/12$ (d) $-7/16$ Solution: (b) $n = 9$, $\alpha = 2$, $\beta = 1$. Then $r = \frac{9(2)}{1+2} = 6$. Hence, $T_7 = {}^9C_6 \left(\frac{3}{2}\right)^3 \left(-\frac{1}{3}\right)^6 = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} \cdot \frac{1}{2^3 \cdot 3^3} = \frac{7}{18}$.

Example: 21 If the coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ is equal to the coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$ then $ab = \frac{1}{bx^2}$

Solution: (a) For coefficient of
$$x^7$$
 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$; $n = 11$, $\alpha = 2$, $\beta = 1$, $m = 7$

$$r = \frac{11.2 - 7}{2 + 1} = \frac{15}{3} = 5$$

Coefficient of
$$x^7$$
 in $T_6 = {}^{11}C_5 a^6 \cdot \frac{1}{h^5}$ (i)

and for coefficient of
$$x^{-7}$$
 in $\left(ax - \frac{1}{bx^2}\right)^{11}$; $n = 11, \alpha = 1, \beta = 2$, $m = -7$; $r = \frac{11.1 + 7}{3} = 6$

Coefficient of
$$x^{-7}$$
 in $T_7 = {}^{11}C_6.a^5.\frac{1}{b^6}$ (ii)

From equation (i) and (ii), we get ab = 1

6.1.9 Greatest Term and Greatest Coefficient

(1) **Greatest term**: If T_r and T_{r+1} be the r^{th} and $(r+1)^{th}$ terms in the expansion of $(1+x)^n$, then

$$\frac{T_{r+1}}{T_r} = \frac{{}^{n}C_r x^r}{{}^{n}C_{r-1} x^{r-1}} = \frac{n-r+1}{r} x$$

Let numerically, T_{r+1} be the greatest term in the above expansion. Then $T_{r+1} \ge T_r$ or $\frac{T_{r+1}}{T_r} \ge 1$

$$\therefore \frac{n-r+1}{r} |x| \ge 1 \quad \text{or} \quad r \le \frac{(n+1)}{(1+|x|)} |x| \qquad \qquad \dots (i)$$

Now substituting values of *n* and *x* in (i), we get $r \le m + f$ or $r \le m$

where m is a positive integer and f is a fraction such that 0 < f < 1.

When n is even T_{m+1} is the greatest term, when n is odd T_m and T_{m+1} are the greatest terms and both are equal.

Short cut method: To find the greatest term (numerically) in the expansion of $(1+x)^n$.

- (i) Calculate $m = \left| \frac{x(n+1)}{x+1} \right|$
- (ii) If m is integer, then T_m and T_{m+1} are equal and both are greatest term.
- (iii) If m is not integer, there $T_{[m]+1}$ is the greatest term, where [.] denotes the greatest integral part.
 - (2) Greatest coefficient
 - (i) If n is even, then greatest coefficient is ${}^{n}C_{n/2}$
 - (ii) If n is odd, then greatest coefficient are ${}^nC_{\frac{n+1}{2}}$ and ${}^nC_{\frac{n+3}{2}}$

Important Tips

For finding the greatest term in the expansion of $(x+y)^n$, we rewrite the expansion in this form $(x+y)^n = x^n \left[1 + \frac{y}{x}\right]^n$.

Greatest term in $(x + y)^n = x^n$. Greatest term in $\left(1 + \frac{y}{x}\right)^n$

The largest term in the expansion of $(3 + 2x)^{50}$, where $x = \frac{1}{5}$ is Example: 22

Solution: (c,d) $(3+2x)^{50} = 3^{50} \left[1 + \frac{2x}{3} \right]^{50}$, Now greatest term in $\left(1 + \frac{2x}{3} \right)^{50}$

$$r = \left| \frac{x(n+1)}{1+x} \right| = \left| \frac{\frac{2x}{3}(50+1)}{\frac{2x}{3}+1} \right| = \frac{\frac{2 \cdot \frac{1}{5}}{5}(51)}{\frac{2}{15}+1} = 6 \text{ (an integer)}$$

 T_r and $T_{r-1} = T_6$ and $T_{r-1} = T_6$ and T_7 are numerically greatest terms

The greatest coefficient in the expansion of $(1 + x)^{2n+2}$ is Example: 23

(a)
$$\frac{(2n)!}{n!^2}$$

(b)
$$\frac{(2n+2)!}{[(n+1)!]^2}$$
 (c) $\frac{(2n+2)!}{n!(n+1)!}$

(c)
$$\frac{(2n+2)!}{n!(n+1)!}$$

(d)
$$\frac{(2n)!}{n! \cdot (n+1)!}$$

: *n* is even so greatest coefficient in $(1+x)^{2n+2}$ is = ${}^{2n+2}C_{n+1} = \frac{(2n+2)!}{[(n+1)!]^2}$ Solution: (b)

The interval in which x must lie so that the greatest term in the expansion of $(1+x)^{2n}$ has the greatest Example: 24 coefficient is

(a)
$$\left(\frac{n-1}{n}, \frac{n}{n-1}\right)$$
 (b) $\left(\frac{n}{n+1}, \frac{n+1}{n}\right)$ (c) $\left(\frac{n}{n+2}, \frac{n+2}{n}\right)$ (d) None of these

(b)
$$\left(\frac{n}{n+1}, \frac{n+1}{n}\right)$$

(c)
$$\left(\frac{n}{n+2}, \frac{n+2}{n}\right)$$

Solution: (b) Here the greatest coefficient is ${}^{2n}C_n$

$$\therefore {}^{2n}C_nx^n > {}^{2n}C_{n+1}x^{n-1} \Rightarrow x > \frac{n}{n+1}$$
 and ${}^{2n}C_nx^n > {}^{2n}C_{n-1}x^{n+1} \Rightarrow x < \frac{n+1}{n}$. Hence the result is (b)

6.1.10 Properties of Binomial Coefficients

In the binomial expansion of $(1+x)^n$, $(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_rx^r + \dots + {}^nC_rx^n$.

where ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,....., ${}^{n}C_{n}$ are the coefficients of various powers of x and called binomial coefficients, and they are written as $C_0, C_1, C_2, \dots, C_n$.

Hence,
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_r x^r + \dots + C_n x^n$$
(i)

(1) The sum of binomial coefficients in the expansion of $(1+x)^n$ is 2^n .

Putting
$$x = 1$$
 in (i), we get $2^n = C_0 + C_1 + C_2 + \dots + C_n$ (ii)

(2) Sum of binomial coefficients with alternate signs: Putting x = -1 in (i)

We get,
$$0 = C_0 - C_1 + C_2 - C_3 + \dots$$
 (iii)

(3) Sum of the coefficients of the odd terms in the expansion of $(1+x)^n$ is equal to sum of the coefficients of even terms and each is equal to 2^{n-1} .

From (iii), we have
$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots$$
 (iv)

i.e., sum of coefficients of even and odd terms are equal.

From (ii) and (iv),
$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$
(v)

(4)
$${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1} = \frac{n}{r} \cdot \frac{n-1}{r-1} {}^{n-2}C_{r-2}$$
 and so on.

(5) Sum of product of coefficients: Replacing x by $\frac{1}{x}$ in (i) we get

$$\left(1+\frac{1}{x}\right)^n = C_0 + \frac{C_1}{x} + \frac{C_2}{x^2} + \dots + \frac{C_n}{x^n} + \dots$$
 (vi)

Multiplying (i) by (vi), we get $\frac{(1+x)^{2n}}{x^n} = (C_0 + C_1 x + C_2 x^2 +) \left(C_0 + \frac{C_1}{x} + \frac{C_2}{x^2} + \right)$

Now comparing coefficient of x^r on both sides. We get, ${}^{2n}C_{n+r} = C_0C_r + C_1C_{r+1} + \dots + C_{n-r}C_n$ (vii)

(6) Sum of squares of coefficients: Putting r = 0 in (vii), we get ${}^{2n}C_n = C_0^2 + C_1^2 + \dots + C_n^2$

(7)
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

Example: 25 The value of $\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots$ is equal to

[Karnataka CET 2000]

(a)
$$\frac{2^n-1}{n+1}$$

(b)
$$n.2^n$$

(c)
$$\frac{2^n}{n}$$

(d)
$$\frac{2^n+1}{n+1}$$

Solution: (a) We have $\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots = \frac{n}{2.1} + \frac{n(n-1)(n-2)}{4.3.2.1} + \frac{n(n-1)(n-2)(n-3)(n-4)}{6.5.4.3.2.1} + \dots$

$$= \frac{1}{n+1} \left[\frac{(n+1)n}{2!} + \frac{(n+1)(n)(n-1)(n-2)}{4!} + \dots \right] = \frac{1}{n+1} [2^{(n+1)-1} - 1] = \frac{2^n - 1}{n+1}$$

Trick: For n=1, = $\frac{C_1}{2} = \frac{{}^{1}C_1}{2} = \frac{1}{2}$

Which is given by option (a) $\frac{2^n - 1}{n+1} = \frac{2^1 - 1}{1+1} = \frac{1}{2}$.

Example: 26 The value of $C_0 + 3C_1 + 5C_2 + + (2n+1)C_n$ is equal to

(a)
$$2^n$$

(b)
$$2^n + n 2^{n-1}$$

(c)
$$2^n(n+1)$$

(d) None of these

Solution: (c) We have $C_0 + 3C_1 + 5C_2 + \dots + (2n+1)C_n = \sum_{r=0}^{n} (2r+1)C_r = \sum_{r=0}^{n} (2r+1)^n C_r = \sum_{r=0}^{n} 2r^n C_r + \sum_{r=0}^{n} r^n C_r$

$$=2.\sum_{r=1}^{n}r.\frac{n}{r}.^{n-1}C_{r-1}+\sum_{r=0}^{n}{^{n}C_{r}}=2n\sum_{r=1}^{n}{^{n-1}C_{r-1}}+\sum_{r=0}^{n}{^{n}C_{r}}=2n[(1+1)^{n-1}]+[1+1]^{n}=2n.2^{n-1}+2^{n}=2^{n}.[n+1].$$

Trick: Put n = 1 in given expansion ${}^{1}C_{0} + 3.{}^{1}C_{1} = 1 + 3 = 4$.

Which is given by option (c) $2^{n} \cdot (n+1) = 2^{1}(1+1) = 4$.

Example: 27 If $S_n = \sum_{n=0}^{\infty} \frac{1}{n C_n}$ and $t_n = \sum_{n=0}^{\infty} \frac{r}{n C_n}$. Then $\frac{t_n}{S_n}$ is equal to

(a)
$$\frac{2n-1}{2}$$

(b)
$$\frac{1}{2}n-1$$

(d)
$$\frac{n}{2}$$

Solution: (d) Take n = 2m, then, $S_n = \frac{1}{2^m C_0} + \frac{1}{2^m C_1} + \dots + \frac{1}{2^m C_{2m}} = 2 \left[\frac{1}{2^m C_0} + \frac{1}{2^m C_1} + \dots + \frac{1}{2^m C_{m-1}} \right] + \frac{1}{2^m C_{m-1}}$

$$t_n = \sum_{r=0}^{n} \frac{r}{{}^{n}C_r} = \sum_{r=0}^{2m} \frac{r}{{}^{2m}C_r} = \frac{1}{{}^{2m}C_1} + \frac{2}{{}^{2m}C_2} + \dots + \frac{2m}{{}^{2m}C_{2m}}$$

$$\begin{split} &t_{n} = \left(\frac{1}{^{2m}C_{1}} + \frac{2m-1}{^{2m}C_{2m-1}}\right) + \left(\frac{2}{^{2m}C_{2}} + \frac{2m-2}{^{2m}C_{2m-2}}\right) + \dots + \left(\frac{m-1}{^{2m}C_{m-1}} + \frac{m+1}{^{2m}C_{m+1}}\right) + \frac{m}{^{2m}C_{m}} + \frac{2m}{^{2m}C_{2m}} \\ &= 2m \left[\frac{1}{^{2m}C_{1}} + \frac{1}{^{2m}C_{2}} + \dots \right] + \frac{m}{^{2m}C_{m}} + 2m = 2m \left[\frac{1}{^{2m}C_{0}} + \frac{1}{^{2m}C_{1}} + \dots + \frac{1}{^{2m}C_{m-1}}\right] + \frac{m}{^{2m}C_{m}} = m \left[S_{n} - \frac{1}{^{2m}C_{m}}\right] + \frac{m}{^{2m}C_{m}} = mSn \\ &t_{n} = mS_{n} \Rightarrow \frac{t_{n}}{S_{n}} = m = \frac{n}{2} \end{split}$$

If $(1-x+x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$. Then $a_0 + a_2 + a_4 + \dots + a_{2n} = a_0 + a_1x + a_2x^2 + \dots + a_{2n} = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$. Example: 28

[MNR 1992; DCE 1996; AMU 1998; Rajasthan PET 1999; Karnataka CET 1999; UPSEAT 1999]

(a)
$$\frac{3^n+1}{2}$$

(b)
$$\frac{3^n-1}{2}$$

(c)
$$\frac{1-3^n}{2}$$

(d)
$$3^n + \frac{1}{2}$$

Solution: (a) $(1-x+x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$

Putting x = 1, we get $(1 - 1 + 1)^n = a_0 + a_1 + a_2 + \dots + a_{2n}$; $1 = a_0 + a_1 + a_2 + \dots + a_{2n}$(i)

Again putting x = -1, we get $3^n = a_0 - a_1 + a_2 - \dots + a_{2n}$(ii)

Adding (i) and (ii), we get, $3^n + 1 = 2[a_0 + a_2 + a_4 + \dots + a_{2n}]$

$$\frac{3^n + 1}{2} = a_0 + a_2 + a_4 + \dots + a_{2n}$$

If $(1+x)^n = \sum_{r=0}^{n} C_r x^r$, then $\left(1 + \frac{C_1}{C_0}\right) \left(1 + \frac{C_2}{C_1}\right) \dots \left(1 + \frac{C_n}{C_{n-1}}\right) =$ Example: 29

(a)
$$\frac{n^{n-1}}{(n-1)!}$$

(a)
$$\frac{n^{n-1}}{(n-1)!}$$
 (b) $\frac{(n+1)^{n-1}}{(n-1)!}$ (c) $\frac{(n+1)^n}{n!}$

(c)
$$\frac{(n+1)^n}{n!}$$

(d)
$$\frac{(n+1)^{n+1}}{n!}$$

Solution: (c) We have $\left(1 + \frac{C_1}{C_2}\right) \left(1 + \frac{C_2}{C_1}\right) \dots \left(1 + \frac{C_n}{C_{n-1}}\right) = \left(1 + \frac{n}{1}\right) \left(1 + \frac{n(n-1)/2!}{n}\right) \dots \left(1 + \frac{1}{n}\right)$ $=\left(\frac{1+n}{1}\right)\left(\frac{1+n}{2}\right)\left(\frac{1+n}{3}\right).....\left(\frac{1+n}{n}\right)=\frac{(n+1)^n}{n!}$

Trick: Put $n = 1, 2, 3, \ldots, S_1 = 1 + \frac{{}^{1}C_1}{{}^{1}C} = 2, S_2 = \left(1 + \frac{{}^{2}C_1}{{}^{2}C}\right) \left(1 + \frac{{}^{2}C_2}{{}^{2}C}\right) = \frac{9}{2}$

Which is given by option (c) n=1, $\frac{(1+1)^1}{1!}=2$; For n=2, $\frac{(2+1)^2}{2!}=\frac{9}{2}$

In the expansion of $(1+x)^5$, the sum of the coefficient of the terms is [Rajasthan PET 1992, 97; Kurukshetra CEE Example: 30

(b) 16

(c) 32

(d) 64

Putting x = 1 in $(1 + x)^5$, the required sum of coefficient = $(1 + 1)^5 = 2^5 = 32$ Solution: (c)

If the sum of coefficient in the expansion of $(\alpha^2 x^2 - 2\alpha x + 1)^{51}$ vanishes, then the value of α is [IIT Example: 31 1991; Pb. CET 1988]

(c) 1

The sum of coefficient of polynomial $(\alpha^2 x^2 - 2\alpha x + 1)^{51}$ is obtained by putting x = 1 in $(\alpha^2 x^2 - 2\alpha x + 1)^{51}$. Solution: (c) Therefore by hypothesis $(\alpha^2 - 2\alpha + 1)^{51} = 0 \Rightarrow \alpha = 1$

If C_r stands for nC_r , the sum of given series $\frac{2(n/2)!(n/2)!}{n!}[C_0^2-2C_1^2+3C_2^2-.....+(-1)^n(n+1)C_n^2]$ where n is Example: 32 an even positive integer, is

(b) $(-1)^{n/2} (n+1)$

(c) $(-1)^n(n+2)$

Solution: (d) We have $C_0^2 - 2C_1^2 + 3C_2^2 - \dots + (-1)^n (n+1)C_n^2 = [C_0^2 - C_1^2 + C_2^2 - \dots + (-1)^n C_n^2] - [C_1^2 - 2C_2^2 + 3C_3^2 - \dots + (-1)^n n.C_n^2]$ $= (-1)^{n/2} \cdot {^{n}C_{n/2}} - (-1)^{n/2-1} \cdot \frac{1}{2} n \cdot {^{n}C_{n/2}} = (-1)^{n/2} \left[1 + \frac{n}{2} \right] {^{n}C_{n/2}}$

Therefore the value of given expression =
$$\frac{2 \cdot \frac{n}{2}! \frac{n}{2}!}{n!} \left[(-1)^{n/2} \cdot \left(1 + \frac{n}{2}\right) \frac{n!}{\frac{n}{2}! \frac{n}{2}!} \right] = (-1)^{n/2} (n+2)$$

Example: 33 If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$, then the value of $C_0 + 2C_1 + 3C_2 + \dots + (n+1)C_n$ will be

[MP PET 1996; Rajasthan PET 1997; DCE 1995; IIT 1971; AMU 1995; EAMCET 2001]

- (a) $(n+2)2^{n-1}$
- (b) $(n+1)2^n$
- (c) $(n+1)2^{n-1}$
- (d) $(n+2)2^n$

Solution: (a) **Trick:** Put n=1 the expansion is equivalent to ${}^{1}C_{0} + 2.{}^{1}C_{1} = 1 + 2 = 3$. Which is given by option (a) = $(n+2)2^{n-1} = (1+2)2^0 = 3$

(1) Use of Differentiation: This method applied only when the numericals occur as the product of binomial coefficients.

Solution process: (i) If last term of the series leaving the plus or minus sign be m, then divide m by n if q be the quotient and r be the remainder. i.e., m = nq + r

Then replace x by x^q in the given series and multiplying both sides of expansion by x^r .

- (ii) After process (i), differentiate both sides, w.r.t. x and put x = 1 or -1 or i or -i etc. according to given series.
- (iii) If product of two numericals (or square of numericals) or three numericals (or cube of numerical) then differentiate twice or thrice.

Example: 34 $C_1 + 2C_2 + 3C_3 + \dots^n C_n =$ [Rajasthan PET 1995; MP PET

(a) 2^n

- (b) $n.2^n$
 - (c) $n.2^{n-1}$
- (d) $n.2^{n+1}$

Solution: (c) We know that, $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$

Differentiating both sides w.r.t. *x*, we get $n(1+x)^{n-1} = 0 + C_1 + 2 \cdot C_2 x + 3C_3 x^2 + \dots + nC_n x^{n-1}$

Putting x = 1, we get, $n \cdot 2^{n-1} = C_1 + 2C_2 + 3C_3 + \dots + nC_n$.

If *n* is an integer greater than 1, then $a^{-n}C_1(a-1) + {^n}C_2(a-2) - \dots + (-1)^n(a-n) =$ Example: 35

(a) a

Solution: (b) We have $a[C_0 - C_1 + C_2 - C_1] + [C_1 - 2C_2 + 3C_3 - C_1] = a[C_0 - C_1 + C_2 - C_1] - [-C_1 + 2C_2 - 3C_3 +]$

We know that $(1-x)^n = C_0 - C_1x + C_2x^2 + \cdots + (-1)^n C_nx^n$; Put x = 1, $0 = C_0 - C_1 + C_2 - \cdots$

Then differentiating both sides w.r.t. to x, we get $n(1-x)^{n-1} = 0 - C_1 + 2C_2x - 3C_3x^2 + \dots$

Put x=1, $0=-C_1+2C_2-3C_3+...$ = a[0]-[0]=0.

(2) Use of Integration: This method is applied only when the numericals occur as the denominator of the binomial coefficients.

Solution process: If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$, then we integrate both sides between the suitable limits which gives the required series.

- (i) If the sum contains $C_0, C_1, C_2, \dots, C_n$ with all positive signs, then integrate between limit 0 to 1.
- (ii) If the sum contains alternate signs (i.e. +, -) then integrate between limit 1 to 0.
- (iii) If the sum contains odd coefficients i.e., $(C_0, C_2, C_4,....)$ then integrate between -1 to 1.
- (iv) If the sum contains even coefficients (i.e., C_1, C_3, C_5) then subtracting (ii) from (i) and then dividing by 2.
- (v) If in denominator of binomial coefficients is product of two numericals then integrate two times, first taking limit between 0 to x and second time take suitable limits.

Example: 36
$$\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} =$$

[Rajasthan PET 1996]

get,

(a)
$$\frac{2^n}{n+1}$$

(b)
$$\frac{2^n-1}{n+1}$$

(c)
$$\frac{2^{n+1}-1}{n+1}$$

limits

(d) None of these

Solution: (c) Consider the expansion $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$

....(i)

to

$$\int_{0}^{1} (1+x)^{n} dx = \int_{0}^{1} C_{0} + \int_{0}^{1} C_{1}x + \int_{0}^{1} C_{2}x^{2} + \dots + \int_{0}^{1} C_{n}x^{n} dx$$

$$\left[\frac{(1+x)^{n+1}}{n+1}\right]_0^1 = C_0[x]_0^1 + C_1\left[\frac{x^2}{2}\right]_0^1 + \dots + C_n\left[\frac{x^{n+1}}{n+1}\right]_0^1$$

$$\frac{2^{n+1}}{n+1} - \frac{1}{n+1} = C_0[1] + C_1 \frac{1}{2} + C_2 \frac{1}{3} + \dots + C_n \cdot \frac{1}{n+1}; \quad C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1} - 1}{n+1}.$$

 $2C_0 + \frac{2^2}{2}C_1 + \frac{2^3}{2}C_2 + \dots + \frac{2^{11}}{11}C_{10} =$ Example: 37

[MP PET 1999; EAMCET

(a)
$$\frac{3^{11}-1}{11}$$

(b)
$$\frac{2^{11}-1}{11}$$

(b)
$$\frac{2^{11}-1}{11}$$
 (c) $\frac{11^3-1}{11}$

(d)
$$\frac{11^2-1}{11}$$

It is clear that it is a expansion of $(1+x)^{10} = C_0 + C_1 x + C_2 x^2 + + C_{10} x^{10}$ Solution: (a)

Integrating w.r.t. x both sides between the limit 0 to 2

$$\left[\frac{(1+x)^{11}}{11}\right]_0^2 = C_0[x]_0^2 + C_1\left[\frac{x^2}{2}\right]_0^2 + C_2\left[\frac{x^3}{3}\right]_0^2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^2}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + \frac{2^{11}}{11} \cdot C_{10} \cdot C_1 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^2}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + \frac{2^{11}}{11} \cdot C_{10} \cdot C_1 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^2}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^2}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^2}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^2}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^2}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^2}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^2}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^3}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^3}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^3}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^3}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^3}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^3}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^3}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = 2C_0 + \frac{2^3}{2} \cdot C_1 + \frac{2^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = \frac{3^3}{2} \cdot C_1 + \frac{3^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = \frac{3^3}{2} \cdot C_1 + \frac{3^3}{2} \cdot C_2 + \dots + C_{10}\left[\frac{x^{11}}{11}\right]_0^2 \Rightarrow \frac{3^{11}-1}{11} = \frac{3^3}{2} \cdot C_1 + \frac{3^3}{2} \cdot C_1 + \dots + C_{1$$

The sum to (n+1) terms of the following series $\frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \frac{C_3}{5} + \dots$ is

(a)
$$\frac{1}{n+1}$$

(b)
$$\frac{1}{n+2}$$

$$(c) \ \frac{1}{n(n+1)}$$

(d) None of these

Solution: (d) $(1-x)^n = C_0 - C_1 x + C_2 x^2 - C_3 x^3 + \dots$

$$\Rightarrow x(1-x)^n = C_0 x - C_1 x^2 + C_2 x^3 - C_3 x^4 + \dots \Rightarrow \int_0^1 x(1-x)^n dx = C_0 \left[\frac{x^2}{2} \right]_0^1 - C_1 \left[\frac{x^3}{3} \right]_0^1 + C_2 \left[\frac{x^4}{4} \right]_0^1 - \dots$$
 (i)

The integral on L.H.S. of (i) = $\int_{1}^{0} (1-t)t^{n}(-dt)$ by putting 1-x=t, $\Rightarrow \int_{0}^{1} (t^{n}-t^{n+1})dt = \frac{1}{n+1} - \frac{1}{n+2}$

Whereas the integral on the R.H.S. of (i)

$$= C_0 \left[\frac{1}{2} \right] - C_1 \left[\frac{1}{3} \right] + \frac{C_2}{4} - \dots = \frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \dots = \frac{1}{(n+1)(n+2)}$$
 to $(n+1)$ terms $= \frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{(n+1)(n+2)}$

Trick: Put n=1 in given series $=\frac{{}^{1}C_{0}}{2}-\frac{{}^{1}C_{1}}{3}=\frac{1}{6}$. Which is given by option (d).

6.1.11 An Important Theorem

If $(\sqrt{A} + B)^n = I + f$ where I and n are positive integers, n being odd and $0 \le f < 1$ then $(I + f). f = K^n$ where $A - B^2 = K > 0$ and $\sqrt{A} - B < 1$.

Note: \square If n is even integer then $(\sqrt{A} + B)^n + (\sqrt{A} - B)^n = I + f + f'$

Hence L.H.S. and *I* are integers.

$$\therefore f + f'$$
 is also integer; $\Rightarrow f + f' = 1$; $\therefore f' = (1 - f)$

Hence
$$(I+f)(1-f) = (I+f)f' = (\sqrt{A}+B)^n(\sqrt{A}-B)^n = (A-B^2)^n = K^n$$
.

Example: 39 Let $R = (5\sqrt{5} + 11)^{2n+1}$ and f = R - [R] where [.] denotes the greatest integer function. The value of R.f is [IIT 19]

(a)
$$4^{2n+1}$$

(c)
$$4^{2n-1}$$

(d)
$$4^{-2n}$$

Solution: (a) Since f = R - [R], R = f + [R]

$$[5\sqrt{5} + 11]^{2n+1} = f + [R]$$
, where [R] is integer

Now let
$$f = [5\sqrt{5} - 11]^{2n+1}, 0 < f < 1$$

$$f + [R] - f' = [5\sqrt{5} + 11]^{2n+1} - [5\sqrt{5} - 11]^{2n+1} = 2\left[{}^{2n+1}C_1(5\sqrt{5})^{2n}(11)^1 + {}^{2n+1}C_3(5\sqrt{5})^{2n-2}(11)^3 + \dots \right]$$

$$= 2.(\text{Integer}) = 2K \ (K \in \mathbb{N}) = \text{Even integer}$$

Hence f - f' = even integer – [R], but -1 < f - f < 1. Therefore, f - f = 0 $\therefore f = f'$

Hence R.f = $R.f = (5\sqrt{5} + 11)^{2n+1} (5\sqrt{5} - 11)^{2n+1} = 4^{2n+1}$.

6.1.12 Multinomial Theorem (For positive integral index)

If n is positive integer and $a_1, a_2, a_3, \dots a_n \in C$ then

$$(a_1 + a_2 + a_3 + \dots + a_m)^n = \sum \frac{n!}{n_1! n_2! n_3! \dots n_m!} a_1^{n_1} a_2^{n_2} \dots a_m^{n_m}$$

Where n_1, n_2, n_3,n_m are all non-negative integers subject to the condition, $n_1 + n_2 + n_3 +n_m = n$.

- (1) The coefficient of $a_1^{n_1}.a_2^{n_2}....a_m^{n_m}$ in the expansion of $(a_1 + a_2 + a_3 +a_m)^n$ is $\frac{n!}{n_1!n_2!n_3!...n_m!}$
- (2) The greatest coefficient in the expansion of $(a_1 + a_2 + a_3 + \dots + a_m)^n$ is $\frac{n!}{(q!)^{m-r}[(q+1)!]^r}$

Where q is the quotient and r is the remainder when n is divided by m.

(3) If n is +ve integer and $a_1, a_2, a_m \in C$, $a_1^{n_1} ... a_2^{n_2} a_m^{n_m}$ then coefficient of x^r in the expansion of $(a_1 + a_2x + a_mx^{m-1})^n$ is $\sum \frac{n!}{n_1!n_2!n_3!....n_m!}$

Where n_1, n_2, \dots, n_m are all non-negative integers subject to the condition: $n_1 + n_2 + \dots, n_m = n$ and $n_2 + 2n_3 + 3n_4 + \dots + (m-1)n_m = r$.

(4) The number of distinct or dissimilar terms in the multinomial expansion $(a_1+a_2+a_3+....a_m)^n$ is $^{n+m-1}C_{m-1}$.

Example: 40 The coefficient of x^5 in the expansion of $(x^2 - x - 2)^5$ is

$$(a) - 83$$

$$(b) - 82$$

$$(c) - 81$$

Solution: (c) Coefficient of x^5 in the expansion of $(x^2 - x - 2)^5$ is $\sum_{n_1 ! ! n_2 ! n_3 !} (1)^{n_1} (-1)^{n_2} (-2)^{n_3}$.

where $n_1 + n_2 + n_3 = 5$ and $n_2 + 2n_3 = 5$. The possible value of n_1, n_2 and n_3 are shown in margin

$$n_1 \quad n_2 \quad n_3$$

$$\therefore \text{ The coefficient of } x^5 = \frac{5!}{1!3!1!} (1)^1 (-1)^3 (-2)^1 + \frac{5!}{2!1!2!} (1)^2 (-1)^1 (-2)^2 + \frac{5!}{0!5!0!} (1)^0 (-1)^5 (-2)^0 = 40 - 120 - 1 = -81$$

Example: 41 Find the coefficient of $a^3b^4c^5$ in the expansion of $(bc + ca + ab)^6$

(d) None of these

Solution: (b) In this case, $a^3b^4c^5 = (ab)^x(bc)^y(ca)^z = a^{x+z}.b^{x+y}.c^{y+z}$

$$z + x = 3$$
, $x + y = 4$, $y + z = 5$; $2(x + y + z) = 12$; $x + y + z = 6$. Then $x = 1$, $y = 3$, $z = 2$

Therefore the coefficient of $a^3b^4c^5$ in the expansion of $(bc + ca + ab)^6 = \frac{6!}{1!3!2!} = 60$.

6.1.13 Binomial Theorem for any Index

Statement:
$$(1+x)^n = 1 + nx + \frac{n(n-1)x^2}{2!} + \frac{n(n-1)(n-2)}{3!}x^3 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
terms up to ∞

When n is a negative integer or a fraction, where -1 < x < 1, otherwise expansion will not be possible.

If x < 1, the terms of the above expansion go on decreasing and if x be very small a stage may be reached when we may neglect the terms containing higher power of x in the expansion, then $(1+x)^n = 1+nx$.

Important Tips

- \mathcal{F} Expansion is valid only when -1 < x < 1.
- $^{n}C_{r}$ can not be used because it is defined only for natural number, so $^{n}C_{r}$ will be written as $\frac{(n)(n-1)....(n-r+1)}{r!}$
- The number of terms in the series is infinite.
- *If first term is not 1, then make first term unity in the following way,* $(x + y)^n = x^n \left[1 + \frac{y}{x} \right]^n$, *if* $\left| \frac{y}{x} \right| < 1$.

General term:
$$T_{r+1} = \frac{n(n-1)(n-2).....(n-r+1)}{r!} x^r$$

Some important expansions:

(i)
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^r + \dots$$

(ii)
$$(1-x)^n = 1 - nx + \frac{n(n-1)}{2!}x^2 - \dots + \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}(-x)^r + \dots$$

(iii)
$$(1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^2 + \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)\dots(n+r-1)}{r!}x^r + \dots$$

(iv)
$$(1+x)^{-n} = 1 - nx + \frac{n(n+1)}{2!}x^2 - \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)\dots(n+r-1)}{r!}(-x)^r + \dots$$

- (a) **Replace** *n* by 1 in (iii): $(1-x)^{-1} = 1 + x + x^2 + \dots + x^r + \dots + x^r + \dots$, General term, $T_{r+1} = x^r$
- (b) **Replace** *n* by 1 in (iv): $(1+x)^{-1} = 1 x + x^2 x^3 + \dots + (-x)^r + \dots + (-x)^r + \dots + (-x)^r$. General term, $T_{r+1} = (-x)^r$.
- (c) **Replace** *n* by 2 in (iii): $(1-x)^{-2} = 1 + 2x + 3x^2 + \dots + (r+1)x^r + \dots + \infty$, General term, $T_{r+1} = (r+1)x^r$.
 - (d) **Replace** n by 2 in (iv): $(1+x)^{-2} = 1 2x + 3x^2 4x^3 + \dots + (r+1)(-x)^r + \dots \infty$ General term, $T_{r+1} = (r+1)(-x)^r$.
 - (e) **Replace** *n* by 3 in (iii): $(1-x)^{-3} = 1 + 3x + 6x^2 + 10x^3 + \dots + \frac{(r+1)(r+2)}{2!}x^r + \dots + \infty$

General term, $T_{r+1} = (r+1)(r+2)/2!.x^r$

(f) **Replace** *n* by 3 in (iv): $(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3 + \dots + \frac{(r+1)(r+2)}{2!}(-x)^r + \dots = \infty$

General term, $T_{r+1} = \frac{(r+1)(r+2)}{2!}(-x)^r$

Example: 42 To expand $(1+2x)^{-1/2}$ as an infinite series, the range of x should be

[AMU 2002]

(a)
$$\left[-\frac{1}{2},\frac{1}{2}\right]$$

(b)
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$

Solution: (b) $(1+2x)^{-1/2}$ can be expanded if |2x|<1 *i.e.*, if $|x|<\frac{1}{2}$ *i.e.*, if $-\frac{1}{2}< x<\frac{1}{2}$ *i.e.*, if $x\in\left(-\frac{1}{2},\frac{1}{2}\right)$.

Example: 43 If the value of x is so small that x^2 and higher power can be neglected, then $\frac{\sqrt{1+x}+\sqrt[3]{(1-x)^2}}{1+x+\sqrt{1+x}}$ is equal to

[Roorkee 1962]

(a)
$$1 + \frac{5}{6}x$$

(b)
$$1 - \frac{5}{6}x$$

(c)
$$1 + \frac{2}{3}x$$

(d)
$$1 - \frac{2}{3}x$$

Solution: (b) Given expression can be written as

$$\frac{(1+x)^{1/2} + (1-x)^{2/3}}{1+x+(1+x)^{1/2}}$$

$$\frac{\left(1 + \frac{1}{2}x + \left(-\frac{1}{8}\right)x^2 + \dots\right) + \left(1 - \frac{2}{3}x - \frac{1}{9}x^2 - \dots\right)}{1 + x + \left[1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots\right]}$$

$$= \frac{1 - \frac{1}{12}x - \frac{1}{144}x^2 + \dots}{1 + \frac{3}{4}x - \frac{1}{16}x^2 + \dots} = 1 - \frac{5}{6}x + \dots = 1 - \frac{5}{6}x, \text{ when } x^2, x^3 \dots \text{ are neglected.}$$

Example: 44 If $(1+ax)^n = 1 + 8x + 24x^2 +$ then the value of *a* and *n* is

(a)
$$2,4$$

Solution: (a) We know that $(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \dots$

$$(1+ax)^n = 1 + \frac{n(ax)}{1!} + \frac{n(n-1)(ax)^2}{2!} + \dots \Rightarrow 1 + 8x + 24x^2 + \dots = 1 + \frac{n(ax)}{1!} + \frac{n(n-1)(ax)^2}{2!} + \dots$$

Comparing coefficients of both sides we get, na = 8, and $\frac{n(n-1)a^2}{2!} = 24$ on solving, a = 2, b = 4.

Coefficient of x^r in the expansion of $(1-2x)^{-1/2}$

(a)
$$\frac{(2r)!}{(r!)^2}$$

(b)
$$\frac{(2r)!}{2^r \cdot (r!)^2}$$
 (c) $\frac{(2r)!}{(r!)^2 \cdot 2^{2r}}$

(c)
$$\frac{(2r)!}{(r!)^2 \cdot 2^{2r}}$$

(d)
$$\frac{(2r)!}{2^r \cdot (r+1)!(r-1)!}$$

Solution: (b) Coefficient

of

$$x^{r} = \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)...\left(-\frac{1}{2}-r+1\right)}{r!}(-2)^{r} = \frac{1.3.5...(2r-1).(-1)^{r}.(-1)^{r}.2^{r}}{2^{r}r!} = \frac{1.3.5...(2r-1)}{r!} = \frac{(2r)!}{r!}$$

Example: 46 The coefficient of x^{25} in $(1 + x + x^2 + x^3 + x^4)^{-1}$ is

$$(d) - 1$$

Coefficient of x^{25} in $(1 + x + x^2 + x^3 + x^4)^{-1}$ Solution: (c)

= Coefficient of
$$x^{25}$$
 in $\left[\frac{1(1-x^5)}{1-x}\right]^{-1}$ = Coefficient of x^{25} in $(1-x^5)^{-1}.(1-x)$
= Coefficient of x^{25} in $[(1-x^5)^{-1}-x(1-x^5)^{-1}] = [1+(x^5)^1+(x^5)^2+.....]-x[1+(x^5)^1+(x^5)^2]+.....]$

= Coefficient of
$$x^{25}$$
 in $[1+x^5+x^{10}+x^{15}+....]$ - Coefficient of x^{24} in $[1+x^5+x^{10}+x^{15}+....]$ = $1-0=1$.

Example: 47
$$1 - \frac{1}{8} + \frac{1}{8} \cdot \frac{3}{16} - \dots =$$
 [EAMCET 1990]

(a)
$$\frac{2}{5}$$

(b)
$$\frac{\sqrt{2}}{5}$$

(c)
$$\frac{2}{\sqrt{5}}$$

(d) None of these

Solution: (c) We know that
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots \infty$$

Here
$$nx = -\frac{1}{8}, \frac{n(n-1)}{2}x^2 = \frac{3}{8.16} \Rightarrow x = \frac{1}{4}, n = -\frac{1}{2} \Rightarrow 1 - \frac{1}{8} + \frac{1}{8} \cdot \frac{3}{16} - \dots = \left(1 + \frac{1}{4}\right)^{-1/2} = \frac{2}{\sqrt{5}}$$
.

Example: 48 If x is so small that its two and higher power can be neglected and $(1-2x)^{-1/2}(1-4x)^{-5/2} = 1+kx$ then k

[Rajasthan PET 1993]

Solution: (d)
$$(1-2x)^{-1/2}(1-4x)^{-5/2} = 1+kx$$

$$\left[1 + \frac{(-1/2)(-2x)}{1!} + \frac{(-1/2)(-3/2)(-2x)^2}{2!} + \dots \right] \left[1 + \frac{(-5/2)(-4x)}{1!} + \frac{(-5/2)(-7/2)(-4x)^2}{2!} + \dots \right] = 1 + kx$$

Higher power can be neglected. Then
$$\left[1+\frac{x}{1!}\right]\left[1+\frac{10x}{1!}\right]=1+kx$$
; $1+10x+x=1+kx$; $k=11$

Example: 49 The cube root of
$$1 + 3x + 6x^2 + 10x^3 + ...$$
 is

(a)
$$1-x+x^2-x^3+....\infty$$
 (b) $1+x^3+x^6+x^9$

(a)
$$1-x+x^2-x^3+....\infty$$
 (b) $1+x^3+x^6+x^9+....$ (c) $1+x+x^2+x^3+...$ (d) None of these

Solution: (c) We have
$$(1+3x+6x^2+10x^3+....)^{1/3} = [(1-x)^{-3}]^{1/3}$$
; $[\because (1-x)^{-3} = 1+3x+6x^2+...\infty]$

$$(1-x)^{-1} = 1 + x + x^2 + \dots \infty$$

Example: 50 The coefficient of
$$x^n$$
 in the expansion of $\left(\frac{1}{1-x}\right)\left(\frac{1}{3-x}\right)$ is

(a)
$$\frac{3^{n+1}-1}{2 \cdot 3^{n+1}}$$

(b)
$$\frac{3^{n+1}-1}{3^{n+1}}$$

(b)
$$\frac{3^{n+1}-1}{3^{n+1}}$$
 (c) $2\left(\frac{3^{n+1}-1}{3^{n+1}}\right)$

(d) None of these

Solution: (a)
$$\frac{1}{(1-x)(3-x)} = (1-x)^{-1}(3-x)^{-1} = 3^{-1}(1-x)^{-1}\left(1-\frac{x}{3}\right)^{-1} = \frac{1}{3}[1+x+x^2+....x^n]\left[1+\frac{x}{3}+\frac{x^2}{3^2}+....+\frac{x^{n-1}}{3^{n-1}}+\frac{x^n}{3^n}\right]$$

Coefficient of
$$x^n = \frac{1}{3^{n+1}} + \frac{1}{3^n} + \frac{1}{3^{n-1}} + \dots + (n+1) \text{ terms} = \frac{1}{3^{n+1}} \frac{[3^{n+1} - 1]}{3 - 1} = \frac{3^{n+1} - 1}{2 \cdot 3^{n+1}}$$
.

Trick: Put n=1,2,3... and find the coefficients of $x, x^2, x^3...$ and comparing with the given option as

Coefficient of
$$x^2$$
 is $= \frac{1}{3^3} + \frac{1}{3^2} + \frac{1}{3^1} = \frac{1}{3^3} = \frac{1}{3^3} = \frac{13}{3^2} = \frac{13}{27}$; Which is given by option (a)

$$\frac{3^{n+1}-1}{2(3^{n+1})} = \frac{3^3-1}{23^3} = \frac{13}{27}.$$

6.1.14 Three / Four Consecutive terms or Coefficients

(1) If consecutive coefficients are given: In this case divide consecutive coefficients pair wise. We get equations and then solve them.

(2) If consecutive terms are given: In this case divide consecutive terms pair wise i.e. if four $\frac{T_r}{T_{r+1}}, \frac{T_{r+1}}{T_{r+2}}, \frac{T_{r+2}}{T_{r+2}} \Rightarrow \lambda_1, \lambda_2, \lambda_3$ (say) then divide λ_1 consecutive terms be $T_r, T_{r+1}, T_{r+2}, T_{r+3}$ then find by λ_2 and λ_2 by λ_3 and solve.

Example: 51 If a_1, a_2, a_3, a_4 are the coefficients of any four consecutive terms in the expansion of $(1+x)^n$, then $\frac{a_1}{a_1 + a_2} + \frac{a_3}{a_2 + a_4} =$

[IIT 1975]

(a)
$$\frac{a_2}{a_2 + a_3}$$

(a)
$$\frac{a_2}{a_2 + a_3}$$
 (b) $\frac{1}{2} \frac{a_2}{a_2 + a_3}$ (c) $\frac{2a_2}{a_2 + a_3}$ (d) $\frac{2a_3}{a_2 + a_3}$

(c)
$$\frac{2a_2}{a_2 + a_3}$$

(d)
$$\frac{2a_3}{a_2 + a_3}$$

Solution: (c) Let a_1, a_2, a_3, a_4 be respectively the coefficients of $(r+1)^{th}, (r+2)^{th}, (r+3)^{th}, (r+4)^{th}$ terms in the expansion of $(1+x)^n$. Then $a_1 = {}^nC_r, a_2 = {}^nC_{r+1}, a_3 = {}^nC_{r+2}, a_4 = {}^nC_r$

Now, $\frac{a_1}{a_1 + a_2} + \frac{a_3}{a_3 + a_4} = \frac{{}^nC_r}{{}^nC_r + {}^nC_{r+1}} + \frac{{}^nC_{r+2}}{{}^nC_{r+2} + {}^nC_{r+3}} = \frac{{}^nC_r}{{}^{n+1}C_{r+1}} + \frac{{}^nC_{r+2}}{{}^{n+1}C_{r+3}} = \frac{{}^nC_r}{{}^{n+1}C_r} + \frac{{}^nC_{r+2}}{{}^{n+1}C_r} +$ $= \frac{r+1}{n+1} + \frac{r+3}{n+1} = \frac{2(r+2)}{n+1} = 2 \cdot \frac{{}^{n}C_{r+1}}{{}^{n+1}C_{r+2}} = 2 \cdot \frac{{}^{n}C_{r+1}}{{}^{n}C_{r+1} + {}^{n}C_{r+2}} = \frac{2a_{2}}{a_{2} + a_{3}}$

6.1.15 Some Important Points

(1) Pascal's Triangle:

 $(x+y)^0$ 1 $(x+y)^1$ 1 1 2 1 1 3 3 1 $(x+y)^3$ 4 6 4 1 $(x+y)^4$ $(x + y)^5$ 10 10 5 1

Pascal's triangle gives the direct binomial coefficients.

Example: $(x+y)^4 = 1x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$

(2) Method for finding terms free from radical or rational terms in the expansion of $(a^{1/p} + b^{1/q})^N \forall a, b \in \text{prime numbers}: \text{Find the general term } T_{r+1} = {}^{N}C_r(a^{1/p})^{N-r}(b^{1/q})^r = {}^{N}C_r(a^{1/p})^r = {}$ Putting the values of $0 \le r \le N$, when indices of a and b are integers.

Note : \square Number of irrational terms = Total terms - Number of rational terms.

The number of integral terms in the expansion of $(\sqrt{3} + \sqrt[8]{5})^{256}$ is Example: 52

[AIEEE 2003]

Solution: (b)

First term = $^{256}C_0$ 3 128 5 0 = integer and after eight terms, i.e., 9th term = $^{256}C_8$ 3 124 .5 1 = integer Continuing like this, we get an A.P., 1^{st} , 9^{th} 257^{th} ; $T_n = a + (n-1)d \Rightarrow 257 = 1 + (n-1)8 \Rightarrow n = 33$ **Example: 53** The number of irrational terms in the expansion of $(\sqrt[8]{5} + \sqrt[6]{2})^{100}$ is

(a) 97

(b) 98

(c) 96

(d) 99

Solution: (a) $T_{r+1} = {}^{100}C_r \cdot 5^{\frac{100-r}{8}} \cdot 2^{\frac{r}{6}}$

As 2 and 5 are co-prime. T_{r+1} will be rational if 100-r is multiple of 8 and r is multiple of 6 also

 $0 \le r \le 100$

 $\therefore r = 0, 6, 12 \dots 96$; $\therefore 100 - r = 4, 10, 16 \dots 100$ (i)

But 100 - r is to be multiple of 8.

So, $100 - r = 0, 8, 16, 24, \dots, 96$

....(ii)

Common terms in (i) and (ii) are 16, 40, 64, 88.

 \therefore r = 84, 60, 36, 12 give rational terms \therefore The number of irrational terms = 101 - 4 = 97.

6.2 Mathematical Induction

6.2.1 First Principle of Mathematical Induction

The proof of proposition by mathematical induction consists of the following three steps:

Step I: (Verification step): Actual verification of the proposition for the starting value "i"

Step II: (Induction step): Assuming the proposition to be true for "k", $k \ge i$ and proving that it is true for the value (k + 1) which is next higher integer.

Step III: (Generalization step): To combine the above two steps

Let p(n) be a statement involving the natural number n such that

- (i) p(1) is true i.e. p(n) is true for n = 1.
- (ii) p(m + 1) is true, whenever p(m) is true i.e. p(m) is true $\Rightarrow p(m + 1)$ is true.

Then p(n) is true for all natural numbers n.

6.2.2 Second Principle of Mathematical Induction

The proof of proposition by mathematical induction consists of following steps:

Step I : (Verification step) : Actual verification of the proposition for the starting value i and (i + 1).

Step II : (Induction step) : Assuming the proposition to be true for k-1 and k and then proving that it is true for the value k+1; $k \ge i+1$.

Step III: (Generalization step): Combining the above two steps.

Let p(n) be a statement involving the natural number n such that

- (i) p(1) is true i.e. p(n) is true for n = 1 and
- (ii) p(m + 1) is true, whenever p(n) is true for all n, where $i \le n \le m$

Then p(n) is true for all natural numbers.

For $a \neq b$, The expression $a^n - b^n$ is divisible by

(a) a + b if n is even.

(b) a - b is n if odd or even.

6.2.3 Some Formulae based on Principle of Induction

For any natural number *n*

(i)
$$\sum n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
 (ii)

$$\sum n^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(iii)
$$\sum n^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4} = (\sum n)^2$$

The smallest positive integer *n*, for which $n! < \left(\frac{n+1}{2}\right)^n$ hold is Example: 1

Solution: (b) Let P(n): $n! < \left(\frac{n+1}{2}\right)^n$

Step I : For n = 2 \Rightarrow $2! < \left(\frac{2+1}{2}\right)^2 \Rightarrow 2 < \frac{9}{4} \Rightarrow 2 < 2.25$ which is true. Therefore, P(2) is true.

Step II: Assume that P(k) is true, then p(k): $k! < \left(\frac{k+1}{2}\right)^k$

Step III: For n = k + 1,

$$P(k+1): (k+1)! < \left(\frac{k+2}{2}\right)^{k+1} \implies k! < \left(\frac{k+1}{2}\right)^{k} \implies (k+1)k! < \frac{(k+1)^{k+1}}{2^{k}}$$

$$\implies (k+1)! < \frac{(k+1)^{k+1}}{2^{k}} \qquad \dots (i) \qquad \text{and} \qquad \frac{(k+1)^{k+1}}{2^{k}} < \left(\frac{k+2}{2}\right)^{k+1} \qquad \dots (ii)$$

$$\implies \left(\frac{k+2}{k+1}\right)^{k+1} > 2 \implies \left[1 + \frac{1}{k+1}\right]^{k+1} > 2 \implies 1 + (k+1)\frac{1}{k+1} + k+1 \quad C_{2}\left(\frac{1}{k+1}\right)^{2} + \dots > 2$$

$$\implies 1 + 1 + k+1 \quad C_{2}\left(\frac{1}{k+1}\right)^{2} + \dots > 2$$

Which is true, hence (ii) is true.

From (i) and (ii),
$$(k+1)! < \frac{(k+1)^{k+1}}{2^k} < \left(\frac{k+2}{2}\right)^{k+1} \implies (k+1)! < \left(\frac{k+2}{2}\right)^{k+1}$$

Hence P(k+1) is true. Hence by the principle of mathematical induction P(n) is true for all $n \in N$ Trick: By check option

(a) For
$$n = 1$$
, $1! < \left(\frac{1+1}{2}\right)^1 \Rightarrow 1 < 1$ which is wrong (b) For $n = 2$, $2! < \left(\frac{3}{2}\right)^2 \Rightarrow 2 < \frac{9}{4}$ which is correct

(b) For
$$n = 2$$
, $2! < \left(\frac{3}{2}\right)^2 \Rightarrow 2 < \frac{9}{4}$ which is correct

(c) For
$$n = 3$$
, $3! < \left(\frac{3+1}{2}\right)^3 \Rightarrow 6 < 8$ which is correct

(d) For
$$n = 4$$
, $4! < \left(\frac{4+1}{2}\right)^4 \Rightarrow 24 < \left(\frac{5}{2}\right)^4 \Rightarrow 24 < 39.0625$ which is correct.

But smallest positive integer n is 2.

Example: 2 Let $S(k) = 1 + 3 + 5 + \dots + (2k-1) = 3 + k^2$. Then which of the following is true. [AIEEE 2004]

- (a) Principle of mathematical induction can be used to prove the formula
- (b) $S(k) \Rightarrow S(k+1)$
- (c) $S(k) \Rightarrow S(k+1)$
- (d) S(1) is correct

We have $S(k) = 1 + 3 + 5 + \dots + (2k - 1) = 3 + k^2$, $S(1) \Rightarrow 1 = 4$, Which is not true and $S(2) \Rightarrow 3 = 7$, Which is Solution: (c) not true.

Hence induction cannot be applied and $S(k) \Rightarrow S(k+1)$

When *P* is a natural number, then $P^{n+1} + (P+1)^{2n-1}$ is divisible by Example: 3

[IIT 1994]

(b)
$$P^2 + i$$

(b)
$$P^2 + P$$
 (c) $P^2 + P + 1$

(d)
$$P^2 - 1$$

For n = 1, we get, $P^{n+1} + (P+1)^{2n-1} = P^2 + (P+1)^1 = P^2 + P + 1$, Solution: (c)

Which is divisible by $P^2 + P + 1$, so result is true for n = 1

Let us assume that the given result is true for $n = m \in N$

i.e.
$$P^{m+1} + (P+1)^{2m-1}$$
 is divisible by $P^2 + P + 1$ i.e. $P^{m+1} + (P+1)^{2m-1} = k(P^2 + P + 1)$ $\forall k \in \mathbb{N}$ (i)

Now,
$$P^{(m+1)+1} + (P+1)^{2(m+1)-1} = P^{m+2} + (P+1)^{2m+1} = P^{m+2} + (P+1)^2 (P+1)^{2m-1}$$

278 Mathematical Induction

$$= P^{m+2} + (P+1)^{2} [k(P^{2} + P + 1) - P^{m+1}]$$
by using (i)

$$= P^{m+2} + (P+1)^{2} \cdot k(P^{2} + P + 1) - (P+1)^{2} (P)^{m+1} = P^{m+1} [P - (P+1)^{2}] + (P+1)^{2} \cdot k(P^{2} + P + 1)$$

$$= P^{m+1} [P - P^{2} - 2P - 1] + (P+1)^{2} \cdot k(P^{2} + P + 1) = -P^{m+1} [P^{2} + P + 1] + (P+1)^{2} \cdot k(P^{2} + P + 1)$$

$$= (P^{2} + P + 1) [k \cdot (P+1)^{2} - P^{m+1}]$$

Which is divisible by $p^2 + p + 1$, so the result is true for n = m + 1. Therefore, the given result is true for all $n \in N$ by induction.

Trick: For n = 2, we get, $P^{n+1} + (P+1)^{2n-1} = P^3 + (P+1)^3 = P^3 + P^3 + 1 + 3P^2 + 3P = 2P^3 + 3P^2 + 3P + 1$

Which is divisible by $P^2 + P + 1$. Given result is true for all $n \in N$

Example: 4 Given $U_{n+1} = 3 U_n - 2U_{n-1}$ and $U_0 = 2$, $U_1 = 3$, the value of U_n for all $n \in \mathbb{N}$ is

Given
$$U_{n+1} = 3U_n = 2U_{n-1}$$
 and $U_0 = 2$, $U_1 = 3$, the value of U_n for all $n \in \mathbb{N}$ is

(a)
$$2^n - 1$$

(b)
$$2^n + 1$$
(i)

(d) None of these

Solution: (b) :
$$U_{n+1} = 3U_n - 2U_{n-1}$$

Step I: Given
$$U_1 = 3$$

For
$$n = 1$$
, $U_{1+1} = 3U_1 - 2U_0$, $U_2 = 3.3 - 2.2 = 5$

Option (b)
$$U_n = 2^n + 1$$

For n = 1, $U_1 = 2^1 + 1 = 3$ which is true. For n = 2, $U_2 = 2^2 + 1 = 5$ which is true

Therefore, the result is true for n = 1 and n = 2

Step II: Assume it is true for n = k then it is also true for n = k - 1

Then
$$U_k = 2^k + 1$$
(ii) and $U_{k-1} = 2^{k-1} + 1$ (iii)

Step III: Putting n = k in (i), we get

$$U_{k+1} = 3 U_k - 2 U_{k-1} = 3[2^k + 1] - 2[2^{k-1} + 1] = 3.2^k + 3 - 2.2^{k-1} - 2 = 3.2^k + 1 - 2.2^{k-1}$$

$$\Rightarrow 3.2^k - 2^k + 1 = 2.2^k + 1 = 2^{k+1} + 1 \Rightarrow U_{k+1} = 2^{k+1} + 1$$

This shows that the result is true for n = k + 1, by the principle of mathematical induction the result is true for all $n \in N$.

6.2.4 Divisibility Problems

To show that an expression is divisible by an integer

- (i) If a, p, n, r are positive integers, then first of all we write $a^{pn+r} = a^{pn} \cdot a^r = (a^p)^n \cdot a^r$.
- (ii) If we have to show that the given expression is divisible by c.S

Then express, $a^p = [1 + (a^p - 1)]$, if some power of $(a^p - 1)$ has c as a factor.

$$a^p = [2 + (a^p - 2)]$$
, if some power of $(a^p - 2)$ has c as a factor.

 $a^p = [K + (a^p - K)]$, if some power of $(a^p - K)$ has c as a factor.

 $(1+x)^n - nx - 1$ is divisible by (where $n \in N$) Example: 5

(a)
$$2x$$

(c)
$$2x^3$$

Solution: (b)
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots \Rightarrow (1+x)^n - nx - 1 = x^2 \left[\frac{n(n-1)}{2!} + \frac{n(n-1)(n-3)}{3!}x + \dots \right]$$

From above it is clear that $(1+x)^n - nx - 1$ is divisible by x^2 .

Trick:
$$(1+x)^n - nx - 1$$
. Put $n = 2$ and $x = 3$; Then $4^2 - 2.3 - 1 = 9$

Is not divisible by 6, 54 but divisible by 9. Which is given by option (c) = $x^2 = 9$.

The greatest integer which divides the number $101^{100} - 1$ is Example: 6

Mathematical Induction 279

(a) 100 (b) 1000 (c) 10000 (d) 100000 **Solution:** (c) $(1+100)^{100} = 1+100.100 + \frac{100.99}{1.2}(100)^2 + \Rightarrow 101^{100} - 1 = 100.100 \left[1 + \frac{100.99}{1.2} + \frac{100.99.98}{3.2.1}100 +\right]$

From above it is clear that, $101^{\,100}-1$ is divisible by $(100\,)^2=10000$

Expansion of Binomial theorem

Basic Level

1.	The approximate value	of $(1.0002)^{3000}$ is		[EAMCET 2002]
	(a) 1.6	(b) 1.4	(c) 1.8	(d) 1.2
2.	If $(1+by)^n = (1+8y+24y^2)^n$	(+), then the value of b and n	are respectively	
	(a) 4, 2	(b) 2, - 4	(c) 2, 4	(d) - 2, 4
3.	If ${}^{15}C_{3r} = {}^{15}C_{r+3}$ then r is	s equal to		[Rajasthan PET 1991]
	(a) 5	(b) 4	(c) 3	(d) 2
4.	If ${}^mC_1 = {}^nC_2$, then corre	ect statement is		[Rajasthan PET 1994]
	(a) $2m = n$	(b) $2m = n(n + 1)$	(c) $2m = n(n-1)$	(d) $2n = m(m-1)$
		Advance	Level	
5.	If $x + y = 1$, then $\sum_{r=0}^{n} r^{2r}$	$C_r x^r y^{n-r}$ equals		
	(a) nxy	(b) $nx(x + yn)$	(c) $nx(nx+y)$	(d) None of these
6.	Let $f(x) = (\sqrt{x^2 + 1} + \sqrt{x^2 - 1})$	$(-1)^6 + \left(\frac{2}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}\right)^6$. Then		
	(a) $f(x)$ is a polynomial	of the sixth degree in x	(b) $f(x)$ has exactly two to	erms
	(c) $f(x)$ is not a polynomial	nial in <i>x</i>	(d)	Coefficient of x^6 is 64
7•	In the expansion of $(x + w)$	$(a)^n$, the sum of odd terms is P	and sum of even terms is (Q, then the value of $(P^2 - Q^2)$
			[Raja	asthan PET 1997; Pb. CET 1998]
	(a) $(x^2 + a^2)^n$	(b) $(x^2 - a^2)^n$	(c) $(x-a)^{2n}$	(d) $(x+a)^{2n}$
8.	$n^n \left(\frac{n+1}{2}\right)^{2n}$ is			[AMU 2001]
	(a) Less than $\left(\frac{n+1}{2}\right)^3$	(b) Greater than $\left(\frac{n+1}{2}\right)^3$	(c) Less than $(n!)^3$	(d) Greater than $(n!)^3$
9.	The expression $(2 + \sqrt{2})^4$	has value, lying between		[AMU 2001]
	(a) 134 and 135	(b) 135 and 136	(c) 136 and 137	(d) None of these
10.	The positive integer jus	t greater than $(1+0.0001)^{10000}$ is		[AIEEE 2002]
	(a) 4	(b) 5	(c) 2	(d) 3

11.	$(\sqrt{2} + 1)^6 - (\sqrt{2} - 1)^6 =$			[MP PET 1984]
	(a) 101	(b) $70\sqrt{2}$	(c) $140\sqrt{2}$	(d) $120\sqrt{2}$
12.	The value of $(\sqrt{5} + 1)^5$	$5 - (\sqrt{5} - 1)^5$ is		[MP PET 1985]
	(a) 252	(b) 352	(c) 452	(d) 532
13.	The greatest integer	less than or equal to $(\sqrt{2} + 1)^6$ is	;	[Rajasthan PET 2000]
	(a) 196	(b) 197	(c) 198	(d) 199
14.	The integer next abo	ove $(\sqrt{3}+1)^{2m}$ contains		
	(a) 2^{m+1} as a factor	(b) 2^{m+2} as a factor	(c) 2^{m+3} as a factor	(d) 2^m as a factor
15.		ral number greater than 1. Ther		
	(a) 3	(b) 4	(c) 2	(d) None of these
				General Term
		Basi	c Level	
16.	6 th term in expansio	n of $\left(2x^2 - \frac{1}{3x^2}\right)^{10}$ is		
	(a) $\frac{4580}{17}$	(b) $-\frac{896}{27}$	(c) $\frac{5580}{17}$	(d) None of these
17.	16 th term in the expa	ansion of $(\sqrt{x} - \sqrt{y})^{17}$ is		
	(a) $136 xy^7$	(b) 136 <i>xy</i>	(c) $-136 xy^{15/2}$	(d) $-136 xy^2$
18.	In the binomial expa	ansion of $(a-b)^n$, $n \ge 5$, the sum	of the 5^{th} and 6^{th} terms is	zero. Then $\frac{a}{b}$ is equal to
			[IIT]	Screening 2001; Karnataka CET 2002]
	(a) $\frac{1}{6}(n-5)$	(b) $\frac{1}{5}(n-4)$	(c) $\frac{5}{(n-4)}$	(d) $\frac{6}{(n-5)}$
19.	The first 3 terms in	the expansion of $(1+ax)^n (n \neq 0)$	are 1, $6x$ and $16x^2$. Then the	he value of a and n are respectively
				[Kerala (Engg.) 2002]
	(a) 2 and 9	(b) 3 and 2	(c) 2/3 and 9	(d) 3/2 and 6
20.	If the third term in t	the expansion of $\left(\frac{1}{x} + x^{\log_{10} x}\right)^5$ is	1000, then the value of x	is
	(a) 10	(b) 100	(c) 1	(d) None of these
21.	If the ratio of the 7t	h term from the beginning to th	e seventh term from the	end in the expansion of $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^x$
	is $\frac{1}{6}$, then x is			
	(a) 9	(b) 6	(c) 12	(d) None of these
22.	The last term in the	binomial expansion of $\left(\sqrt[3]{2} - \frac{1}{\sqrt{2}}\right)$	$\int_{0}^{1} is \left(\frac{1}{3 \cdot \sqrt[3]{9}} \right)^{\log_3 8} . Then then then then then then then then t$	ne 5th term from the beginning is
	(a) $^{10}C_6$	(b) $2 \cdot {}^{10}C_4$	(c) $\frac{1}{2} \cdot {}^{10}C_4$	(d) None of these
23.	In the expansion of	$(1+x)^n, \frac{T_{r+1}}{T}$ is equal to		

(a)	$\frac{n+1}{r}x$	
If 6	th term in	th

(b)
$$\frac{n+r+1}{r}x$$

(c)
$$\frac{n-r+1}{r}x$$

(d)
$$\frac{n+r}{r+1}x$$

the expansion of $\left(\frac{1}{x^{8/3}} + x^2 \log_{10} x\right)^8$ is 5600, then x is equal to 24.

(a) 8

(d) None of these

Advance Level

The value of x in the expression $[x + x^{\log_{10}(x)}]^5$, if the third term in the expansion is 10,00,000 25.

If T_0, T_1, T_2, T_n represent the terms in the expansion of $(x+a)^n$, then $(T_0 - T_2 + T_4 -)^2 + (T_1 - T_3 + T_5 -)^2 = T_0 + T_0 +$ 26.

(a) $(x^2 + a^2)$

(b) $(x^2 + a^2)^n$

The value of x, for which the 6th term in the expansion of $\left\{2^{\log_2\sqrt{(9^{x-1}+7)}} + \frac{1}{2^{(1/5)\log_2(3^{x-1}+1)}}\right\}^7$ is 84, is equal to [Pb. CET 1992]

(a) 4

Given that 4th term in the expansion of $\left(2+\frac{3}{8}x\right)^{10}$ has the maximum numerical value, the range of value of x 28.

for which this will be true is given by

[Roorkee 1994]

(a) $-\frac{64}{21} < x < -2$ (b) $-\frac{64}{21} < x < 2$

(c) $\frac{64}{21} < x < 4$

(d) None of these

If the $(r+1)^{\text{th}}$ term in the expansion of $\left(\sqrt[3]{\frac{a}{\sqrt{b}}} + \sqrt{\frac{b}{\sqrt[3]{a}}}\right)^{21}$ has the same power of a and b, then the value of r is 29.

(a) 9

If the 6th term in the expansion of the binomial $\left[\sqrt{2^{\log(10-3^x)}} + \sqrt[5]{2^{(x-2)\log 3}}\right]^m$ is equal to 21 and it is known that the 30.

binomial coefficients of the 2nd, 3rd and 4th terms in the expansion represent respectively the first, third and fifth terms of an A.P. (the symbol log stands for logarithm to the base 10), then x =[Roorkee 1993]

(a) o

(d) 3

If the fourth term of $\left(\sqrt{x^{\left(\frac{1}{1+\log_{10} x}\right)}} + \sqrt[12]{x}\right)$ is equal to 200 and x > 1, then x is equal to

(a) $10\sqrt{2}$

(b) 10

(c) 10^4

(d) $10/\sqrt{2}$

Independent Term

Basic Level

To make the term ${}^{3n}C_r(-1)^rx^{3n-r}$ free from x, necessary condition is 32.

(a) $^{3n}C_r = 0$

(b) $x^{3n-r} = 0$

(c) 3n = r

(d) None of these

In the expansion of $\left(2x + \frac{1}{3x^2}\right)^9$, the term independent of x is 33.

Binomia	al Theorem	250

	(a) 9C_3 8	(b) $\frac{1792}{9}$	(c) ⁹ C ₃ 64	(d) ${}^{9}C_{3}\frac{1}{81}$
34.	The term independent of	f y in the expansion of $(y^{-1/6} - y^1)$	^{/3}) ⁹ is	[BIT Ranchi 1980]
	(a) 84	(b) 8.4	(c) 0.84	(d) - 84
35.	The term independent of	f x in the expansion of $\left(\frac{1}{2}x^{1/3} + \dots\right)$	$\left(x^{-1/5}\right)^{8}$ will be	[Roorkee 1985]
	(a) 5	(b) 6	(c) 7	(d) 8
36.	In the expansion of $\left(x - \frac{1}{2}\right)$	$\left(\frac{1}{x}\right)^{6}$, the constant term is	[AMU	1982; MP PET 1984; MNR 1979]
	(a) - 20	(b) 20	(c) 30	(d) - 30
37•	The term independent of	f x in the expansion of $\left(x^2 - \frac{1}{x}\right)^9$	is	[EAMCET 1982; MP PET 2003]
	(a) 1	(b) - 1	(c) -48	(d) None of these
38.	In the expansion of $\left(x + \frac{1}{x}\right)$	$\left(\frac{2}{x^2}\right)^{15}$, the term independent of	x is	[MP PET 1993]
	(a) $^{15}C_6 2^6$	(b) $^{15}C_5 2^5$	(c) $^{15}C_4 2^4$	(d) $^{15}C_8 2^8$
39.	In the expansion of $\left(\frac{3x^2}{2}\right)$	$\left(\frac{2}{3x} - \frac{1}{3x}\right)^9$, the term independent of	of x is[MNR 1981; AMU 1983;	Rajasthan PET 1996; JMIEE 2001]
	(a) ${}^9C_3 \cdot \frac{1}{6^3}$	(b) ${}^{9}C_{3}\left(\frac{3}{2}\right)^{3}$	(c) ⁹ C ₃	(d) None of these
10.	The term independent of	f x in $\left(2x - \frac{1}{2x^2}\right)^{12}$ is		[Rajasthan PET 1985]
	(a) - 7930	(b) - 495	(c) 495	(d) 7920
41.	The term independent of	f x in $\left[\sqrt{\frac{x}{3}} + \frac{\sqrt{3}}{x^2}\right]^{10}$ is	[EAMO	CET 1984; Rajasthan PET 2000]
	(a) $\frac{2}{3}$	(b) $\frac{5}{3}$	(c) $\frac{4}{3}$	(d) None of these
12.	The term independent of	$(-2)^{18}$		F=4-20==7
		$\int x \ln \left(\sqrt{x} - \frac{1}{x} \right)$ is		[EAMCET 1990]
		(b) ${}^{18}C_6 2^{12}$	(c) $^{18}C_{18} 2^{18}$	(d) None of these
13 .	(a) $^{18}C_6 2^6$		15	
43.	(a) $^{18}C_6 2^6$ The ratio of the coefficients	(b) ${}^{18}C_6 2^{12}$ ent of x^{15} to the term independent (b) $32:1$	ent of x in $\left(x^2 + \frac{2}{x}\right)^{15}$ is (c) 1: 16	
13. 14.	(a) $^{18}C_6 2^6$ The ratio of the coefficients	(b) $^{18}C_6 2^{12}$ ent of x^{15} to the term independent	ent of x in $\left(x^2 + \frac{2}{x}\right)^{15}$ is (c) 1: 16	(d) None of these
	(a) $^{18}C_6 2^6$ The ratio of the coefficients	(b) ${}^{18}C_6 2^{12}$ ent of x^{15} to the term independent (b) $32:1$	ent of x in $\left(x^2 + \frac{2}{x}\right)^{15}$ is (c) 1: 16	(d) None of these (d) 16:1
	(a) ${}^{18}C_6 2^6$ The ratio of the coefficient (a) 1:32 The term independent of (a) $\frac{160}{9}$	(b) ${}^{18}C_6 2^{12}$ ent of x^{15} to the term independent (b) $32:1$ f x in the expansion of $\left(2x + \frac{1}{3x}\right)$	ent of x in $\left(x^2 + \frac{2}{x}\right)^{15}$ is (c) 1:16 (c) $\frac{160}{27}$	(d) None of these (d) $16:1$ [MNR 1995] (d) $\frac{80}{3}$

46.	The term independent of x in the expansion of	$\left(x^2-\frac{1}{2}\right)$	$\left(\frac{3\sqrt{3}}{x^3}\right)^{10}$	is		[Rajasthan PET 1999]
-----	---	--------------------------------	---	----	--	----------------------

- (a) 153090
- (b) 150000

- (c) 150090
- (d) 153180

The term independent of x in the expansion of $\left(2x - \frac{3}{x}\right)^6$ is 47.

[Pb. CET 1999]

- (a) 4320

- (c) 216
- (d) 4320

In the expansion of $\left(x - \frac{3}{x^2}\right)^9$, the term independent of x is 48.

[Karnataka CET 2001]

- (a) Not existent
- (b) ${}^{9}C_{2}$

- (c) 2268
- (d) 2268
- In the expansion of $\left(x+\frac{1}{x}\right)^{2n}$ $(n \in \mathbb{N})$, the term independent of x is

[Rajasthan PET 1995]

- (a) $\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!} 2^n$ (b) $\frac{(2n)!}{n!}$

- (c) $\frac{(2n)!}{n!} 2^n$
- (d) $\frac{n!}{(2n)!}$

Advance Level

- The sum of the coefficients in the binomial expansion of $\left(\frac{1}{x} + 2x\right)^n$ is equal to 6561. The constant term in the 50. expansion is
 - (a) ${}^{8}C_{4}$
- (b) $16 \cdot {}^{8}C_{4}$

- (c) ${}^{6}C_{4} \cdot 2^{4}$
- (d) None of these
- The greatest value of the term independent of x in the expansion of $(x \sin \alpha + x^{-1} \cos \alpha)^{10}, \alpha \in R$, is 51.
 - (a) 2^5

(b) $\frac{10!}{(5!)^2}$

- (c) $\frac{1}{2^5} \cdot \frac{10!}{(5!)^2}$
- (d) None of these

Coefficients of any power of x

Basic Level

- If the coefficients of p^{th} , $(p+1)^{th}$ and $(p+2)^{th}$ terms in the expansion of $(1+x)^n$ are in A.P., then 52.
- (a) $n^2 2np + 4p^2 = 0$ (b) $n^2 n(4p+1) + 4p^2 2 = 0$ (c) $n^2 n(4p+1) + 4p^2 = 0$
- (d) None of these
- The coefficient of two consecutive terms in the expansion of $(1+x)^n$ will be equal, if 53.
 - (a) *n* is any integer
- (b) *n* is an odd integer
- (c) *n* is an even integer
- (d) None of these

- In the expansion of $\left(\frac{a}{x} + bx\right)^{12}$, the coefficient of x^{-10} will be 54.
 - (a) $12 a^{11}$
- (b) $12b^{11}a$

- (c) $12a^{11}b$
- (d) $12a^{11}b^{11}$
- If the ratio of the coefficient of third and fourth term in the expansion of $\left(x \frac{1}{2x}\right)^n$ is 1 : 2, then the value of *n* 55. will be

(c) 12

(d) - 10

- In the expansion of $\left(x^3 + \frac{1}{x^2}\right)^8$, the term containing x^4 is
 - (a) $70x^4$
- (b) $60x^4$

(c) $56x^4$

(d) None of these

(d) 16

57.	If the coefficients of	r^{th} term and $(r+4)^{th}$ term and		$(x+x)^{20}$, then the value of r will be		
	(a) 7	(b) 8	[Rajasthan PET 1985, 9 7 (c) 9	7; Kerala (Engg.) 2001; MP PET 2002] (d) 10		
58.		$\left(y^2 + \frac{c}{y}\right)^5$, the coefficient of y		[MNR 1983]		
	(a) 20 c	(b) 10 c	(c) $10 c^3$	(d) $20 c^2$		
59.	If p and q be positive	e, then the coefficients of x^{I}	and x^q in the expansion of	$(1+x)^{p+q}$ will be [MNR 1983; AIEEE 2002]		
	(a) Equal		(b) Equal in magnit	ude but opposite in sign		
	(c) Reciprocal to ea		(d)	None of these		
60.	If the coefficients of	5^{th} , 6^{th} and 7^{th} terms in the	expansion of $(1+x)^n$ be in A.1	P., then $n = [Roorkee 1984; Pb. CET 1999]$		
	(a) 7 only	(b) 14 only	(c) 7 or 14	(d) None of these		
61.	Two consecutive ter	ms in the expansion of $(3+2)$	$(2x)^{74}$ whose coefficients are eq	qual, are		
	(a) 29^{th} and 30^{th}	(b) 30^{th} and 31^{st}	(c) 31^{st} and 32^{nd}	(d) None of these		
62.	The coefficient of x^7	in the expansion of $\left(\frac{x^2}{2} - \frac{2}{x^2}\right)$	$\left(\frac{1}{2}\right)^{8}$ is	[MNR 1975]		
	(a) - 56	(b) 56	(c) - 14	(d) 14		
63.	If for positive integ	ers $r > 1$, $n > 2$, the coeffic	ient of the $(3r)^{th}$ and $(r + 2)$	th powers of x in the expansion of		
	$(1+x)^{2n}$ are equal, then					
		[IIT 1983; BIT 1990;	Kurukshetra CEE 1992; DCE 20	00; UPSEAT 1998, 2002; AIEEE 2002]		
	(a) $n = 2r$	(b) $n = 3r$	(c) $n = 2r + 1$	(d) None of these		
64.	In the expansion of	$(x^2-2x)^{10}$, the coefficient of	x^{16} is	[MP PET 1985]		
	(a) - 1680	(b) 1680	(c) 3360	(d) 6720		
65.	In the expansion of	$\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$, the coefficient of	is[IIT 1983; EAMCET 1985;	DCE 2000; Rajasthan PET 2001; UPSEAT 20		
	(a) $\frac{405}{256}$	(b) $\frac{504}{259}$	(c) $\frac{450}{263}$	(d) None of these		
		237	203			
66.	The coefficient of x^3	in the expansion of $\left(x^4 - \frac{1}{2}\right)^{3/2}$	$\left(\frac{1}{x^3}\right)^{10}$ is	[MP PET 1994; Karnataka CET 2003]		
	(a) $^{15}C_5$	(b) $^{15}C_6$	(c) $^{15}C_4$	(d) $^{15}C_7$		
67.	If coefficient of $(2r -$	+ 3) th and $(r - 1)$ th terms in t	he expansion of $(1+x)^{15}$ are e	qual, then value of r is		
			[Raja	sthan PET 1995, 2003; UPSEAT 2001]		
	(a) 5	(b) 6	(c) 4	(d) 3		
68.	If x^4 occurs in the r	th term in the expansion of $\Big($	$\left(x^4 + \frac{1}{x^3}\right)^{15}$, then $r =$	[MP PET 1995]		
	(a) 7	(b) 8	(c) 9	(d) 10		
69.	If the coefficients of	$\int x^7$ and x^8 in $\left(2+\frac{x}{3}\right)^n$ are ϵ	equal, then n is			
		[EAMCET 1983; K	urukshetra CEE 1998; DCE 2000); Rajasthan PET 2001; UPSEAT 2001]		
	(a) 56	(b) 55	(c) 45	(d) 15		
7 0.	If coefficients of (2r	$(r + 1)^{th}$ term and $(r + 2)^{th}$ term	m are equal in the expansion	of $(1+x)^{43}$, then the value of r will		
	be			[UPSEAT 1999]		

(c) 13

(a) 14

(b) 15

71.	If the coefficient o	f 4 th term in the expansion of	$(a+b)^n$ is 56, then n is	[AMU 20	000]
	(a) 12	(b) 10	(c) 8	(d) 6	
2.	If the coefficients	of x^2 and x^3 in the expansio	n of $(3+ax)^9$ are the same, then the	e value of a is [DCE 20	001]
	(a) $-\frac{7}{9}$	(b) $-\frac{9}{7}$	(c) $\frac{7}{9}$	(d) $\frac{9}{7}$	
	9	7	9	7	
3.	The coefficient of	x^3 in the expansion of $\left(x - \frac{1}{x}\right)$) ⁷ is	[MP PET 19	997]
	(a) 14	(b) 21	(c) 28	(d) 35	
ļ.	If the coefficient o	f $(2r + 4)^{th}$ and $(r - 2)^{th}$ terms	s in the expansion of $(1+x)^{18}$ are ϵ	qual, then $r = [MP PET 19]$	997]
	(a) 12	(b) 10	(c) 8	(d) 6	
5.	If x^m occurs in the	e expansion of $\left(x + \frac{1}{x^2}\right)^{2n}$, the	n the coefficient of x^m is	[UPSEAT 19	999]
	(a) $\frac{(2n)!}{(m)!(2n-m)!}$	(b) $\frac{(2n)!3!3!}{(2n-m)!}$	(c) $\frac{(2n)!}{\left(\frac{2n-m}{3}\right)!\left(\frac{4n+m}{3}\right)!}$	(d) None of these	
5 .	If coefficients of 2	$^{\rm nd}$, $3^{\rm rd}$ and $4^{\rm th}$ terms in the bir	nomial expansion of $(1+x)^n$ are in	A.P., then $n^2 - 9n$ is equal to	o[Raj a
	(a) - 7	(b) 7	(c) 14	(d) - 14	
'.	The coefficient of	x^{-9} in the expansion of $\left(\frac{x^2}{2}\right)$	$\left(\frac{2}{x}\right)^9$ is	[Kerala (Engg.) 20	001]
	(a) 512	(b) - 512	(c) 521	(d) 251	
3.	If the coefficient o	f x in the expansion of $\left(x^2 + \frac{1}{x^2}\right)$	$\left(\frac{k}{x}\right)^{5}$ is 270, then $k =$	[EAMCET 20	002]
	(a) 1	(b) 2	(c) 3	(d) 4	
	In the expansion o	f $(1+x)^n$ the coefficient of p^{th}	and $(p+1)^{th}$ terms are respectively	y p and q . Then $p + q = [EAI]$	MCET
	(a) $n + 3$	(b) $n + 1$	(c) $n + 2$	(d) n	
).	The coefficient of	x^{39} in the expansion of $\left(x^4 - \frac{1}{2}\right)^{10}$	$\left(\frac{1}{x^3}\right)^{15}$ is	[MP PET 20	001]
	(a) - 455	(b) - 105	(c) 105	(d) 455	
	If the coefficients	of T_r , T_{r+1} , T_{r+2} terms of $(1+x)$	r^{14} are in A.P., then $r =$	[Pb. CET 20	002]
	(a) 6	(b) 7	(c) 8	(d) 9	
١.	In the expansion o	f $(1+x)^n$, coefficients of 2^{nd} , 3	\mathbf{s}^{rd} and 4^{th} terms are in A.P., then i	ı is equal to	
			[IIT 1994; UP	SEAT 2002; Rajasthan PET 20	002]
	(a) 7	(b) 9	(c) 11	(d) None of these	
•	Coefficient of x^2 i	n the expansion of $\left(x - \frac{1}{2x}\right)^8$	is	[UPSEAT 20	002]
	(a) $\frac{1}{7}$	(b) $\frac{-1}{7}$	(c) - 7	(d) 7	
ļ.	The coefficient of	x^5 in the expansion of $(x+3)^6$	is	[DCE 20	002]
	(a) 18	(b) 6	(c) 12	(d) 10	
	If A and B are coef	ficients of x^r and x^{n-r} respectively.	ctively in the expansion of $(1+x)^n$,	then	
	(a) $A = B$	(b) $A \neq B$	(c) $A = \lambda B$ for some λ	(d) None of these	

86.	If the r^{th} term in the exp	ansion of $(x/3-2/x^2)^{10}$ contains	x^4 , then r is equal to	[Roorkee 1992]
	(a) 2	(p) 3	(c) 4	(d) 5
87.	The coefficient of x^3 in	$\left(\sqrt{x^5} + \frac{3}{\sqrt{x^3}}\right)^6 \text{ is}$		[EAMCET 1994]
	(a) O	(b) 120	(c) 420	(d) 540
88.	If the coefficient of (r +	1)th term in the expansion of (1	$(r + x)^{2n}$ be equal to that of $(r + x)^{2n}$	+ 3)th term, then
	(a) $n - r + 1 = 0$	(b) $n - r - 1 = 0$	(c) $n+r+1=0$	(d) None of these
89.	x^{-26} occurs in the expan	sion of $\left(x^2 - \frac{1}{x^4}\right)^{11}$ in		
	(a) T_8	(b) T_9	(c) T_{10}	(d) None of these
90.	In the expansion of $(1+a)$	$(nx)^n$, $n \in N$, the coefficient of x and	nd x^2 are 8 and 24 respecti	vely. Then
	(a) $a = 2$, $n = 4$	(b) $a = 4$, $n = 2$	(c) $a = 2, n = 6$	(d) $a = -2$, $n = 4$
		Advance L	level	
91.	The coefficient of the te	rm independent of x in the expan	nsion of $(1+x+2x^3)\left(\frac{3}{2}x^2 - \frac{1}{3}\right)$	$\left(\frac{1}{x}\right)^9$ is [DCE 1994]
	(a) $\frac{1}{3}$	(b) $\frac{19}{54}$	(c) $\frac{17}{54}$	(d) $\frac{1}{4}$
92.	The coefficient of $\frac{1}{x}$ in the coefficient of $\frac{1}{x}$	the expansion of $(1+x)^n \left(1+\frac{1}{x}\right)^n$ is	S	
	(a) $\frac{n!}{(n-1)!(n+1)!}$	(b) $\frac{(2n)!}{(n-1)!(n+1)!}$	(c) $\frac{(2n)!}{(2n-1)!(2n+1)!}$	(d) None of these
93.	The coefficient of x^4 in	the expansion of $(1+x+x^2+x^3)^n$		OCE 1998; Rajasthan PET 2001]
	(a) ${}^{n}C_{4}$	(b) ${}^{n}C_{4} + {}^{n}C_{2}$	(c) ${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{4} \cdot {}^{n}C_{2}$	(d) ${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{1}$. ${}^{n}C_{2}$
94.	The coefficient of x^{53} in	the following expansion $\sum_{m=0}^{100} {}^{100}$ ($C_m(x-3)^{100-m}$. 2^m is	[IIT 1992]
	(a) $^{100}C_{47}$	(b) $^{100}C_{53}$	(c) $-{}^{100}C_{53}$	(d) $-{}^{100}C_{100}$
95.	The sum of the coefficies	nts of even power of x in the exp	coansion of $(1 + x + x^2 + x^3)^5$ is	[EAMCET 1988]
	(a) 256	(b) 128	(c) 512	(d) 64
96.		the expansion of $(1+x)^{21} + (1+x)^{22}$		[UPSEAT 2001]
	(a) ${}^{51}C_5$	(b) ${}^{9}C_{5}$	(c) ${}^{31}C_6 - {}^{21}C_6$	(d) ${}^{30}C_5 + {}^{20}C_5$
97.		the expansion of $(1+t^2)^{12}(1+t^{12})(1+t^{12})$		[IIT Screening 2003]
	(a) $^{12}C_6 + 2$	(b) $^{12}C_5$	(c) $^{12}C_6$	(d) $^{12}C_7$
98.	=		_	tively, then m is[IIT 1999; MP PET 2
	(a) 6	(b) 9	(c) 12 $\frac{1}{2}$	(d) 24
99.	in the expansion of the i	Following expression $1 + (1 + x) + (1 + x)$	+x) + + (1+x), the coeff	[Rajasthan PET 2000]
	(a) $^{n+1}C_{k+1}$	(b) nC_k	(c) ${}^{n}C_{n-k-1}$	(d) None of these
100.	If there is a term contain	ning x^{2r} in $\left(x + \frac{1}{x^2}\right)^{n-3}$, then		

264 Binomial Theorem (a) n - 2r is a positive integral multiple of 3 (b) n - 2r is even (c) n - 2r is odd (d) None of these **101.** If the binomial coefficients of 2nd, 3rd and 4th terms in the expansion of $\sqrt{2^{\log_{10}(10-3^x)}} + \sqrt[5]{2^{(x-2)\log_{10}3}}$ are in A.P. and the 6th term is 21, then the value(s) of x is (are) (b) 0, 2 (a) 1, 3 (c) 4 **102.** The coefficient of $x^r(0 \le r \le (n-1))$ in the expansion of $(x+3)^{n-1} + (x+3)^{n-2}(x+2) + (x+3)^{n-3}(x+2)^2 + \dots + (x+2)^{n-1}$ is (b) ${}^{n}C_{n}(3^{n-r}-2^{n-r})$ (c) ${}^{n}C_{r}(3^{r}+2^{n-r})$ (a) ${}^{n}C_{r}(3^{r}-2^{n})$ (d) None of these **103.** The coefficient of a^8b^{10} in the expansion of $(a+b)^{18}$ is (a) $^{18}C_{8}$ (b) $^{18}P_{10}$ (c) 2^{18} (d) None of these **104.** The coefficient of x^{65} in the expansion of $(1+x)^{131}(x^2-x+1)^{130}$ is (a) $^{130}C_{65} + ^{129}C_{66}$ (b) $^{130}C_{65} + ^{129}C_{55}$ (c) $^{130}C_{66} + ^{129}C_{65}$ (d) None of these **105.** The coefficient of x^{13} in the expansion of $(1-x)^5(1+x+x^2+x^3)^4$ is (b) - 4(d) None of these **106.** The coefficient of x^{17} in the expansion of (x-1)(x-2).... (x-18) is (b) - 171 (d) 171/2 **107.** In the expansion of $(1 + x + x^3 + x^4)^{10}$, the coefficient of x^4 is [MP PET 2000] (a) $^{40}C_4$ (b) $^{10} C_4$ (c) 210 (d) 310 Number of terms in the expansion of $(a + b)^n$, $(a + b + c)^n$ and $(a + b + c + d)^n$ Basic Level **108.** The number of non-zero terms in the expansion of $(1+3\sqrt{2}x)^9+(1-3\sqrt{2}x)^9$ is [EAMCET 1991] (d) 10 **109.** The number of terms in the expansion of $(a+b+c)^n$ will be (c) $\frac{(n+1)(n+2)}{2}$ (a) n + 1(b) n + 3(d) None of these **110.** The total number of terms in the expansion of $(x+y)^{100} + (x-y)^{100}$ after simplification is (c) 202 (a) 50 (d) None of these **111.** The expression $[x+(x^3-1)^{1/2}]^5 + [x-(x^3-1)^{1/2}]^5$ is a polynomial of degree [IIT 1992] (b) 6 (d) 8 **112.** The number of terms in the expansion of $[(x-3y)^2(x+3y)^2]^3$ is (d) None of these (a) 6 (b) 7 (c) 8113. If n is a negative integer and |x| < 1 then the number of terms in the expansion of $(1+x)^n$ is (a) n + 1(b) n + 2(c) 2^n (d) Infinite

(d) 24

114. The number of terms in the expansion of $(1+3x+3x^2+x^3)^6$ is (a) 18 (b) 9 (c)

115. The number of terms whose values depend on x in the expansion of $\left(x^2 - 2 + \frac{1}{x^2}\right)^n$ is

(a) 2n + 1

(b) 2n

(c) n

(d) None of these

116. The number of real negative terms in the binomial expansion of $(1+ix)^{4n-2}$, $n \in \mathbb{N}$, x > 0, is

(a) n

(b) n + 1

(c) n-1

(d) 2n

117. In the expansion of $(x+\sqrt{x^2-1})^6+(x-\sqrt{x^2-1})^6$, the number of terms is

(a) 7

(b) 14

(c) 6

(d) 4

118. The number of distinct terms in the expansion of $(x+2y-3z+5w-7u)^n$ is

(a) n + 1

(b) $^{n+4}C_4$

(c) $^{n+4}C_n$

(d) $\frac{(n+1)(n+2)(n+3)(n+4)}{24}$

119. In how many terms in the expansion of $(x^{1/5} + y^{1/10})^{55}$ do not have fractional power of the variable [Pb. CET 1992]

(a) 6

(b) 7

(c) 8

(d) 10

Middle Term

Basic Level

120. If the middle term in the expansion of $\left(x^2 + \frac{1}{x}\right)^n$ is 924 x^6 , then n =

(a) 10

(b) 12

(c) 14

(d) None of these

121. The middle term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{20}$ is

(a) ${}^{20}C_{11}\frac{x}{a}$

(b) ${}^{20}C_{11}\frac{a}{x}$

(c) $^{20}C_{10}$

(d) None of these

122. The middle term in the expansion of $\left(\frac{a}{x} + bx\right)^{12}$ will be

(a) 924 a^6b^6

(b) 924 $\frac{a^6b^6}{x}$

(c) 924 $\frac{a^6b^6}{r^2}$

(d) 924 $a^6b^6x^2$

123. The coefficient of middle term in the expansion of $(1+x)^{10}$ is

[UPSEAT 2001]

(a) $\frac{10!}{5!6!}$

(b) $\frac{10!}{(5!)^2}$

(c) $\frac{10!}{5!7!}$

(d) None of these

124. The middle term in the expansion of $(1+x)^{2n}$ is

[DCE 2002]

(a) $\frac{(2n)!}{n!}x^2$

(b) $\frac{(2n)!}{n!(n-1)!}x^{n+1}$

(c) $\frac{(2n)!}{(n!)^2} x^n$

(d) $\frac{(2n)!}{(n+1)!(n-1)!}x^n$

125. The middle term in the expansion of $\left(\frac{2x}{3} - \frac{3}{2x^2}\right)^{2n}$ is

(a) $^{2n}C_n$

(b) $(-1)^n \frac{(2n)!}{(n!)^2} \cdot x^{-n}$

(c) $^{2n}C_n \cdot \frac{1}{r^n}$

(d) None of these

126. The middle terms in the expansion of $(x^2 - a^2)^5$ is

(a) $10x^6a^4, -10x^4a^6$

(b) $-10x^6a^4, 10x^4a^6$

(c) $10x^6a^4, 10x^4a^6$

(d) $-10x^6a^4, -10x^4a^6$

266	Binomial Theorem			
127.	The middle term in the ϵ	expansion of $\left(x + \frac{1}{2x}\right)^{2n}$ is		[MP PET 1995]
	(a) $\frac{1.3.5(2n-3)}{n!}$	(b) $\frac{1.3.5(2n-1)}{n!}$	(c) $\frac{1.3.5(2n+1)}{n!}$	(d) None of these
128.	If the coefficient of the	middle term in the expansion	of $(1+x)^{2n+2}$ is p and the coefficients	efficients of middle terms in
	the expansion of $(1+x)^{2n}$	$^{+1}$ are q and r , then		
	(a) $p + q = r$	(b) $p + r = q$	(c) $p = q + r$	(d) $p + q + r = 0$
129.	Middle term in the expan	nsion of $(1+3x+3x^2+x^3)^6$ is		[MP PET 1997]
	(a) 4 th	(b) 3 rd	(c) 10 th	(d) None of these
130.	The coefficient of each n	niddle term in the expansion of	$(1+x)^n$, when <i>n</i> is odd, is	
	(a) $\frac{1.3.5(n-1)}{2.4.6n} 2^n$	(b) $\frac{1.3.5n}{2.4.6n} 2^n$	(c) $\frac{1.3.5(n+1)}{2.4.6n} 2^n$	(d) $\frac{1.3.5n}{2.4.6(n+1)} 2^n$
131.	If the <i>r</i> th term is the mid	ddle term in the expansion of $\left(x\right)$	$(x^2 - \frac{1}{2x})^{20}$ then the $(r + 3)$ th	term is
	(a) $^{20}C_{14} \cdot \frac{1}{2^{14}} \cdot x$	(b) $^{20}C_{12} \cdot \frac{1}{2^{12}} \cdot x^2$	(c) $-\frac{1}{2^{13}} \cdot {}^{20}C_7 \cdot x$	(d) None of these
132.	The coefficient of the m	iddle term in the binomial exp	ansion in powers of x of $(1 + x)$	$(1-\alpha x)^4$ and of $(1-\alpha x)^6$ is the
	same if α equals			
	2	10	2	[AIEEE 2004]
	(a) $\frac{3}{5}$	(b) $\frac{10}{3}$	(c) $\frac{3}{10}$	(d) $\frac{-3}{10}$
				\wedge
			Greatest term a	and Greatest coefficient
				and Greatest coefficient
		Basic Le		and Greatest coefficient
122	The sum of the coefficie		evel	
133.	The sum of the coefficie	Pasic Lee ents in the expansion of $(x + y)^n$	is 4096. The greatest coeffic	
	(a) 1024	ents in the expansion of $(x + y)^n$ (b) 924	is 4096. The greatest coeffic	cient in the expansion is
	(a) 1024 The greatest coefficient	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is	is 4096. The greatest coeffic [Kuruk (c) 824	cient in the expansion is selected CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997]
	(a) 1024	ents in the expansion of $(x + y)^n$ (b) 924	is 4096. The greatest coeffic [Kuruk (c) 824	cient in the expansion is shetra CEE 1998; AIEEE 2002]
134.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is (b) $\frac{(2n+2)!}{n!(n+1)!}$	is 4096. The greatest coefficient [Kuruk (c) 824 (c) $\frac{(2n+1)!}{[(n+1)!]^2}$	cient in the expansion is a shetra CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$
134.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$ If the sum of the coefficient	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is	is 4096. The greatest coefficient [Kuruk (c) 824 (c) $\frac{(2n+1)!}{[(n+1)!]^2}$	cient in the expansion is a shetra CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$
134.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$ If the sum of the coefficient expansion is	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is (b) $\frac{(2n+2)!}{n!(n+1)!}$ ients in the expansion of $(x+y)^n$	is 4096. The greatest coefficient [Kuruk (c) 824] (c) $\frac{(2n+1)!}{[(n+1)!]^2}$ is 1024, then the value of the second coefficient (c) $\frac{(2n+1)!}{[(n+1)!]^2}$	cient in the expansion is selected CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$ the greatest coefficient in the [Orissa JEE 2003]
134. 135.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$ If the sum of the coefficient expansion is (a) 356	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is (b) $\frac{(2n+2)!}{n!(n+1)!}$ ients in the expansion of $(x+y)^n$	is 4096. The greatest coefficient [Kuruk (c) 824] (c) $\frac{(2n+1)!}{[(n+1)!]^2}$ is 1024, then the value of the control of the	cient in the expansion is selected CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$ the greatest coefficient in the
134. 135.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$ If the sum of the coefficient expansion is (a) 356 If n is even, then the greatest coefficient is $n = 100$	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is (b) $\frac{(2n+2)!}{n!(n+1)!}$ ients in the expansion of $(x+y)^n$ (b) 252 extest coefficient in the expansion	is 4096. The greatest coeffice [Kuruk (c) 824] (c) $\frac{(2n+1)!}{[(n+1)!]^2}$ is 1024, then the value of the control of $(x+a)^n$ is	cient in the expansion is selected CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$ the greatest coefficient in the [Orissa JEE 2003] (d) 120
134. 135.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$ If the sum of the coefficient expansion is (a) 356	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is (b) $\frac{(2n+2)!}{n!(n+1)!}$ ients in the expansion of $(x+y)^n$	is 4096. The greatest coefficient [Kuruk (c) 824] (c) $\frac{(2n+1)!}{[(n+1)!]^2}$ is 1024, then the value of the control of the	cient in the expansion is selected CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$ the greatest coefficient in the [Orissa JEE 2003]
134. 135.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$ If the sum of the coefficient expansion is (a) 356 If n is even, then the great in the sum of the coefficient expansion is	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is (b) $\frac{(2n+2)!}{n!(n+1)!}$ ients in the expansion of $(x+y)^n$ (b) 252 extest coefficient in the expansion	is 4096. The greatest coeffice [Kuruk (c) 824] (c) $\frac{(2n+1)!}{[(n+1)!]^2}$ is 1024, then the value of the componing of $(x+a)^n$ is $(c) {}^nC_n$	cient in the expansion is selected CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$ the greatest coefficient in the [Orissa JEE 2003] (d) 120
134. 135.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$ If the sum of the coefficient expansion is (a) 356 If n is even, then the great $\frac{n}{2}C_{\frac{n}{2}+1}$ If $x = 1/3$, then the great	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is (b) $\frac{(2n+2)!}{n!(n+1)!}$ ients in the expansion of $(x+y)^n$ (b) 252 eatest coefficient in the expansion of $(x+y)^n$	is 4096. The greatest coeffice [Kuruk (c) 824] (c) $\frac{(2n+1)!}{[(n+1)!]^2}$ is 1024, then the value of the componing of $(x+a)^n$ is $(c) {}^nC_n$	cient in the expansion is selected CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$ the greatest coefficient in the [Orissa JEE 2003] (d) 120
134. 135. 136.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$ If the sum of the coefficient expansion is (a) 356 If n is even, then the great (a) ${}^{n}C_{\frac{n}{2}+1}$ If $x = 1/3$, then the great (a) $56\left(\frac{3}{4}\right)^{4}$	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is (b) $\frac{(2n+2)!}{n!(n+1)!}$ ients in the expansion of $(x+y)^n$ (b) 252 eatest coefficient in the expansion (b) ${}^nC_{\frac{n}{2}-1}$ test term in the expansion of $(1-x)^n$ (b) $(1-x)^n$ test term of $(2+3x)^n$ when $(1-x)^n$	is 4096. The greatest coeffice [Kuruk (c) 824] (c) $\frac{(2n+1)!}{[(n+1)!]^2}$ is 1024, then the value of the constant of $(x+a)^n$ is	cient in the expansion is selectra CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$ the greatest coefficient in the [Orissa JEE 2003] (d) 120 (d) None of these
134. 135. 136. 137.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$ If the sum of the coefficient expansion is (a) 356 If n is even, then the great (a) ${}^{n}C_{\frac{n}{2}+1}$ If $x = 1/3$, then the great (a) $56\left(\frac{3}{4}\right)^{4}$ The numerically greates (a) T_{6}	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is (b) $\frac{(2n+2)!}{n!(n+1)!}$ ients in the expansion of $(x+y)^n$ (b) 252 exatest coefficient in the expansion of (1-1) $\frac{n}{2}C_{\frac{n}{2}-1}$ test term in the expansion of (1-1) $\frac{n}{2}C_{\frac{n}{2}-1}$ test term of $(2+3x)^9$ when $x=3/2$ (b) T_7	is 4096. The greatest coeffice [Kuruk (c) 824] (c) $\frac{(2n+1)!}{[(n+1)!]^2}$ is 1024, then the value of the constant of $(x+a)^n$ is $(x)^n C_n = \frac{1}{2}$	cient in the expansion is selected CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$ the greatest coefficient in the [Orissa JEE 2003] (d) 120 (d) None of these (d) $56\left(\frac{2}{5}\right)^4$ (d) None of these
134. 135. 136. 137.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$ If the sum of the coefficient expansion is (a) 356 If n is even, then the great (a) ${}^{n}C_{\frac{n}{2}+1}$ If $x = 1/3$, then the great (a) $56\left(\frac{3}{4}\right)^{4}$ The numerically greates (a) T_{6} If the sum of the coefficient	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is (b) $\frac{(2n+2)!}{n!(n+1)!}$ ients in the expansion of $(x+y)^n$ (b) 252 eatest coefficient in the expansion (b) ${}^nC_{\frac{n}{2}-1}$ test term in the expansion of $(1-x)^n$ (b) $(1-x)^n$ test term of $(2+3x)^n$ when $(1-x)^n$	is 4096. The greatest coeffice [Kuruk (c) 824] (c) $\frac{(2n+1)!}{[(n+1)!]^2}$ is 1024, then the value of the constant of $(x+a)^n$ is $(x)^n C_n = \frac{1}{2}$	cient in the expansion is selected CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$ the greatest coefficient in the [Orissa JEE 2003] (d) 120 (d) None of these (d) $56\left(\frac{2}{5}\right)^4$ (d) None of these
134. 135. 136. 137.	(a) 1024 The greatest coefficient (a) $\frac{(2n+1)!}{n!(n+1)!}$ If the sum of the coefficient expansion is (a) 356 If n is even, then the great (a) ${}^{n}C_{\frac{n}{2}+1}$ If $x = 1/3$, then the great (a) $56\left(\frac{3}{4}\right)^{4}$ The numerically greates (a) T_{6}	ents in the expansion of $(x + y)^n$ (b) 924 in the expansion of $(1+x)^{2n+1}$ is (b) $\frac{(2n+2)!}{n!(n+1)!}$ ients in the expansion of $(x+y)^n$ (b) 252 exatest coefficient in the expansion of (1-1) $\frac{n}{2}C_{\frac{n}{2}-1}$ test term in the expansion of (1-1) $\frac{n}{2}C_{\frac{n}{2}-1}$ test term of $(2+3x)^9$ when $x=3/2$ (b) T_7	is 4096. The greatest coeffice [Kuruk (c) 824] (c) $\frac{(2n+1)!}{[(n+1)!]^2}$ is 1024, then the value of the constant of $(x+a)^n$ is $(x)^n C_n = \frac{1}{2}$	cient in the expansion is selected CEE 1998; AIEEE 2002] (d) 724 [Rajasthan PET 1997] (d) $\frac{(2n)!}{(n!)^2}$ the greatest coefficient in the [Orissa JEE 2003] (d) 120 (d) None of these (d) $56\left(\frac{2}{5}\right)^4$ (d) None of these

	positive integral value of (a) 9	f n is (b) 8	(c) 7	(d) 10
141.	The greatest term in the	e expansion of $\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}$ is		[IIT 1966]
	(a) T ₇	(b) T_8	(c) T ₉	(d) None of these
		Advance	Level	
142.	If <i>n</i> is even positive into greatest coefficient also	eger, then the condition that th	e greatest term in the expar	nsion of $(1+x)^n$ may have the
	(a) $\frac{n}{n+2} < x < \frac{n+2}{n}$	(b) $\frac{n+1}{n} < x < \frac{n}{n+1}$	(c) $\frac{n}{n+4} < x < \frac{n+4}{4}$	(d) None of these
143.	The interval in which a	x must lie so that the numericefficient is	cally greatest term in the e	expansion of $(1-x)^{21}$ has the
	(a) $\left[\frac{5}{6}, \frac{6}{5}\right]$	(b) $\left(\frac{5}{6}, \frac{6}{5}\right)$	$(c) \left(\frac{4}{5}, \frac{5}{4}\right)$	(d) $\left[\frac{4}{5}, \frac{5}{4}\right]$
			Properties	of Binomial coefficients
		Basic L	level	
144.	$\binom{n}{0} + 2 \binom{n}{1} + 2^2 \binom{n}{2} + \dots + n$	$-2^n \binom{n}{n}$ is equal to		[AMU 2000]
	(a) 2^n	(b) o	(c) 3 ⁿ	(d) None of these
145.		$(x)^{50}$, the sum of the coefficient of		[UPSEAT 2001]
	(a) 0	(b) 2 ⁴⁹	(c) 2^{50}	(d) 2^{51}
146.	$\sum_{r=0}^{n-1} \frac{{}^{n}C_{r}}{{}^{n}C_{r} + {}^{n}C_{r+1}}$ is equal to	0		
	(a) $\frac{n}{2}$	(b) $\frac{n+1}{2}$	(c) $\frac{n(n+1)}{2}$	(d) $\frac{n(n-1)}{2(n+1)}$
147.	If P_n denotes the produc	ct of all the coefficients in the e	expansion of $(1+x)^n$, then $\frac{P_{n+1}}{P_n}$	is equal to
	(a) $\frac{(n+2)^n}{n!}$		(c) $\frac{(n+1)^{n+1}}{n!}$	(d) $\frac{(n+1)^n}{(n+1)!}$
148.	${}^{n}C_{0} - \frac{1}{2} {}^{n}C_{1} + \frac{1}{3} {}^{n}C_{2} - \dots + ($	$(-1)^n \frac{{}^n C_n}{n+1} =$		
	(a) n	(b) 1/n	(c) $\frac{1}{n+1}$	(d) $\frac{1}{n-1}$
149.	$C_0C_r + C_1C_{r+1} + C_2C_{r+2} + \dots$	$+C_{n-r}C_n=$		[BIT Ranchi 1986]
	(a) $\frac{(2n)!}{(n-r)!(n+r)!}$	(b) $\frac{n!}{(-r)!(n+r)!}$	(c) $\frac{n!}{(n-r)!}$	(d) None of these
150.	If <i>n</i> is odd, then $C_0^2 - C_1^2$	$+C_2^2-C_3^2++(-1)^nC_n^2=$		
	(a) o	(b) 1	(c) ∞	(d) $\frac{n!}{(n/2)^2!}$

140. If the coefficient of the 5th term be the numerically greatest coefficient in the expansion of $(1-x)^n$ then the

(a) $\left(\frac{4}{3}\right)^{12} - 1$

(b) $\left(\frac{3}{4}\right)^{12} - 1$

151.	$^{10}C_1 + ^{10}C_3 + ^{10}C_5 + ^{10}C_7 + ^{10}C_9 =$ [MP PET 1982]			
	(a) 2^9	(b) 2^{10}	(c) $2^{10}-1$	(d) None of these
152.	$\frac{C_1}{C_0} + 2\frac{C_2}{C_1} + 3\frac{C_3}{C_2} + \dots + 15$	$\frac{C_{15}}{C_{14}} =$		[IIT 1962]
	(a) 100	(b) 120	(c) - 120	(d) None of these
153.	$\frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \frac{C_6}{7} + \dots =$			[Rajasthan PET 1999]
	(a) $\frac{2^{n+1}}{n+1}$	(b) $\frac{2^{n+1}-1}{n+1}$	(c) $\frac{2^n}{n+1}$	(d) None of these
154.	$\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-3)!}$	-5)! + =		
	(a) $\frac{2^n}{n!}$	(b) $\frac{2^{n-1}}{n!}$	(c) O	(d) None of these
155.	The sum of $C_0^2 - C_1^2 + C_2^2 - \dots + (-1)^n C_n^2$ where <i>n</i> is an even integer, is			
	(a) $^{2n}C_n$	(b) $(-1)^{n-2n}C_n$	(c) $^{2n}C_{n-1}$	(d) None of these
156.	In the expansion of $(1 + x)$	$(x)^n$ the sum of coefficients of odd	d powers of <i>x</i> is	[MP PET 1986, 93, 2003]
	(a) $2^n + 1$	(b) $2^n - 1$	(c) 2^n	(d) 2^{n-1}
157.	$C_0 - C_1 + C_2 - C_3 + \dots + (-1)^n$	C_n is equal to	[MNR 1991; Rajas	sthan PET 1995; UPSEAT 2000]
	(a) 2^n	(b) $2^n - 1$	(c) O	(d) 2^{2n-1}
158.	The value of ${}^{15}C_0^2 - {}^{15}C_1^2 +$	$-^{15}C_2^2 - \dots -^{15}C_{15}^2$ is		[MP PET 1996]
	(a) 15	(b) - 15	(c) 0	(d) 51
159.	If $C_0, C_1, C_2,, C_n$ are the	e binomial coefficients, then 2.C	$C_1 + 2^3 \cdot C_3 + 2^5 \cdot C_5 + \dots$ equals	[AMU 1999]
	(a) $\frac{3^n + (-1)^n}{2}$	(b) $\frac{3^n - (-1)^n}{2}$	(c) $\frac{3^n+1}{2}$	(d) $\frac{3^n-1}{2}$
160.	If m , n , r are positive integers such that $r < m$, n , then ${}^mC_r + {}^mC_{r-1} {}^nC_1 + {}^mC_{r-2} {}^nC_2 + \dots + {}^mC_1 {}^nC_{r-1} + {}^nC_r$ equals			
	(a) $\binom{n}{r} C_r^2$	(b) $^{m+n}C_r$	(c) $^{m+n}C_r + {}^mC_r + {}^nC_r$	(d) None of these
161.	The value of $\frac{1}{81^n} - \frac{10}{81^n} ^{2n}$	$C_1 + \frac{10^2}{81^n} {}^{2n}C_2 - \frac{10^3}{81^n} {}^{2n}C_3 + \dots + \frac{10^{2n}}{81^n}$	is	
	(a) 2	(b) 0	(c) 1/2	(d) 1
162.	The value of $\frac{1}{n!} + \frac{1}{2!(n-2)!}$	$\frac{1}{1!} + \frac{1}{4!(n-4)!} + \dots$ is		
	(a) $\frac{2^{n-2}}{(n-1)!}$	(b) $\frac{2^{n-1}}{n!}$	(c) $\frac{2^n}{n!}$	(d) $\frac{2^n}{(n-1)!}$
163.	The sum of $(n + 1)$ terms of $\binom{n}{C_0}^2 + 3 \cdot \binom{n}{C_1}^2 + 5 \cdot \binom{n}{C_2}^2 + \dots$ is			
	(a) $^{2n-1}C_{n-1}$	(b) $^{2n-1}C_n$	(c) $2(n+1)^{2n-1}C_n$	(d) None of these
164.	If sum of all the coefficients in the expansion of $(x^{3/2} + x^{-1/3})^n$ is 128, then the coefficient of x^5 is			
	(a) 35	(b) 45	(c) 7	(d) None of these
165.	The sum of 12 terms of t	he series ${}^{12}C_1 \cdot \frac{1}{3} + {}^{12}C_2 \cdot \frac{1}{9} + {}^{12}C_3 \cdot \frac{1}{9}$	1/27 + is	

(c) $\left(\frac{3}{4}\right)^{12} + 1$

(d) None of these

178.	If $C_0, C_1, C_2,, C_n$ denote $a C_0 + (a+b)C_1 + (a+2b)C_2 - (a+b)C_1 + (a+b)C_2 - (a+b)C_1 + (a+b)C_2 - (a+b)C_1 + (a+b)C_2 - (a+b)C_1 + (a+b)C_2 - (a+b)C_2 - (a+b)C_1 + (a+b)C_2 - (a+b)C_2 - (a+b)C_2 - (a+b)C_1 + (a+b)C_2 - (a+b)C_2$	the binomial coefficient in the $++(a+nb)C_n$ is	expansion of $(1+x)^n$, then the	ne value of
	(a) $(a+nb) 2^n$	(b) $(a+nb)2^{n-1}$	(c) $(2a+nb)2^{n-1}$	(d) $(2a + nb)2^n$
179.	If $C_r = {}^nC_r$ and $(C_0 + C_1)($	$C_1 + C_2$)($C_{n-1} + C_n$) = $k \frac{(n+1)^n}{n!}$, then the value of k is	
	(a) $C_0 C_1 C_2 C_n$	(b) $C_1^2 C_2^2 \dots C_n^2$	(c) $C_1 + C_2 + \dots + C_n$	(d) None of these
180.	$^{n-1}C_r = (K^2 - 3). ^nC_{r+1}$, if K	€		[IIT Screening 2004]
	(a) $[-\sqrt{3}, \sqrt{3}]$	(b) (-∞, -2)	(c) (2,∞)	(d) $(\sqrt{3}, 2)$
181.	The coefficient of x^n in	the polynomial $(x + {}^{2n+1}C_0)(x + {}^{2n+1}C_0)$	$(x^{+1}C_1)(x^{+2n+1}C_2)(x^{+2n+1}C_n)$ is	
	(a) 2^{n+1}	(b) $2^{2n+1}-1$	(c) 2^{2n}	(d) $2^{2n+1} + 1$
182.	If n is positive integer the	then the sum of $ \left[\left({}^{n}C_{0} - {}^{n}C_{1} \frac{1+x}{1+nx} \right) \right] $	$\frac{1}{x} + {}^{n}C_{2} \cdot \frac{1+2x}{(1+nx)^{2}} - {}^{n}C_{3} \cdot \frac{1+3x}{(1+nx)^{2}}$	$\left[\frac{x}{x}\right]^3 + \dots$] is equal to
	(a) O	(b) $2\left(\frac{nx}{1+nx}\right)^n$	(c) $\left(\frac{2nx}{1+nx}\right)^n$	(d) None of these
183.	The value of ${}^{4n}C_0 + {}^{4n}C_4$	$+{}^{4n}C_8++{}^{4n}C_{4n}$ is		
	(a) $2^{4n-2} + (-1)^n 2^{2n-1}$	(b) $2^{4n-2} + 2^{2n-1}$	(c) $2^{2n-1} + (-1)^n 2^{4n-2}$	(d) None of these
184.	The sum to $(n + 1)$ terms	s of the following series $3C_0 - 8$	$C_1 + 13C_2 - 18C_3 + \dots$ is	
	(a) 0	(b) 1	(c) - 1	(d) None of these
185.	If $(1+x)^n = C_0 + C_1 x + C_2 x^2$	$++C_nx^n$, then the value of 1^2C	$C_1 + 2^2 C_2 + 3^2 C_3 + \dots + n^2 C_n$ is	
	(a) $n(n+1)2^{n-2}$	(b) $n(n+1)2^{n-1}$	(c) $n(n+1)2^n$	(d) None of these
186.	The value of $\sum_{k=0}^{n} {}^{n}C_{k} \cdot \sin(k)$	$(x)\cos(n-k)x$ is		
	(a) $2^{n-1} \cdot \sin(nx)$	(b) $2^n \sin(nx)$	(c) $2^{n-1} \cdot \cos(nx)$	(d) $2^{n-1}\sin(nx)\cos x$
187.	Let n be an odd integer.	If $\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$ for every v	value of θ , then	
	(a) $b_0 = 1, b_1 = 3$	(b) $b_0 = 0, b_1 = n$	(c) $b_0 = -1, b_1 = n$	(d) $b_0 = 1, b_1 = n^2 - 3n + 3$
188.	$\sum_{r=0}^{2n} a_r (x-2)^r = \sum_{r=0}^{2n} b_r (x-3)^r$	and $a_k = 1$ for all $k \ge n$, then		[IIT 1992]
	(a) $b_n = {}^{2n}C_n$	(b) $b_n = {}^{2n+1}C_{n-1}$	(c) $b_n = {}^{2n+1}C_{n+1}$	(d) None of these
189.	Let $n \in N$. If $(1+x)^n = a_0 + a_0$	$-a_1x + a_2x^2 + \dots + a_nx^n$, and a_{n-3}, a_n	a_{n-1} , a_{n-1} are in A.P. then	
	(a) a_1, a_2, a_3 are in A.P		(c) $n = 7$	(d) $n = 14$
190.	If $(1+2x+3x^2)^{10} = a_0 + a_1x$	$+a_2x^2++a_{20}x^{20}$, then a_1 equal	ls	
	(a) 10	(b) 20	(c) 210	(d) 420
191.	If $(2x-3x^2)^6 = a_0 + a_1x +$	$.+a_{12}x^{12}$, then value of a_0 and	nd a_6 are	

(d) o

(b) $0, 2^6$

192. If a_1, a_2, a_3 are in A.P. and $(1+x^2)^2(1+x)^n = \sum_{k=0}^{n+4} a_k x^k$, then n is equal to

	(a) 2	(b) 3	(c) 4	(d) All of these
193.	If $(1+x)^{10} = a_0 + a_1 x + a_2 x^2$	$+a_{10}x^{10}$ then $(a_0 - a_2 + a_4 - a_6 + a_6)$	$(a_8 - a_{10})^2 + (a_1 - a_3 + a_5 - a_7 + a_9)^2$	is equal to
	(a) 3^{10}	(b) 2^{10}	(c) 2 ⁹	(d) None of these
194.	If $(1+x)^{2n} = a_0 + a_1 x + a_2 x^2$	$x^{2} + + a_{2n}x^{2n}$ then		
	(a) $a_0 + a_2 + a_4 + \dots = \frac{1}{2}(a_0 + a_1)$		(b) $a_{n+1} < a_n$	
	<u> </u>	0 1 2 3 /		
	(c) $a_{n-3} = a_{n+3}$		(d) None of these	<u> </u>
				Sum of Coefficients
		Basic Le	vel	
195.	The sum of the coefficient	ents in the expansion of $(1+x-3)$	$(x^2)^{2163}$ will be	[IIT 1982]
	(a) o	(b) 1	(c) - 1	(d) 2^{2163}
196.	The sum of all the coeff	icients in the binomial expansio	n of $(x^2 + x - 3)^{319}$ is	[Bihar CEE 1994]
	(a) 1	(b) 2	(c) - 1	(d) o
197.	The sum of the coefficient	ents in $(x + 2y + z)^{10}$ is		
	(a) 2^{10}	(b) 3^{10}	(c) 2	(d) None of these
198.	If the sum of the coeff	icients in the expansion of (αx^2)	$(2-2x+1)^{35}$ is equal to the s	um of the coefficients in the
	expansion of $(x - \alpha y)^{35}$,	then α =		
	(a) O	(b) 1	(c) May be any real numb	er (d) No such value
exist				
199.		in the expansion of $(x+2y+3z)^8$		[Rajasthan PET 2000]
	(a) 3 ⁸	(b) 5 ⁸	(c) 6^8	(d) None of these
200.		icients in the expansion of (1 –	$3x + 10x^2$) is a and if the si	
	expansion of $(1+x^2)^n$ is			[UPSEAT 2001]
201	(a) $a = 3b$ The sum of coefficients	(b) $a = b^3$	(c) $b = a^3$	(d) None of these
201.			(*)	[Kurukshetra CEE 2001] (d) 2 ²¹³⁴
202	(a) - 1 The sum of coefficients	(b) 1 in the expansion of $is(1+x+x^2)$	(c) O	(d) 2 [EAMCET 2002]
202.	(a) 2	(b) 3^n	(c) 4 ⁿ	(d) 2^n
203.		of the coefficients in the expansi-		
_00.	(a) 1	(b) - 1	(c) 2	(d) 0
204.	In the expansion of (1+	$(x)^n(1+y)^n(1+z)^n$, the sum of the co	pefficients of the terms of de	
	(a) $\binom{n}{r} \binom{n}{r}^3$	(b) $3.^{n}C_{r}$	(c) $^{3n}C_r$	(d) ${}^{n}C_{3r}$
205.	The sum of the numeric	cal coefficients in the expansion	of $\left(1 + \frac{x}{3} + \frac{2y}{3}\right)^{12}$ is	
	(a) 1	(b) 2	(c) 2^{12}	(d) None of these
206.	The sum of the coefficient	ents in the expansion of $(1+x-3)$	$(x^2)^{2148}$ is	[Karnataka CET 2003]
	(a) 7	(b) 8	(c) - 1	(d) 1
			Binomia	l theorem for any Index

207.	If $y = 3x + 6x^2 + 10x^3 + \dots$, then the value of x in terms of	f y is	
	(a) $1 - (1 - y)^{-1/3}$	(b) $1-(1+y)^{1/3}$	(c) $1+(1+y)^{-1/3}$	(d) $1-(1+y)^{-1/3}$
208.	The coefficient of x in the	the expansion of $[\sqrt{1+x^2}-x]^{-1}$ in $[\sqrt{1+x^2}-x]^{-1}$	ascending powers of x , when	x < 1, is [MP PET 1996]
	(a) O	(b) $\frac{1}{2}$	(c) $-\frac{1}{2}$	(d) 1
209.	If x is positive, the first	negative term in the expansion	of $(1+x)^{27/5}$ is	[AIEEE 2003]
	(a) 7 th term	(b) 5 th term	(c) 8 th term	(d) 6 th term
210.	The approximate value of	of $(7.995)^{1/3}$ correct to four decir	nal places is	[MNR 1991; UPSEAT 2000]
	(a) 1.9995	(b) 1.9996	(c) 1.9990	(d) 1.9991
211.	Cube root of 217 is			
	(a) 6.01	(b) 6.04	(c) 6.02	(d) None of these
212.	If $ x < 1$, then in the exp	pansion of $(1+2x+3x^2+4x^3+)$	$1/2$, the coefficient of x^n is	
	(a) <i>n</i>	(b) n + 1	(c) 1	(d) - 1
213.	If $ x < 1$, then the value	e of $1 + n \left(\frac{2x}{1+x} \right) + \frac{n(n+1)}{2!} \left(\frac{2x}{1+x} \right)^2 +$	∞ will be	[AMU 1983]
	(a) $\left(\frac{1+x}{1-x}\right)^n$	(b) $\left(\frac{2x}{1+x}\right)^n$	(c) $\left(\frac{1+x}{2x}\right)^n$	(d) $\left(\frac{1-x}{1+x}\right)^n$
214.	The sum of $1 + n\left(1 - \frac{1}{x}\right) + \frac{1}{x}$	$\frac{n(n+1)}{2!}\left(1-\frac{1}{x}\right)^2+\dots\infty, \text{ will be}$		[Roorkee 1975]
	(a) x ⁿ	(b) x^{-n}	$(c) \left(1-\frac{1}{x}\right)^n$	(d) None of these
215.	The first four terms in the	he expansion of $(1-x)^{3/2}$ are		[Rajasthan PET 1989]
	(a) $1 - \frac{3}{2}x + \frac{3}{8}x^2 - \frac{1}{16}x^3$	(b) $1 - \frac{3}{2}x - \frac{3}{8}x^2 - \frac{x^3}{16}$	(c) $1 - \frac{3}{2}x + \frac{3}{8}x^2 + \frac{x^3}{16}$	(d) None of these
216.	The coefficient of x^n in	the expansion of $(1-9x+20x^2)^{-1}$	is	
	(a) $5^n - 4^n$	(b) $5^{n+1} - 4^{n+1}$	(c) $5^{n-1} - 4^{n-1}$	(d) None of these
217.	If the third term in the b	pinomial expansion of $(1+x)^m$ is	$-\frac{1}{8}x^2$, then the rational val	ue of m is
	(a) 2	(b) 1/2	(c) 3	(d) 4
218.	$\frac{1}{\sqrt{5+4x}}$ can be expanded	d by binomial theorem, if		
	(a) $x < 1$	(b) $ x < 1$	(c) $ x < \frac{5}{4}$	(d) $ x < \frac{4}{5}$
219.	(r + 1) th term in the expansion	ansion of $(1-x)^{-4}$ will be		
	(a) $\frac{x^r}{r!}$	(b) $\frac{(r+1)(r+2)(r+3)}{6}x^r$	(c) $\frac{(r+2)(r+3)}{2}x^r$	(d) None of these
220.	If $ x < 1$, then the coeff	ficient of x^n in the expansion of	$(1+x+x^2+)^2$ will be	[Pb. CET 1989]
	(a) 1	(b) <i>n</i>	(c) $n + 1$	(d) None of these
221.	The general term in the	expansion of $(1-2x)^{3/4}$ is		

(a)
$$\frac{-3}{2'r_1}x^2$$
 (b) $\frac{-3'}{2'r_1}x'$ (c) $\frac{-3'}{2'(2r)!}x'$ (d) None of these 222. The coefficient of x^2 in $(1+3x)^{1/2}(1-2x)^{-1/2}$ is (a) $6/13$ (b) $55/72$ (c) $7/19$ (d) $2/9$ 223. The coefficient of x^n in the expansion of $\frac{1}{(1-x)(1-2x)}$ is (a) $1-2^{n-1}$ (b) $2^{n+1}-1$ (c) 2^n-1 (d) $2^{n-1}-1$ (2) 2^n-1 (d) $2^{n-1}-1$ (e) 2^n-1 (f) 2^n-1 (f) 2^n-1 (g) 2^n-1

234. $1 + \frac{2}{3} \cdot \frac{1}{2} + \frac{2 \cdot 5}{3 \cdot 6} \left(\frac{1}{2}\right)^2 + \frac{2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9} \cdot \left(\frac{1}{2}\right)^3 + \dots =$

(a) 2

(b) $3^{1/4}$

233. The fourth term in the expansion of $(1-2x)^{3/2}$ will be

(c) $4^{1/3}$

(c) $-\frac{x^3}{2}$

(d) $3^{1/3}$

(d) $\frac{3}{4}x^4$

235. If $(a+bx)^{-2} = \frac{1}{4} - 3x + \dots$, then (a, b) =

[UPSEAT 2002]

[Rajasthan PET 1989]

(a) (2, 12)

(c) (2, -12)

(d) None of these

236. $\left(\frac{a}{a+x}\right)^{\frac{1}{2}} + \left(\frac{a}{a-x}\right)^{\frac{1}{2}} =$

[DCE 1994; Pb. CET 2002; AIEEE 2002]

(a)
$$2 + \frac{3x^2}{4a^2} + \dots$$

(b)
$$1 + \frac{3x^2}{8a^2} + \dots$$

(c)
$$2 + \frac{x}{a} + \frac{3x^2}{4a^2} + \dots$$

(d)
$$2 - \frac{x}{a} + \frac{3x^2}{4a^2} - \dots$$

Advance Level

237. The coefficient of x^n in the expansion of $\frac{(1+x)^2}{(1-x)^3}$ is

(a)
$$n^2 + 2n + 1$$

(b)
$$2n^2 + n + 1$$

(c)
$$2n^2 + 2n + 1$$

(d)
$$n^2 + 2n + 2$$

(a)
$$n^2 + 2n + 1$$

238. $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \dots =$

[Rajasthan PET 1996; EAMCET 2001]

(a)
$$\sqrt{2}$$

(b)
$$1/\sqrt{2}$$

(c)
$$\sqrt{3}$$

(d)
$$1/\sqrt{3}$$

(a) $\sqrt{2}$ (b) $1/\sqrt{2}$ 239. $\frac{\frac{1}{2} \cdot \frac{2}{2}}{1^3} + \frac{\frac{2}{2} \cdot \frac{3}{2}}{1^3 + 2^3} + \frac{\frac{3}{2} \cdot \frac{4}{2}}{1^3 + 2^3 + 3^3} + \dots n$ terms =

[EAMCET 2000]

(a)
$$\left(\frac{n}{n+1}\right)^2$$

(a)
$$\left(\frac{n}{n+1}\right)^2$$
 (b) $\left(\frac{n}{n+1}\right)^3$

(c)
$$\left(\frac{n}{n+1}\right)$$

(d)
$$\left(\frac{1}{n+1}\right)$$

240. The sum of the series $1 + \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots$ is equal to

[Roorkee 1998]

(a)
$$\frac{1}{\sqrt{5}}$$

(b)
$$\frac{1}{\sqrt{2}}$$

(c)
$$\sqrt{\frac{5}{3}}$$

(d)
$$\sqrt{5}$$

241. If $\frac{(1-3x)^{1/2}+(1-x)^{5/3}}{\sqrt{4-x}}$ is approximately equal to a+bx for small values of x, then (a,b)=

(a)
$$\left(1, \frac{35}{24}\right)$$

(b)
$$\left(1, -\frac{35}{24}\right)$$

(c)
$$\left(2, \frac{35}{12}\right)$$

(d)
$$\left(2, -\frac{35}{12}\right)$$

242. In the expansion of $\left(\frac{1+x}{1-x}\right)^2$, the coefficient of x^n will be

(c)
$$4n + 1$$

(d) None of these

243. The coefficient of x^3 in the expansion of $\frac{(1+3x)^2}{1-2x}$ will be

(d) None of these

244. If $(1-x)^{-n} = a_0 + a_1 x + a_2 x^2 + \dots + a_r x^r + \dots$, then $a_0 + a_1 + a_2 + \dots + a_r$ is equal to

(a) $\frac{n(n+1)(n+2)....(n+r)}{r!}$ (b) $\frac{(n+1)(n+2)....(n+r)}{r!}$ (c) $\frac{n(n+1)(n+2)....(n+r-1)}{r!}$ (d) None of these

(a)
$$\frac{n(n+1)(n+2)....(n+r)}{n!}$$

(b)
$$\frac{(n+1)(n+2)....(n+r)}{n!}$$

(c)
$$\frac{n(n+1)(n+2)....(n+r-1)}{n!}$$

245. If *p* is nearly equal to *q* and n > 1, such that $\frac{(n+1)p + (n-1)q}{(n-1)p + (n+1)q} = \left(\frac{p}{q}\right)^k$, then the value of *k* is

(b)
$$\frac{1}{n}$$

(c)
$$n + 1$$

(d)
$$\frac{1}{n+1}$$

246. If *x* is very small compared to 1, then $(1-7x)^{1/3}(1+2x)^{-3/4}$ is equal to

(a)
$$1 + \frac{23x}{6}$$

(b)
$$1 - \frac{23x}{6}$$

(c)
$$1 - \frac{25x}{6}$$

(d)
$$1 + \frac{25x}{6}$$

247. If *x* is very small and $\frac{\left(1 + \frac{3x}{4}\right)^{-4} \sqrt{16 - 3x}}{(8 + x)^{2/3}} = P + Qx$, then

(a)
$$P = 1, Q = \frac{305}{96}$$

(a)
$$P = 1, Q = \frac{305}{96}$$
 (b) $P = 1, Q = -\frac{305}{96}$

(c)
$$P = 2, Q = \frac{305}{48}$$

(d)
$$P = 2, Q = -\frac{305}{48}$$

248. If a, b are approximately equal then the approximate value of $\left(\frac{b+2a}{a+2b}\right)$ is

				Binomial Theorem 275
	(a) $(b/a)^{1/3}$	(b) $(a/b)^{1/3}$	(c) 1	(d) 9/3 <i>b</i>
249.	If x is nearly equal	to 1, then the approximate	value of $\frac{px^q - qx^p}{x^q - x^p}$ is	
	(a) $\frac{p+q}{1-r}$		$x^{7} - x^{7}$ (c) $\frac{1}{1+x}$	(d) $p+q$
	1 %	1 %	-	(d) $\frac{p+q}{1+x}$
250.	The coefficient of	x^{20} in the expansion of $(1+x)^{20}$	$(x^2)^{40} \cdot \left(x^2 + 2 + \frac{1}{x^2}\right)^{-3}$ is	
	(a) $^{30}C_{10}$	(b) $^{30}C_{25}$	(c) 1	(d) None of these
		Problem	regarding three/four Cons	ecutive terms or Coefficients
			Basic Level	
251.	If in the expansion	of $(1+x)^n$, a , b , c are three a	consecutive coefficients, then n	1 =
	(a) $\frac{ac + ab + bc}{b^2 + ac}$	(b) $\frac{2ac + ab + bc}{b^2 - ac}$	(c) $\frac{ab+ac}{b^2-ac}$	(d) None of these
252.	If n is a positive in	nteger and three consecutiv	e coefficients in the expansion	of $(1+x)^n$ are in the ratio 6:33:
	110, then $n =$			
	(a) 4	(b) 6	(c) 12	(d) 16
253∙	If the three consec	utive coefficients in the exp	ansion of $(1 + x)^n$ are 28, 56 and	d 70, then the value of n is [MP PET n
	(a) 6	(b) 4	(c) 8	(d) 10
2 - 4	The coefficients of	f three successive terms in	the expansion of $(1 + r)^n$ are 16	SE 220 and 462 respectively then
4 54•	the value of n will		the expansion of $(1+\lambda)$ are in	
4 54•			(c) 12	
454 •	the value of n will	be		[UPSEAT 1999]
2 54·	the value of n will	(b) 10		[UPSEAT 1999] (d) 8
	the value of <i>n</i> will (a) 11	be (b) 10	(c) 12 Basic Level	[UPSEAT 1999] (d) 8
	the value of <i>n</i> will (a) 11 The coefficient of	be (b) 10 x^3 in the expansion of $(1-x^3)$	(c) 12 Basic Level $+x^2)^5 \text{ is}$	[UPSEAT 1999] (d) 8 Multinomial theorem
255.	the value of <i>n</i> will (a) 11 The coefficient of (a) 10	be (b) 10 x^3 in the expansion of $(1-x^4)$ (b) - 20	(c) 12 Basic Level $+x^2$) ⁵ is (c) -50	[UPSEAT 1999] (d) 8
255.	the value of <i>n</i> will (a) 11 The coefficient of (a) 10 The coefficient of (b)	be (b) 10 x^3 in the expansion of $(1-x^3)$ (b) -20 $a^8b^6c^4$ in the expansion of (a^8)	(c) 12 Basic Level $+x^2$) ⁵ is (c) -50 $(a+b+c)^{18}$ is	[UPSEAT 1999] (d) 8 Multinomial theorem (d) - 30
² 55.	the value of n will (a) 11 The coefficient of (a) 10 The coefficient of (a) $^{18}C_{14} \cdot ^{14}C_{8}$	be (b) 10 x^3 in the expansion of $(1-x^4)$ (b) -20 $a^8b^6c^4$ in the expansion of (a^4) (b) $a^{18}C_{10} \cdot a^{10}C_{6}$	(c) 12 Basic Level $(x^2)^5$ is $(x^2)^5$ is $(x^2)^6 + (x^2)^{18}$ is $(x^2)^{18} + (x^2)^{18}$ is $(x^2)^{18} + (x^2)^{18}$	[UPSEAT 1999] (d) 8 Multinomial theorem
² 55.	the value of n will (a) 11 The coefficient of (a) 10 The coefficient of (a) $^{18}C_{14} \cdot ^{14}C_{8}$ The coefficient of	be (b) 10 x^3 in the expansion of $(1-x^4)$ (b) -20 $a^8b^6c^4$ in the expansion of (a^4) (b) $a^{18}C_{10} \cdot a^{10}C_6$ $a^3 \cdot y^4 \cdot z$ in the expansion of (a^4)	(c) 12 Basic Level $(x^2)^5$ is $(x^2)^5$ is $(x^2)^5$ is $(x^2)^6$ is $(x^2)^{18}$ is $(x^2)^{18}$ is $(x^2)^{18}$ is $(x^2)^{18}$ is $(x^2)^{18}$ is	[UPSEAT 1999] (d) 8 Multinomial theorem (d) -30 (d) $^{18}C_4 \cdot ^{14}C_6$
² 55.	the value of n will (a) 11 The coefficient of (a) 10 The coefficient of (a) $^{18}C_{14} \cdot ^{14}C_{8}$	be (b) 10 x^3 in the expansion of $(1-x^4)$ (b) -20 $a^8b^6c^4$ in the expansion of (a^4) (b) $^{18}C_{10} \cdot ^{10}C_6$ $x^3 \cdot y^4 \cdot z$ in the expansion of (a^4) (b) $-2 \cdot ^9C_2 \cdot ^7C_3$	(c) 12 Basic Level $(c) - 50$ $(c) - 50$ $(c) - 6 \cdot 12$ $(c) - 18 \cdot 12$ $(c$	[UPSEAT 1999] (d) 8 Multinomial theorem (d) -30 (d) $^{18}C_4 \cdot ^{14}C_6$ (d) None of these
² 55.	the value of n will (a) 11 The coefficient of (a) 10 The coefficient of (a) $^{18}C_{14} \cdot ^{14}C_{8}$ The coefficient of	be (b) 10 x^3 in the expansion of $(1-x^4)$ (b) -20 $a^8b^6c^4$ in the expansion of (a^6) (b) $a^{18}C_{10} \cdot a^{10}C_{6}$ $a^3 \cdot y^4 \cdot z$ in the expansion of (a^6) (b) $a^{18}C_{10} \cdot a^{10}C_{10}$ Terms	(c) 12 Basic Level $+x^2$) ⁵ is (c) -50 $(a+b+c)^{18}$ is (c) $^{18}C_6 \cdot ^{12}C_8$ $(1+x+y-z)^9$ is (c) $^{9}C_7 \cdot ^{7}C_4$ So free from radical signs in	[UPSEAT 1999] (d) 8 Multinomial theorem (d) -30 (d) $^{18}C_4 \cdot ^{14}C_6$
255. 256. 257.	the value of n will (a) 11 The coefficient of (a) 10 The coefficient of (a) $^{18}C_{14} \cdot ^{14}C_{8}$ The coefficient of (a) $^{2}C_{7} \cdot ^{7}C_{4}$	be (b) 10 x^3 in the expansion of $(1-x^4)$ (b) -20 $a^8b^6c^4$ in the expansion of (a^4) (b) $a^{18}C_{10} \cdot a^{10}C_6$ $a^3 \cdot y^4 \cdot z$ in the expansion of (a^4) (b) $a^3 \cdot y^4 \cdot z$ in the expansion of (a^4) (c) $a^3 \cdot y^4 \cdot z$ in the expansion of (a^4)	(c) 12 Basic Level $(c) - 50$ $(c) - 50$ $(c) - 60$	[UPSEAT 1999] (d) 8 Multinomial theorem (d) -30 (d) $^{18}C_4 \cdot ^{14}C_6$ (d) None of these the expansion of $(\mathbf{a}^{1/p} + \mathbf{b}^{1/q})$
255. 256. 257.	the value of n will (a) 11 The coefficient of (a) 10 The coefficient of (a) $^{18}C_{14} \cdot ^{14}C_{8}$ The coefficient of (a) $2 \cdot ^{9}C_{7} \cdot ^{7}C_{4}$	the (b) 10 $x^{3} \text{ in the expansion of } (1-x^{2})$ $(b) -20$ $a^{8}b^{6}c^{4} \text{ in the expansion of } (a^{2})$ $(b)^{-18}C_{10} \cdot {}^{10}C_{6}$ $x^{3} \cdot y^{4} \cdot z \text{ in the expansion of } (b)^{-2} \cdot {}^{9}C_{2} \cdot {}^{7}C_{3}$ Terms Terms Terms	(c) 12 Basic Level $(c) -50$ $(c) -50$ $(c) -50$ $(c) -18$ $(c) -18$ $(c) -12$ $(c) -18$ $(c) -18$ $(c) -12$ $(c) -18$ $(c) -12$ $(c) -18$ $(c) -12$ $(c) -18$ $(c) -12$ $(c) -18$ $(c) -18$ $(c) -19$ (c)	[UPSEAT 1999] (d) 8 Multinomial theorem (d) -30 (d) ${}^{18}C_4 \cdot {}^{14}C_6$ (d) None of these the expansion of $(\mathbf{a}^{1/p} + \mathbf{b}^{1/q})$
255. 256. 257.	the value of n will (a) 11 The coefficient of (a) 10 The coefficient of (a) $^{18}C_{14} \cdot ^{14}C_{8}$ The coefficient of (a) $2 \cdot ^{9}C_{7} \cdot ^{7}C_{4}$ The number of term (a) 5	the (b) 10 x^3 in the expansion of $(1-x^4)$ $(b) - 20$ $a^8b^6c^4$ in the expansion of (a^4) $(b)^{-18}C_{10} \cdot {}^{10}C_6$ $x^3 \cdot y^4 \cdot z$ in the expansion of $(b)^{-2} \cdot {}^{9}C_2 \cdot {}^{7}C_3$ Terms Terms Terms This which are free from radiation of (b) 6	(c) 12 Basic Level $(c) -50$ $(c) -50$ $(c) -50$ $(c) -8C_6 \cdot {}^{12}C_8$ $(c) {}^{18}C_6 \cdot {}^{12}C_8$ $(c) {}^{9}C_7 \cdot {}^{7}C_4$ In the expansion of (y) $(c) 7$	[UPSEAT 1999] (d) 8 Multinomial theorem (d) -30 (d) $^{18}C_4 \cdot ^{14}C_6$ (d) None of these the expansion of $(a^{1/p} + b^{1/q})$
255. 256. 257.	the value of n will (a) 11 The coefficient of (a) 10 The coefficient of (a) ${}^{18}C_{14} \cdot {}^{14}C_{8}$ The coefficient of (a) $2 \cdot {}^{9}C_{7} \cdot {}^{7}C_{4}$ The number of term (a) 5 The number of interpretation of the number of	be (b) 10 x^3 in the expansion of $(1-x^3)$ (b) -20 $a^8b^6c^4$ in the expansion of (a^3) (b) $a^{18}C_{10} \cdot a^{10}C_6$ $a^3 \cdot y^4 \cdot z$ in the expansion of $(a^3) \cdot y^4 \cdot$	(c) 12 Basic Level $+x^2$) ⁵ is (c) -50 $(a+b+c)^{18}$ is (c) $^{18}C_6 \cdot ^{12}C_8$ $(1+x+y-z)^9$ is (c) $^{9}C_7 \cdot ^{7}C_4$ So free from radical signs in Basic Level cal signs in the expansion of (y) (c) 7 of $(5^{1/2}+7^{1/6})^{642}$ is	[UPSEAT 1999] (d) 8 Multinomial theorem (d) -30 (d) $^{18}C_4$ $^{14}C_6$ (d) None of these the expansion of $(a^{1/p} + b^{1/q})$ $^{1/5} + x^{1/10})^{55}$ is (d) None of these [Kurukshetra CEE 1996]
255. 256. 257. 258.	the value of n will (a) 11 The coefficient of (a) 10 The coefficient of (a) $^{18}C_{14} \cdot ^{14}C_{8}$ The coefficient of (a) $2 \cdot ^{9}C_{7} \cdot ^{7}C_{4}$ The number of term (a) 5 The number of interm (a) 106	the (b) 10 x^3 in the expansion of $(1-x^4)$ $(b) - 20$ $a^8b^6c^4$ in the expansion of (a^4) $(b)^{-18}C_{10} \cdot {}^{10}C_6$ $x^3 \cdot y^4 \cdot z$ in the expansion of $(b)^{-2} \cdot {}^{9}C_2 \cdot {}^{7}C_3$ Terms Terms Terms (b) 6 Egral terms in the expansion (b) 108	(c) 12 Basic Level $(c) - 50$ $(c) - 50$ $(c) - 50$ $(c) - 60$ $(c) - 7$	[UPSEAT 1999] (d) 8 Multinomial theorem (d) $^{-30}$ (d) $^{18}C_4 \cdot ^{14}C_6$ (d) None of these the expansion of $(a^{1/p} + b^{1/q})$ $^{1/5} + x^{1/10})^{55}$ is (d) None of these [Kurukshetra CEE 1996] (d) 109
255. 256. 257. 258.	the value of n will (a) 11 The coefficient of (a) 10 The coefficient of (a) $^{18}C_{14} \cdot ^{14}C_{8}$ The coefficient of (a) $2 \cdot ^{9}C_{7} \cdot ^{7}C_{4}$ The number of term (a) 5 The number of interm (a) 106	the (b) 10 x^3 in the expansion of $(1-x^4)$ $(b) - 20$ $a^8b^6c^4$ in the expansion of (a^4) $(b)^{-18}C_{10} \cdot {}^{10}C_6$ $x^3 \cdot y^4 \cdot z$ in the expansion of $(b)^{-2} \cdot {}^{9}C_2 \cdot {}^{7}C_3$ Terms Terms Terms (b) 6 Egral terms in the expansion (b) 108	(c) 12 Basic Level $+x^2$) ⁵ is (c) -50 $(a+b+c)^{18}$ is (c) $^{18}C_6 \cdot ^{12}C_8$ $(1+x+y-z)^9$ is (c) $^{9}C_7 \cdot ^{7}C_4$ So free from radical signs in Basic Level cal signs in the expansion of (y) (c) 7 of $(5^{1/2}+7^{1/6})^{642}$ is	[UPSEAT 1999] (d) 8 Multinomial theorem (d) $^{-30}$ (d) $^{18}C_4 \cdot ^{14}C_6$ (d) None of these the expansion of $(a^{1/p} + b^{1/q})$ $^{1/5} + x^{1/10})^{55}$ is (d) None of these [Kurukshetra CEE 1996] (d) 109

261. The number of rational terms in the expansion of $(1+\sqrt{2}+\sqrt[3]{3})^6$ is

(d) 8

262. The number of terms with integral coefficients in the expansion of $(7^{1/3} + 5^{1/2}.x)^{600}$ is

(b) 50

(c) 101

(d) None of these

263. The sum of the rational terms in the expansion of $(\sqrt{2} + \sqrt[5]{3})^{10}$ is

(a) 32

(b) 9

(c) 41

(d) None of these

Miscellaneous

Basic Level

264. If $(8+3\sqrt{7})^n = P+F$, where *P* is an integer and *F* is a proper fraction then

(a) *P* is an odd integer (b) *P* is an even integer

(c) F(P+F)=1

(d) (1-F)(P+F)=1

265. If [x] denotes the greatest integer less than or equal to x, then $[(6\sqrt{6} + 14)^{2n+1}]$

(a) Is an even integer

(b) Is an odd integer

(c) Depends on n

(d) None of these

266. Which of the following expansion will have term containing x^2

(a) $(x^{-1/5} + 2x^{3/5})^{25}$

(b) $(x^{3/5} + 2x^{-1/5})^{24}$

(c) $(x^{3/5} - 2x^{-1/5})^{23}$ (d) $(x^{3/5} + 2x^{-1/5})^{22}$

267. If the second term in the expansion $\left(\sqrt[13]{a} + \frac{a}{\sqrt{a^{-1}}}\right)^n$ is $14a^{5/2}$, then the value of ${}^nC_3 / {}^nC_2$ is

(a) 4

(d) 6

Mathematical Induction

		Basic I	Level	
1.	$10^{n} + 3.4^{n+2} + 5, \forall n \in \mathbb{N}$	is divisible by		
	(a) 5	(b) 7	(c) 9	(d) 11
2.	For every natural num	per n , $n(n-1)(2n-1)$ is divisible	by	
	(a) 6	(b) 12	(c) 24	(d) 5
3.	For every natural num	ber n , $3^{2n+2}-8n-9$ is divisible ber	ру	[IIT 1977]
	(a) 16	(b) 128	(c) 256	(d) None of these
4.	$49^n + 16n - 1$ is divisible	by		[Kurukshetra CEE 2001]
	(a) 3	(b) 19	(c) 64	(d) 29
5.	For all positive integra	l values of n , $2^{4n}-1$ is divisible	e by	
	(a) 8	(b) 16	(c) 24	(d) None of these
6.	For all positive integra	l values of n , $3^{2n} - 2n + 1$ is divis	sible by	
	(a) 2	(b) 4	(c) 8	(d) 12
7•	If $n \in N$, then $x^{2n-1} + y^2$	$^{\eta-1}$ is divisible by		
	(a) $x+y$	(b) $x - y$	(c) $x^2 + y^2$	(d) $x^2 + xy$
8.	For each $n \in \mathbb{N}$, $2^{3n} - 7n$	x-1 is divisible by		
	(a) 23	(b) 41	(c) 49	(d) 98
9.	For each $n \in N$, $x^n - y^n$	is divisible by		
	(a) $x+y$	(b) $x-y$	(c) $x^2 + y^2$	(d) $x^2 - y^2$
10.	If $n \in N$, then the great	test integer which divides $n(n -$	- 1)(n - 2) is	
	(a) 2	(b) 3	(c) 6	(d) 8
11.	If $n \in N$, then $7^{2n} + 2^{3n-}$	$3 \cdot 3^{n-1}$ is always divisible by		[IIT 1982]
	(a) 25	(b) 35	(c) 45	(d) None of these
12.	If $n \in N$, then $11^{n+2} + 12$	$^{2n+1}$ is divisible by		[Roorkee 1982]
	(a) 113	(b) 123	(c) 133	(d) None of these
13.	For every natural num	per n , $n(n^2-1)$ is divisible by		[Rajasthan PET 1991]

280 Mathematical Induction (a) 4 (b) 6 (c) 10 (d) None of these The difference between an integer and its cube is divisible by 14. [MP PET 1999] (a) 4 (b) 6 (d) None of these (c) 9 For every natural number n15. (b) $n < 2^n$ (a) $n > 2^n$ (d) $n \le 2^n$ (c) $n \ge 2^n$ 16. For each $n \in N$, the correct statement is (a) $2^n < n$ (b) $n^2 > 2n$ (c) $n^4 < 10^n$ (d) $2^{3n} > 7n + 1$ For natural number n, $2^n (n-1)! < n^n$, if 17. (b) n > 2(a) n < 2(c) $n \ge 2$ (d) Never If *n* is a natural number then $\left(\frac{n+1}{2}\right)^n \ge n!$ is true when 18. (a) n > 1(b) $n \ge 1$ (c) n > 2(d) $n \ge 2$ For positive integer n, $10^{n-2} > 81n$, if 19. (a) n > 5(b) $n \ge 5$ (d) n > 6(c) n < 5For every positive integer n, $2^n < n!$ when 20. (b) $n \ge 4$ (d) None of these (c) n < 3For every positive integral value of n, $3^n > n^3$ when 21. (a) n > 2(b) $n \ge 3$ (c) $n \ge 4$ (d) n < 4For natural number n, $(n!)^2 > n^n$, if 22. (a) n > 3(b) n > 4(c) $n \ge 4$ (d) $n \ge 3$ The value of the *n* natural numbers *n* such that the inequality $2^n > 2n + 1$ is valid is 23. [MNR 1994] (b) For n < 3(a) For $n \ge 3$ (c) For mn (d) For any nLet P(n) denote the statement that $n^2 + n$ is odd. It is seen that $P(n) \Rightarrow P(n+1)$, P_n is true for all 24. (a) n > 1(c) n > 2(d) None of these If $\{x\}$ denotes the fractional part of x then $\left\{\frac{3^{2n}}{8}\right\}$, $n \in \mathbb{N}$, is 25. (a) 3/8(b) 7/8(d) None of these (c) 1/8If *p* is a prime number, then $n^p - n$ is divisible by *p* when *n* is a 26. (a) Natural number greater than 1 (b) Irrational number (c) Complex number (d) Odd number $x(x^{n-1} - na^{n-1}) + a^{n}(n-1)$ is divisible by $(x-a)^{2}$ for 27. (a) n > 1(b) n > 2(c) All $n \in N$ (d) None of these

Let P(n) be a statement and let $P(n) \Rightarrow p(n+1)$ for all natural numbers n, then P(n) is true

(c) For all n > m, m being a fixed positive integer

can conclude that P(n) = n(n + 1) + 2 for

(b) For all n > 1

If P(n) = 2 + 4 + 6 + ... + 2n, $n \in N$, then $P(k) = k(k+1) + 2 \Rightarrow P(k+1) = (k+1)(k+2) + 2$ for all $k \in N$. So we

(d) Nothing can be said

28.

29.

(a) For all n

Mathematical Induction 281

(a) All $n \in N$

(b) n > 1

(c) n > 2

(d) Nothing can be said

For every natural number n, n(n + 1) is always 30.

(a) Even

(b) Odd

(c) Multiple of 3

(d) Multiple of 4

31. The statement P(n) " $1 \times 1! + 2 \times 2! + 3 \times 3! + \dots + n \times n! = (n+1)! - 1$ " is

(a) True for all n > 1

(b) Not true for any *n*

(c) True for all $n \in N$

(d) None of these

If $A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, then for any $n \in \mathbb{N}$, A^n equals

(a) $\begin{pmatrix} \cos^n \theta & \sin^n \theta \\ -\sin^n \theta & \cos^n \theta \end{pmatrix}$ (b) $\begin{pmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{pmatrix}$

(c) $\begin{pmatrix} n\cos\theta & n\sin\theta \\ -n\sin\theta & n\cos\theta \end{pmatrix}$

(d) None of these

The least remainder when 17^{30} is divided by 5 is 33.

[Karnataka CET 2003]

(c) 3

(d) 4

The remainder when 5^{99} is divided by 13 is 34.

(a) 6

(b) 8

(c) 9

(d) 10

 2^{60} when divided by 7 leaves the remainder 35.

(a) 1

(b) 6

(c) 5

(d) 2

Binomial Assignment (Basic and Advance Level)

	-	-		_	-	_	•	_									.0		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	С	С	С	С	a,b, d	b	b	b	d	С	b	b	a	С	b	С	b	С	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
a	a	С	С	a	b	c,d	a	a	a	b	С	b	d	С	a	d	b	a	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	a	a	С	b	a	d	d	a	b	С	b	b	С	d	a	С	С	a	С
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	С	С	С	a	С	a	С	b	a	С	d	b	d	С	d	b	С	b	a
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
d	a	С	a	a	b	d	b	b	a	С	b	d	С	С	С	a	С	a	a
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	С	a	d	a	b	d	С	С	b	С	b	d	С	b	a	d	b,c, d	a	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	a	b	С	b	a	b	С	С	d	С	d	b	a	b	С	b	b	a	b
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	a	b	С	b	a	b	С	a	a	a	b	С	b	d	d	С	С	b	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
d	b	С	a	a	d	С	b	a	С	b	С	b	a	d	С	С	С	a	d
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
С	a	a	a	a	a	b	С	С	b	b	d	b	a,b, c	С	С	d	b	С	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
b	b	a	С	С	d	d	d	С	b	a	С	a	a	С	b	b	С	b	С
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
d	b	b	d	d	С	c	С	a	a	d	С	b	С	a	a	c	a	С	С
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
b	a	С	b	b	b	b	b	b	b	b	С	С	a	d	a,b,	b	b	b	a
261	262	263	264	265	266	267													
b	С	С	a	a	d	a													

Mathematical Assignment (Basic and Advance Lev													vel)						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	a	a	С	d	a	a	С	b	С	a	С	b	b	b	С	b	b	b	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35					
С	d	a	d	С	a	С	d	d	a	С	b	d	b	a					