

General Aptitude

Q.1 – Q.5 Carry ONE mark Each

Q.1	Despite his initial hesitation, Rehman's to contribute to the success of the project never wavered.				
	Select the most appropriate option to complete the above sentence.				
(A)	ambivalence				
(B)	satisfaction				
(C)	resolve				
(D)	revolve				
	GATE 2025				
	17 Roorkee				

Q.2	Bird : Nest :: Bee :
	Select the correct option to complete the analogy.
(A)	Kennel
(B)	Hammock
(C)	Hive
(D)	Lair
	GATE 2025 77 Roorkee

Q.3	If $Pe^x = Qe^{-x}$ for all real values of x, which one of the following statements is true?
(A)	P=Q=0
(B)	P = Q = 1
(C)	P = 1; Q = -1
(D)	$\frac{P}{Q} = 0$
	GATE 2025
	17 Roorkee

Q.4 The paper as shown in the figure is folded to make a cube where each square corresponds to a particular face of the cube. Which one of the following options correctly represents the cube? Note: The figures shown are representative. • Δ 0 (A) Δ **(B)** Δ (C) Δ -(D) Δ 117 Roorkee

Q.5	Let p_1 and p_2 denote two arbitrary prime numbers. Which one of the following statements is correct for all values of p_1 and p_2 ?			
(A)	$p_1 + p_2$ is not a prime number.			
(B)	p_1p_2 is not a prime number.			
(C)	$p_1 + p_2 + 1$ is a prime number.			
(D)	$p_1p_2 + 1$ is a prime number.			
	GATE 2025			

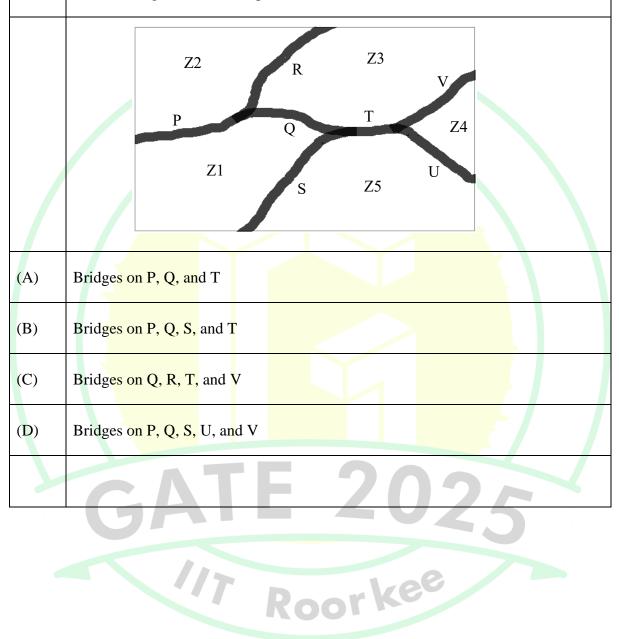
Q.6 – Q.10 Carry TWO marks Each

Q.6	Based only on the conversation below, identify the logically correct inference:				
	"Even if I had known that you were in the hospital, I would not have gone there to see you", Ramya told Josephine.				
(A)	Ramya knew that Josephine was in the hospital.				
(B)	Ramya did not know that Josephine was in the hospital.				
(C)	Ramya and Josephine were once close friends; but now, they are not.				
(D)	Josephine was in the hospital due to an injury to her leg.				
	GATE 2025				
	17 Roorkee				

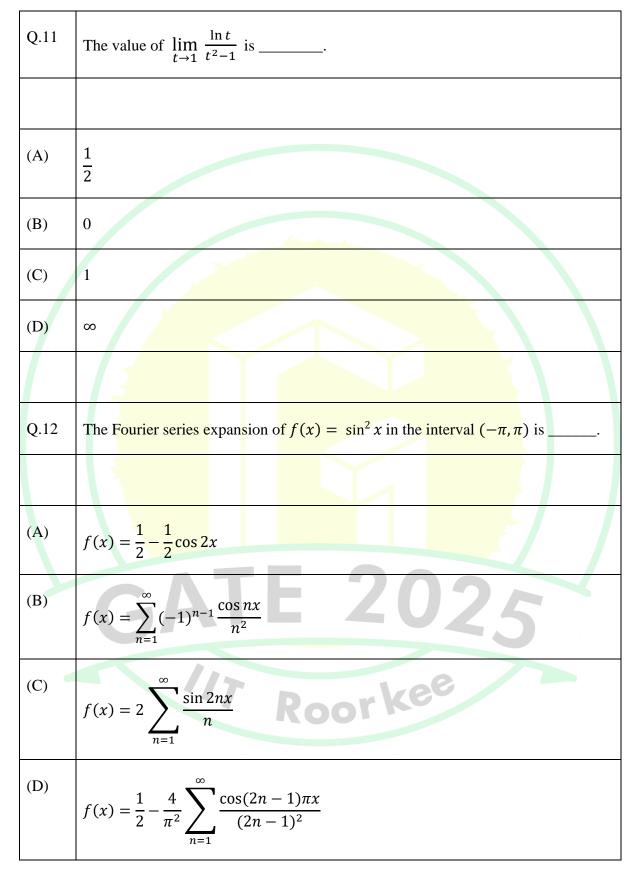
Q.7	If IMAGE and FIELD are coded as FHBNJ and EMFJG respectively then, which one among the given options is the most appropriate code for BEACH ?
(A)	CEADP
(B)	IDBFC
(C)	JGIBC
(D)	IBCEC
	GATE 2025 // Roorkee

Q.8	Which one of the following options is correct for the given data in the table?						
		Iteration (<i>i</i>)	0	1	2	3	
		Input (I)	20	-4	10	15	
		Output (X)	20	16	26	41	
		Output (Y)	20	-80	-800	-12000	
(A)	X(i) = X(i)	-1) + I(i);	Y(i) = Y	V(i - 1)I(i); i >	0	
(B)	X(i) = X(i -	– 1) <i>I</i> (i); Y((i) = Y(i)	(– 1) + <i>I</i> ((i); i>	0	
(C)	X(i) = X(i - i)	– 1) <i>I</i> (i); Y	T(i) = Y(i)	(i - 1)I(i)	; i > 0		
(D)	X(i) = X(i - i)	– 1) + I(i);	Y(i) =	Y(i – 1)I	(i – 1);	<i>i</i> > 0	
						ļ	
	CATE 202						

17 Roorkee



Q.9	In the given figure, PQRS is a square of side 2 cm and PLMN is a rectangle. The corner L of the rectangle is on the side QR. Side MN of the rectangle passes through the corner S of the square. What is the area (in cm ²) of the rectangle PLMN? Note: The figure shown is representative.
	P Q L R M
(A)	$2\sqrt{2}$
(B)	2
(C)	8
(D)	4
	GAIE 2025
	117 Roorkee


Q.10 The diagram below shows a river system consisting of 7 segments, marked P, Q, R, S, T, U, and V. It splits the land into 5 zones, marked Z1, Z2, Z3, Z4, and Z5. We need to connect these zones using the least number of bridges. Out of the following options, which one is correct?

Note: The figure shown is representative.

Q.11 – Q.35 Carry ONE mark Each

Q.13	For all real values of x and y, the partial differential equation in terms of $\psi(x, y)$ given by $\frac{\partial^2 \psi}{\partial x^2} + 2 \frac{\partial^2 \psi}{\partial x \partial y} - 3 \frac{\partial^2 \psi}{\partial y^2} = 0$ is			
(A)	hyperbolic			
(B)	parabolic			
(C)	elliptic			
(D)	elliptic within the region, $x^2 - y < 0$			
Q.14	The sum of the static pressure and dynamic pressure at a point in a fluid flow is called the			
(A)	kinematic pressure			
(B)	vacuum pressure			
(C)	stagnation pressure			
(D)	kinetic pressure			
	Koorko			

Q.15	Identify the range of Reynolds number (Re) for a creeping flow.			
(A)	2000 < Re < 20000			
(B)	1000 < Re < 2000			
(C)	10 < Re < 100			
(D)	Re << 1			
Q.16	The ratio of the magnitudes of vorticity to rate of rotation in a fluid flow is			
(A)	2			
(B)	3			
(C)	12 ATE 200			
(D)	GAIE 2025			
	17 Roorkee			

Q.17	In a laminar boundary layer, the ratio of boundary layer thickness (δ) to the corresponding displacement thickness (δ^*) lies between		
(A)	1.5 and 2.4		
(B)	2.5 and 3.4		
(C)	3.5 and 4.4		
(D)	4.5 and 5.4		
Q.18	For marine engine shafts subjected to high radial and axial thrust loads, which one of the following types of bearings is the most suitable?		
(A)	Deep groove ball		
(B)	Sealed ball		
(C)	Tapered roller		
(D)	Needle		
	Roorkee		

Q.19	Which one of the following wave energy spectra is formulated for two peaks?			
(A)	Pierson-Moskowitz spectrum			
(B)	JONSWAP spectrum			
(C)	Ochi-Hubble spectrum			
(D)	Neumann spectrum			
Q.20	According to linear water wave theory, at a point on the free surface of a regular wave, the phase difference between the free surface elevation and the horizontal water particle acceleration is			
(A)	0°			
(B)	45°			
(C)	90° GALE 2025			
(D)	135°			
	Roorkee			

Q.21	The dynamic response amplitude $ H(\omega) $ of a single degree of freedom system subjected to support motion is given by the following expression.	
	$ H(\omega) = \sqrt{\frac{1 + 4\zeta^2 \left(\frac{\omega}{\omega_n}\right)^2}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\zeta^2 \left(\frac{\omega}{\omega_n}\right)^2}}$	
	$ H(\omega) $ increases with an increase in damping ratio (ζ) if the excitation frequency (ω) is the natural frequency (ω_n) of the system.	
(A)	equal to	
(B)	0.75 times	
(C)	$\frac{\sqrt{3}}{2}$ times	
(D)	greater than $\sqrt{2}$ times	
Q.22	In the stress-strain curve of mild steel, plastic deformation starts at the	
	GAIE ZU25	
(A)	proportional limit	
(B)	elastic limit Roorkee	
(C)	upper yield point	
(D)	lower yield point	

Q.23	In ships, a flash evaporator is used to obtain	
(A)	distilled water	
(B)	low viscosity lubricating oil	
(C)	high-temperature heavy oil	
(D)	air for space heating	
Q.24	Which one of the following is the most common type of gear assembly used for coupling steam turbine and propeller shafts?	
(A)	Spur	
(B)	Single helical	
(C)	Double helical	
(D)	Worm	
	17 Roorkee	

A ship of 5000 tonne displacement has two empty rectangular double bottom tanks with dimensions:		
Tank A: length 12 m, width 16 m, and height 2 m		
Tank B: length 16 m, width 12 m, and height 2 m		
The length of each tank is oriented along the length of the ship. It is required to ballast the ship with 192 m ³ of seawater of density 1025 kg/m ³ . Which one of the following scenarios will minimize the free surface effect?		
100 % of the given ballast water is filled in Tank A.		
100 % of the given ballast water is filled in Tank B.		
50% of the given ballast water is filled in Tank A and the remaining in Tank B.		
40% of the given ballast water is filled in Tank A and the remaining in Tank B.		

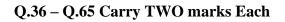
HIE 202. 1/7 Roorkee

Q.26	The midship section of a barge of breadth W and depth H is shown in the figure. All plate thicknesses are equal. The barge is subjected to a longitudinal bending moment in the upright condition. Which one of the following statements is correct?	
	W Point P H Neutral Axis H/3 Point S	
(A)	Magnitude of longitudinal bending stress is maximum at point P and magnitude of vertical shear stress is maximum at point Q.	
(B)	Magnitude of longitudinal bending stress is maximum at point S and magnitude of vertical shear stress is maximum at point R.	
(C)	Magnitude of longitudinal bending stress is maximum at point Q and magnitude of vertical shear stress is maximum at point S.	
(D) Magnitude of longitudinal bending stress is maximum at point R and magnitude of vertical shear stress is maximum at point P.		
	117 Roorkee	

Г

Q.27	Consider a Planar Motion Mechanism (PMM) test of a ship model in a towing tank. The transverse motion of the model from the centerline of the tank is described by $y = a_0 \cos(\omega t)$, where ω is the angular frequency. The carriage speed is 3 m/s, $\omega = \frac{\sqrt{3}}{2}$ rad/s and the maximum drift angle during the test is 30°. The amplitude of oscillation a_0 lies between	
(A)	0.2 m and 0.4 m	
(B)	0.5 m and 0.7 m	
(C)	1.0 m and 1.2 m	
(D)	1.9 m and 2.1 m	
Q.28	Consider the function $f(x) = x - 1$. Which of the following statements is/are true in the interval $[-10, 10]$?	
(A)	The function is differentiable in the domain.	
(B)	The function is continuous in the domain.	
(C)	The function is not differentiable in the domain.	
(D)	The function is not continuous in the domain.	

Q.29	For a freely floating body in water, which of the following degrees of freedom has/have inherent restoring force?	
(A)	Sway	
(B)	Surge	
(C)	Heave	
(D)	Pitch	
Q.30	Which of the following boiler arrangements will ensure that there is NO contamination of the primary feed system?	
(A)	Steam-to-steam generator	
(B)	Double evaporation boiler	
(C)	Water tube boiler	
(D)	Fire tube boiler	
	Roorkee	


Q.31	Which of the following components is/are NOT found in a two-stroke marine diesel engine?		
(A)	Crankshaft		
(B)	Piston		
(C)	Spark plug		
(D)	Air-inlet valve		
Q.32	Choose the correct statement(s) from the following with respect to a ship generated Kelvin wave pattern in deep water.		
(A)	A system of transverse waves and divergent waves are observed behind the ship.		
(B)	A system of transverse waves and divergent waves are observed in front of the ship.		
(C)	The waves are contained in a sector originating at the bow with a half angle of 9° 28'.		
(D)	The amplitude of wave components decrease as they propagate.		

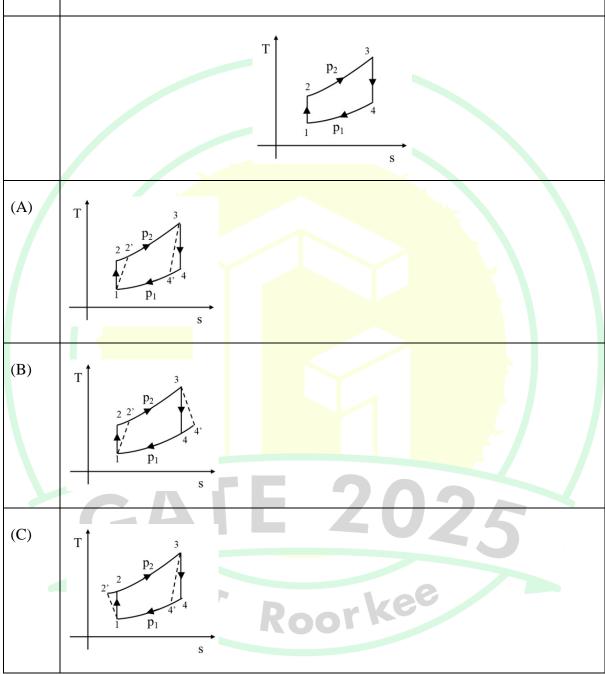
Q.33 A box contains 12 red and 8 blue balls. Two balls are drawn randomly from the box without replacement. The probability of drawing a pair of balls having the same color is_____ (rounded off to three decimal places). Q.34 The dynamics of a 90 m long ship are governed by the non-dimensional Nomoto equation. The magnitude of Nomoto gain $|K'| = \frac{72}{35\pi}$ and that of Nomoto time constant $|T'| = \frac{288}{35\pi}$. The steady turning radius of the ship for a 35° turning circle maneuver is m (*an<mark>swer in integer</mark>)*. Q.35 A ship of length 200 m has a beam of 25 m. She floats in seawater with an even keel draught of 5 m. The prismatic coefficient of the ship is 0.9; the mass displacement is 20500 tonne and the density of seawater is 1025 kg/m^3 . The midship section coefficient is _____ (rounded off to two decimal places).

Q.36	Consider $f(t) = cos(at)$, where <i>a</i> is a real constant. The Laplace transform of $f(t)$ is
(A)	$\frac{a}{s^2 + a^2}$
(B)	$\frac{s}{s^2 + a^2}$
(C)	$\frac{a}{s^2 - a^2}$
(D)	$\frac{s}{s^2-a^2}$
	GAIE 2025
	117 Roorkee

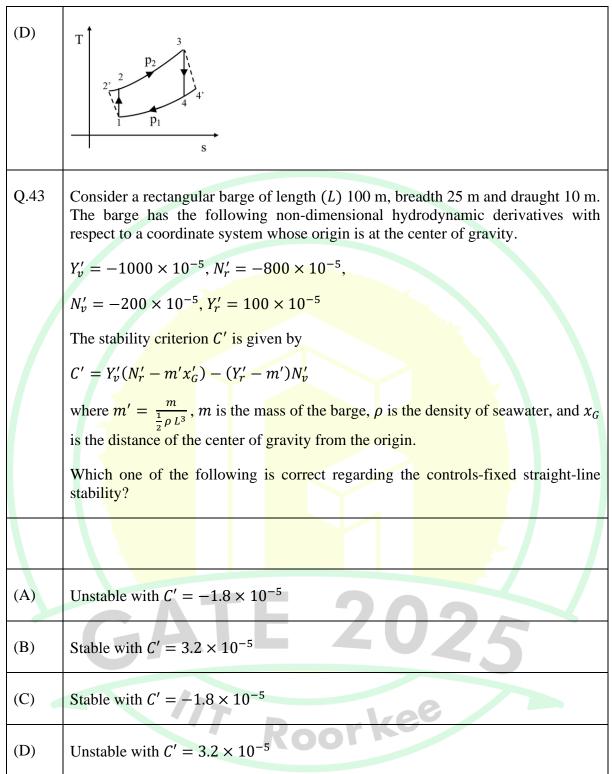
Q.37	A square shaped body is subjected to only direct tensile stresses σ_x and σ_y as shown in the figure. If $\sigma_x > \sigma_y$, then the value of normal stress (σ_θ) and shear stress (τ_θ) respectively are		
	$\sigma_{x} \leftarrow \sigma_{y}$ $\sigma_{x} \leftarrow \sigma_{y}$ $\sigma_{x} \leftarrow \sigma_{y}$ σ_{y}		
(A)	$\frac{\sigma_x - \sigma_y}{2}$ and $\frac{\sigma_x + \sigma_y}{2}$		
(B)	$\frac{\sigma_x + \sigma_y}{2}$ and $\frac{\sigma_x - \sigma_y}{2}$		
(C)	$\frac{\sigma_x + \sigma_y}{2}$ and $\frac{\sigma_x + \sigma_y}{2}$		
(D)	$\frac{\sigma_x - \sigma_y}{2}$ and $\frac{\sigma_x - \sigma_y}{2}$		
	GATE 2025		
	117 Roorkee		

Q.38	The beam PQRS is subjected to a vertical point load of 10 kN at point S as shown in the figure.	
	The magnitude of fixed end moment at P is kN-m.	
	10 kN Hinge P Q R Mot to scale 2m $2m$ $1m$	
(A)	50	
(B)	10	
(C)	30	
(D)	40	
Q.39	For a butt weld joint of two plates, which one of the following loading scenarios has the least permissible stress?	
	GATE 2025	
(A)	Tensile	
(B)	Bending Roorkee	
(C)	Bearing	
(D)	Shear	

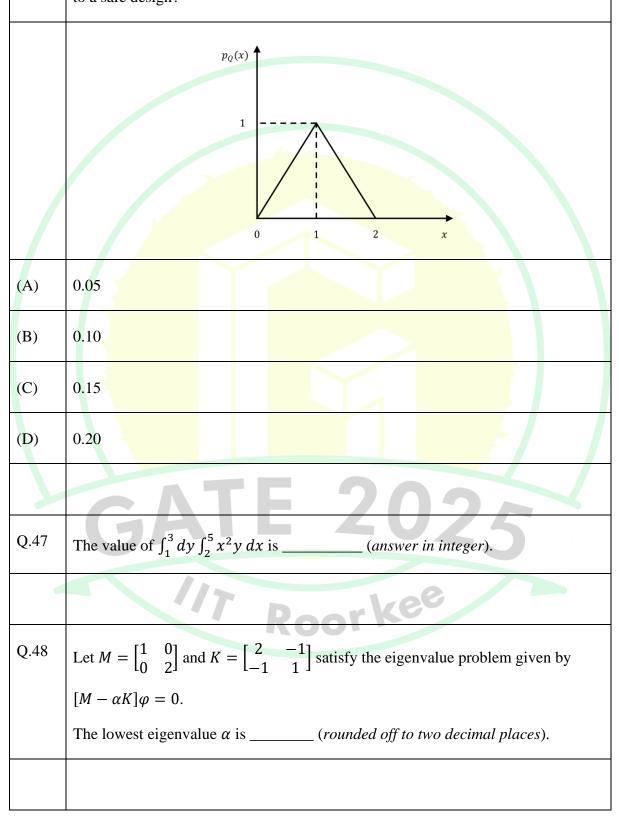
Q.40	Match the non-dimensional n definitions in Column 2	umbers in Column 1 with the corresponding
	Column 1	Column 2
	I. Froude number	P. Ratio of inertial force to surface tension force
	II. Reynolds numbe	r Q. Ratio of inertial force to gravitational force
	III. Euler number	R. Ratio of inertial force to viscous force
	IV. Weber number	S. Ratio of pressure force to inertial force
(A)	I – S; <mark>II – R; III – P</mark> ; IV - Q	
(B)	I – Q <mark>; II – R; III – S</mark> ; IV – P	
(C)	I – Q; <mark>II – R; III – P</mark> ; IV – S	
(D)	I - S; II - Q; III - R; IV - P	
	GAI	E 2025
	117	Roorkee



Q.41 A closed system is undergoing a reversible process 1-P-2 from state 1 to 2, as shown in the figure, where X and Y are thermodynamic properties. An irreversible process 2-Q-1 brings the system back from 2 to 1. The net change in entropy of the system and surroundings during the abovementioned cycle are _____ respectively. Y Х (A) positive and negative (B) negative and positive (C) zero and negative (D) zero and positive

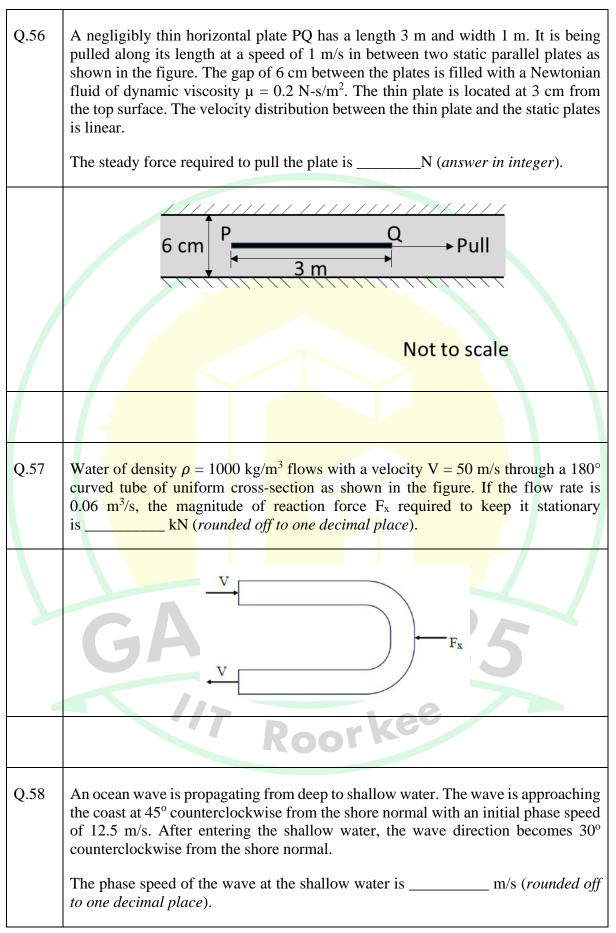


Q.42 An ideal Brayton cycle (1-2-3-4) consisting of two isentropic and two isobaric processes is shown in the T-s plot, where T is the temperature and s is the specific entropy of the system. Which one of the following plots represents the corresponding actual cycle 1-2'-3-4' (denoted by dashed lines) between the same two pressures p_1 and p_2 ?



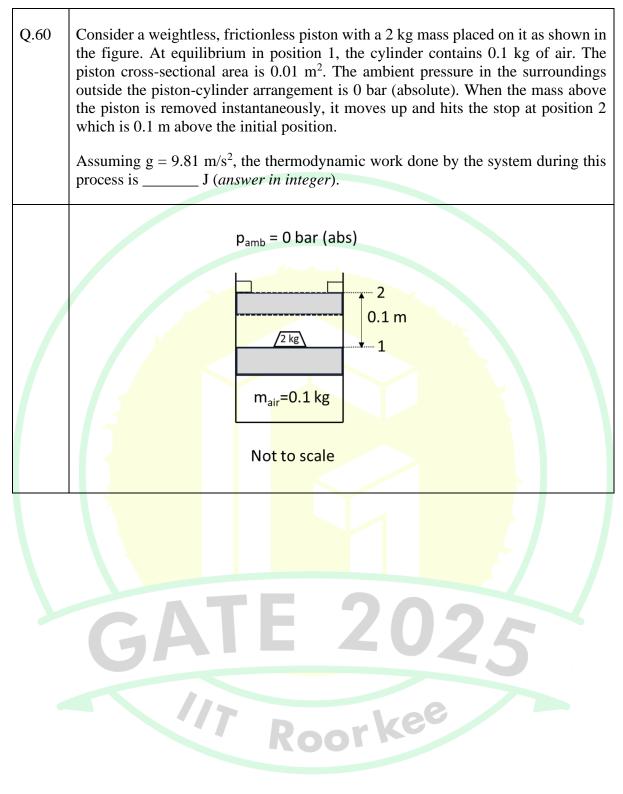
Q.44	A ship has a propeller of 5 m pitch rotating at 120 rpm. The ship travels at 8 m/s and the wake fraction is 0.25. The apparent slip ratio and real slip ratio are respectively.		
(A)	0.20 and 0.40		
(B)	0.40 and 0.20		
(C)	0.20 and 0.25		
(D)	0.25 and 0.20		
Q.45	A ship of length 100 m and displacement 5000 tonne floats even-keel at 6.5 m in fresh water of density 1000 kg/m ³ . The ship's hydrostatic properties are: MCT per cm is 10 tonne-m, TPC in seawater is 6.25, LCB is 2 m forward of amidship, LCF is 2 m forward of amidship. The ship has moved to seawater of density 1025 kg/m ³ without change in the displacement. The new forward and aft draughts are respectively.		
	GAIE ZUZS		
(A)	6.04 m and 6.54 m		
(B)	6.30 m and 6.64 m		
(C)	6.64 m and 6.30 m		
(D)	6.30 m and 6.30 m		

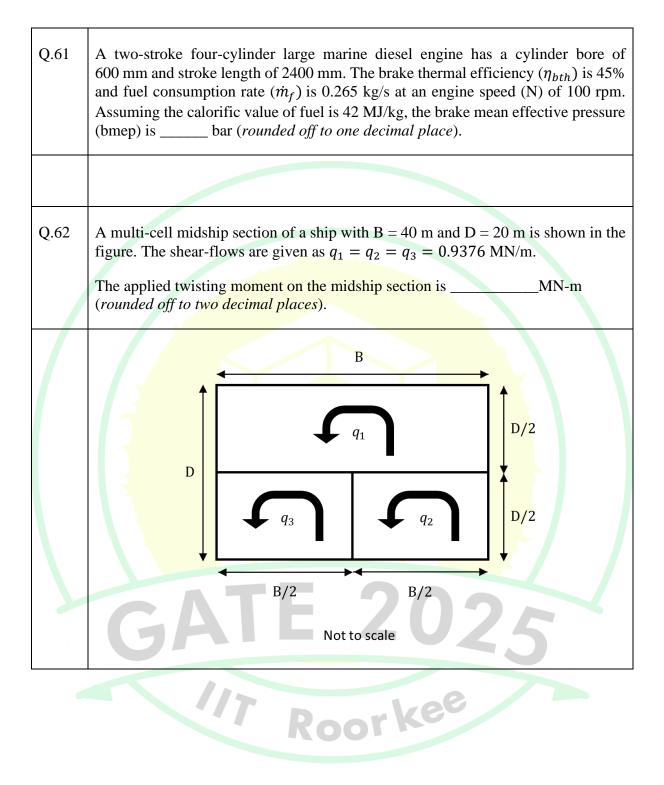
Q.46 Consider a case where the load Q for a ship structure has only statistical uncertainties. The probability density function of the load $p_Q(x)$ is shown in the figure. The characteristic limit value of the load (Q_{L_c}) is 1.5 and factor of safety is 1. Which of the following probability of exceedance value(s) of the load will lead to a safe design?



Q.49	The gradient of $y = 3x^2 \sin(2x)$ at (0.2, 1) is (rounded off to three decimal places).		
Q.50	A simply supported solid beam is subjected to a vertical point load of 10 N at the middle. The length of the beam is 4 m, and the cross section is $0.5 \text{ m} \times 0.5 \text{ m}$. The magnitude of maximum tensile stress in the beam is N/m ² (<i>answer in integer</i>).		
Q.51	The displacement field of a body is given by $\vec{u} = yx\hat{i} + yz\hat{j} + (z + x^2)\hat{k}$. The shear strain γ_{xy} at (2, 1, 5) is(<i>answer in integer</i>).		
Q.52	A freely-floating rectangular barge of length 200 m is divided into five equal compartments. In light-weight condition, the weight and buoyancy are uniformly distributed along the length of the barge. Assume $g = 9.81 \text{ m/s}^2$. If 500 tonne of liquid cargo is added to each of the two end compartments as shown in the figure, then the maximum bending moment is MN-m (<i>rounded off to two decimal places</i>).		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Q.53	The stream function of a two-dimensional flow field is given as $\psi = 2xy + 2y + 2x$. The coordinates of two points P and Q in the flow field are (1, 2) and (2, 5) respectively.					
	The magnitude of flow discharge between the streamlines passing through P and Q is(<i>answer in integer</i>).					
Q.54	A tank with a constant water level of 4 m above the centreline of an opening of diameter 100 mm is shown in the figure. Neglect all losses and assume $g = 9.81 \text{ m/s}^2$.					
	The discharge through the opening is litre/s (answer in integer).					
	Water 100 mm					
	↓ 100 mm ↓ ↓					
	Not to scale					
Q.55	Air flows with a velocity of 2 m/s over a flat stationary surface parallel to its length of 0.5 m. Kinematic viscosity of air v is 1.5×10^{-5} m ² /s.					
	Using Blasius solution, the boundary layer thickness at the trailing edge of the surface is mm (<i>rounded off to two decimal places</i>).					





Q.59	Consider the psychrometric process denoted by the straight line from state 1 to 2 in the figure. The specific humidity, Dry Bulb Temperature (DBT) and Wet Bulb Temperature (WBT) at the two states are shown in the table. The latent heat of vaporization of water (h_{fg}) is 2440 kJ/kg.				
	If the flow rate of air is 1 kg/s, the rate of heat transfer from the air iskW (<i>rounded off to two decimal places</i>).				
	Property	State 1	State 2		
	Specific humidity (kg of water vapour/kg of dry air)	0.020	0.015		
	DBT (°C)	25	25		
	WBT (°C)	25	22		
	DBT DBT				
117 Roorkee					

Q.63	A ship of 3300 tonne displacement is undergoing an inclining experiment in seawater of density 1025 kg/m ³ . A mass of 6 tonne is displaced transversely by 12 m as shown in the figure. This results in 0.12 m deflection of a 11 m long pendulum suspended from the centerline. The transverse metacenter of the ship is located at 7.25 m above the keel.				
	The distance of the center of gravity from the keel is m (<i>rounded off to two decimal places</i>).				
	11 m 0.12 m 12 m Not to scale				
Q.64	A ship moving at a steady forward speed of 10 m/s experiences a total resistance of 140 kN. The Quasi Propulsive Coefficient (QPC) is 0.70; the propeller shaft losses are 5% and the mechanical efficiency of the main engine is 80%.				
	The indicated power of the main engine is kW (rounded off to two decimal places).				
Q.65	A single degree of freedom system is undergoing free oscillation. The natural frequency and damping ratio of the system are 1 rad/sec and 0.01 respectively.				
	The reduction in peak amplitude over three cycles is % (<i>rounded off to one decimal place</i>).				

GRADUATE APTITUDE TEST IN ENGINEERING 2025 अभियांत्रिकी स्नातक अभिक्षमता परीक्षा २०२५

Answer Key for Naval Architecture and Marine Engineering (NM)

Q. No.	Session	Q. Type	Section	Key/Range	Marks
1	2	MCQ	GA	С	1
2	2	MCQ	GA	С	1
3	2	MCQ	GA	A	1
4	2	MCQ	GA	A	1
5	2	MCQ	GA	В	1
6	2	MCQ	GA	В	2
7	2	MCQ	GA	В	2
8	2	MCQ	GA	A	2
9	2	MCQ	GA	D	2
10	2	MCQ	GA	С	2
11	2	MCQ	NM	А	1
12	2	MCQ	NM	А	1
13	2	MCQ	NM	А	1
14	2	MCQ	NM	С	1
15	2	MCQ	NM	D	1
16	2	MCQ	NM	A	1
17	2	MCQ	NM	В	1
18	2	MCQ	NM	С	1
19	2	MCQ	NM	С	1
20	2	MCQ	NM	С	1
21	2	MCQ	NM	D	1
22	2	MCQ	NM	В	1
23	2	MCQ	NM	A	1
24	2	MCQ	NM	С	1
25	2	MCQ	NM	В	1
26	2	MCQ	NM	A	1
27	2	MCQ	NM	D	1
28	2	MSQ	NM	B;C	1
29	2	MSQ	NM	C;D	1
30	2	MSQ	NM	A;B	1

31	2	MSQ	NM	C;D	1
32	2	MSQ	NM	A;D	1
33	2	NAT	NM	0.490 to 0.500	1
34	2	NAT	NM	223 to 227	1
35	2	NAT	NM	0.86 to 0.90	1
36	2	MCQ	NM	В	2
37	2	MCQ	NM	В	2
38	2	MCQ	NM	В	2
39	2	MCQ	NM	D	2
40	2	MCQ	NM	В	2
41	2	MCQ	NM	D	2
42	2	MCQ	NM	В	2
43	2	MCQ	NM	A	2
44	2	MCQ	NM	A	2
45	2	MCQ	NM	D	2
46	2	MSQ	NM	C;D	2
47	2	NAT	NM	156 to 156	2
48	2	NAT	NM	0.42 to 0.45	2
49	2	NAT	NM	0.670 to 0.700	2
50	2	NAT	NM	479 to 482	2
51	2	NAT	NM	2 to 2	2
52	2	NAT	NM	145 to 149	2
53	2	NAT	NM	24 to 24	2
54	2	NAT	NM	68 to 72	2
55	2	NAT	NM	9.40 to 9.80	2
56	2	NAT	NM	39 to 41	2
57	2	NAT	NM	5.9 to 6.1	2
58	2	NAT	NM	8.6 to 9.0	2
59	2	NAT	NM	12.10 to 12.30	2
60	2	NAT	NM	0 to 0	2
61	2	NAT	NM	10.5 to 11.5	2
62	2	NAT	NM	1490 to 1510	2
63	2	NAT	NM	5.20 to 5.30	2
64	2	NAT	NM	2625 to 2635	2
65	2	NAT	NM	16.0 to 18.0	2