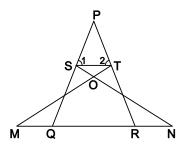
SAMPLE QUESTION PAPER Class-X (2017–18) Mathematics

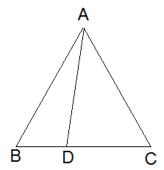
Time allowed: 3 Hours Max. Marks: 80

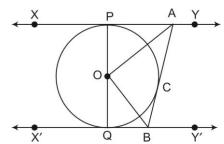

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper consists of 30 questions divided into four sections A, B, C and D.
- (iii) Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 10 questions of 3 marks each. Section D contains 8 questions of 4 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

	Section A
	Question numbers 1 to 6 carry 1 mark each.
1.	Write whether the rational number $\frac{7}{75}$ will have a terminating decimal expansion or a
	nor-terminating repeating decimal expansion.
2.	Find the value(s) of k, if the quadratic equation $3x^2 - k\sqrt{3}x + 4 = 0$ has equal roots.
3.	Find the eleventh term from the last term of the AP:
	27, 23, 19,, –65.
4.	Find the coordinates of the point on y-axis which is nearest to the point (-2, 5).
5.	In given figure, ST \parallel RQ, PS = 3 cm and SR = 4 cm. Find the ratio of the area of Δ PST to the area of Δ PRQ.
	T R
6.	If $\cos A = \frac{2}{5}$, find the value of $4 + 4 \tan^2 A$

	Section B
	Question numbers 7 to 12 carry 2 marks each.
7.	If two positive integers p and q are written as $p = a^2b^3$ and $q = a^3b$; a, b are prime numbers, then verify:
	$LCM(p, q) \times HCF(p, q) = pq$
8.	The sum of first n terms of an AP is given by $S_n = 2n^2 + 3n$. Find the sixteenth term of the AP.
9.	Find the value(s) of k for which the pair of linear equations $kx + y = k^2$ and $x + ky = 1$ have infinitely many solutions.
10.	If $\left(1, \frac{p}{3}\right)$ is the mid-point of the line segment joining the points $(2, 0)$ and $\left(0, \frac{2}{9}\right)$, then show that the line $5x + 3y + 2 = 0$ passes through the point $(-1, 3p)$.
11.	A box contains cards numbered 11 to 123. A card is drawn at random from the box. Find the probability that the number on the drawn card is
	(i) a square number
	(ii) a multiple of 7
12.	A box contains 12 balls of which some are red in colour. If 6 more red balls are put in the box and a ball is drawn at random, the probability of drawing a red ball doubles than what it was before. Find the number of red balls in the bag.
	Section C
	Question numbers 13 to 22 carry 3 marks each.
13.	Show that exactly one of the numbers n , $n + 2$ or $n + 4$ is divisible by 3.
14.	Find all the zeroes of the polynomial $3x^4 + 6x^3 - 2x^2 - 10x - 5$ if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
15.	Seven times a two digit number is equal to four times the number obtained by reversing the order of its digits. If the difference of the digits is 3, determine the number.
16.	In what ratio does the x-axis divide the line segment joining the points $(-4, -6)$ and $(-1, 7)$? Find the co-ordinates of the point of division.
	OR
	The points $A(4, -2)$, $B(7, 2)$, $C(0, 9)$ and $D(-3, 5)$ form a parallelogram. Find the
	length of the altitude of the parallelogram on the base AB.


In given figure $\angle 1 = \angle 2$ and $\triangle NSQ \cong \triangle MTR$, then prove that $\triangle PTS \sim \triangle PRQ$.


OR

In an equilateral triangle ABC, D is a point on the side BC such that

 $BD = \frac{1}{3}BC. \text{ Prove that } 9AD^2 = 7AB^2$

In given figure XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B. Prove that \angle AOB = 90°.

Evaluate: $\frac{\csc^2 63^\circ + \tan^2 24^\circ}{\cot^2 66^\circ + \sec^2 27^\circ} + \frac{\sin^2 63^\circ + \cos 63^\circ \sin 27^\circ + \sin 27^\circ \sec 63^\circ}{2(\cos \sec^2 65^\circ - \tan^2 25^\circ)}$

OR

If $\sin \theta + \cos \theta = \sqrt{2}$, then evaluate: $\tan \theta + \cot \theta$

20.	_	figure ABPC is a quarith BC as diameter. Fin					and a semi	circle is
21.	drawn with BC as diameter. Find the area of the shaded region B A Water in a canal, 6 m wide and 1.5 m deep, is flowing with a speed of 10 km/h. How							/h. How
		ea will it irrigate in 30		-	_	-		
				OR				
		of maximum size is cathe remaining solid afte				lge 14 cr	n. Find the	surface
22.	Find the	mode of the following	distributi	on of ma	rks obtaiı	ned by th	e students	in an
	examina	=	,			J		
		Marks obtained	0-20	20-40	40-60	60-80	80-100	
		Number of students	15	18	21	29	17	
		e mean of the above die of its median.	istribution	is 53, us	ing empi	rical rela	tionship es	timate
			Se	ction D)			
		Question nu	mbers 23	to 30 ca	rry 4 ma	rks each	ı .	
23.		ravelling at a uniform see same distance if its s	-					
				OR				
		whether the equation 5x and of completing the state.						
24.		consists of 37 terms. The last three terms is 42			e middle	most te	rms is 225	and the
25.		at in a right triangle, to of the other two sides.	he square	of the h	ypotenus	e is equa	l to the sur	m of the
				OR				
	Prove that the ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding sides.						o of the	

26.	Draw a triangle ABC with side BC = 7 cm, $\angle B = 45^{\circ}$, $\angle A = 105^{\circ}$. Then, construct a
	triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle ABC$.

Prove that
$$\frac{\cos \theta - \sin \theta + 1}{\cos \theta + \sin \theta - 1} = \csc \theta + \cot \theta$$

- The angles of depression of the top and bottom of a building 50 metres high as observed from the top of a tower are 30° and 60°, respectively. Find the height of the tower and also the horizontal distance between the building and the tower.
- Two dairy owners A and B sell flavoured milk filled to capacity in mugs of negligible thickness, which are cylindrical in shape with a raised hemispherical bottom. The mugs are 14 cm high and have diameter of 7 cm as shown in given figure. Both A and B sell flavoured milk at the rate of ₹ 80 per litre. The dairy owner A uses the formula $\pi r^2 h$ to find the volume of milk in the mug and charges ₹ 43.12 for it. The dairy owner B is of the view that the price of actual quantity of milk should be charged. What according to him should be the price of one mug of milk? Which value is exhibited by the dairy owner B? $\left(\text{use }\pi = \frac{22}{7}\right)$

The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is ₹ 18. Find the missing frequency k.

Daily pocket allowance (in ₹)	11–13	13–15	15–17	17–19	19–21	21–23	23–25
Number of children	3	6	9	13	k	5	4

OR

The following frequency distribution shows the distance (in metres) thrown by 68 students in a Javelin throw competition.

Distance (in m)	0–10	10–20	20–30	30–40	40–50	50–60	60–70
Number of students	4	5	13	20	14	8	4

Draw a less than type Ogive for the given data and find the median distance thrown using this curve.

Marking Scheme

Mathematics Class X (2017-18)

Section A

S.No.	Answer	Marks
1.	Non terminating repeating decimal expansion.	[1]
2.	$k = \pm 4$	[1]
3.	$a_{11} = -25$	[1]
4.	(0,5)	[1]
5.	9:49	[1]
6.	25	[1]

Section B

7.	$LCM(p, q) = a^3b^3$	[1/2]
	$HCF(p,q) = a^2b$	[1/2]
	LCM $(p, q) \times HCF(p, q) = a^5b^4 = (a^2b^3)(a^3b) = pq$	[1]
8.	$S_n = 2n^2 + 3n$	[1/2]
	$S_1 = 5 = a_1$	[1/2]
	$S_2 = a_1 + a_2 = 14 \implies a_2 = 9$	[1/2]
	$d = a_2 - a_1 = 4$	
	$a_{16} = a_1 + 15d = 5 + 15(4) = 65$	[1/2]
9.	$a_{16} = a_1 + 15d = 5 + 15(4) = 65$ For pair of equations $kx + 1y = k^2$ and $1x + ky = 1$	
	$a_1 k b_1 1 c_1 k^2$	
	We have: $\frac{a_1}{a_2} = \frac{k}{1}, \frac{b_1}{b_2} = \frac{1}{k}, \frac{c_1}{c_2} = \frac{k^2}{1}$	
	For infinitely many solutions, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	
	$\mathbf{a_2} \mathbf{b_2} \mathbf{c_2}$	[1/2]
	$\therefore \frac{k}{1} = \frac{1}{k} \Rightarrow k^2 = 1 \Rightarrow k = 1, -1 \qquad \dots (i)$	[1/2]
	and $\frac{1}{k} = \frac{k^2}{1} \Rightarrow k^3 = 1 \Rightarrow k = 1$ (ii)	[1/2]
	From (i) and (ii), $k = 1$	[1/2]
10.	Since $\left(1, \frac{p}{3}\right)$ is the mid-point of the line segment joining the points (2, 0) and	
	$\frac{2}{2}$	
	$\left(0, \frac{2}{9}\right)$ therefore, $\frac{p}{3} = \frac{0 + \frac{2}{9}}{2} \Rightarrow p = \frac{1}{3}$	[1]
	The line $5x + 3y + 2 = 0$ passes through the point $(-1, 1)$ as $5(-1) + 3(1) + 2 = 0$	[1]
11.		L J
	(i) P(square number) = $\frac{8}{113}$	[1]
	(ii) P(multiple of 7) = $\frac{16}{113}$	[1]

12. Let number of red balls be = x

∴ P(red ball) =
$$\frac{x}{12}$$

If 6 more red balls are added:

The number of red balls = x + 6

P(red ball) = $\frac{x+6}{18}$

Since, $\frac{x+6}{18} = 2\left(\frac{x}{12}\right) \Rightarrow x = 3$

∴ There are 3 red balls in the bag.

Section C

13. Let n = 3k, 3k + 1 or 3k + 2. (i) When n = 3k:
 n is divisible by 3.
 n + 2 = 3k + 2
$$\Rightarrow$$
 n + 2 is not divisible by 3.
 n + 4 = 3k + 4 = 3(k + 1) + 1 \Rightarrow n + 4 is not divisible by 3.
 in is not divisible by 3.
 n + 2 = (3k + 1) + 2 = 3k + 3 = 3(k + 1) \Rightarrow n + 2 is divisible by 3.
 n + 2 = (3k + 1) + 4 = 3k + 5 = 3(k + 1) + 2 \Rightarrow n + 4 is not divisible by 3.
 in + 4 = (3k + 1) + 4 = 3k + 5 = 3(k + 1) + 2 \Rightarrow n + 4 is not divisible by 3.
 in + 2 = (3k + 2) + 2 = 3k + 4 = 3(k + 1) + 1 \Rightarrow n + 2 is not divisible by 3.
 n + 2 = (3k + 2) + 2 = 3k + 4 = 3(k + 1) + 1 \Rightarrow n + 2 is not divisible by 3.
 n + 4 = (3k + 2) + 4 = 3k + 6 = 3(k + 2) \Rightarrow n + 4 is divisible by 3.

14. Since $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are the two zeroes therefore, $\left(x - \sqrt{\frac{5}{3}}\right)\left(x + \sqrt{\frac{5}{3}}\right) = \frac{1}{3}(3x^2 - 5)$
is a factor of given polynomial.
We divide the given polynomial by $3x^2 - 5$.

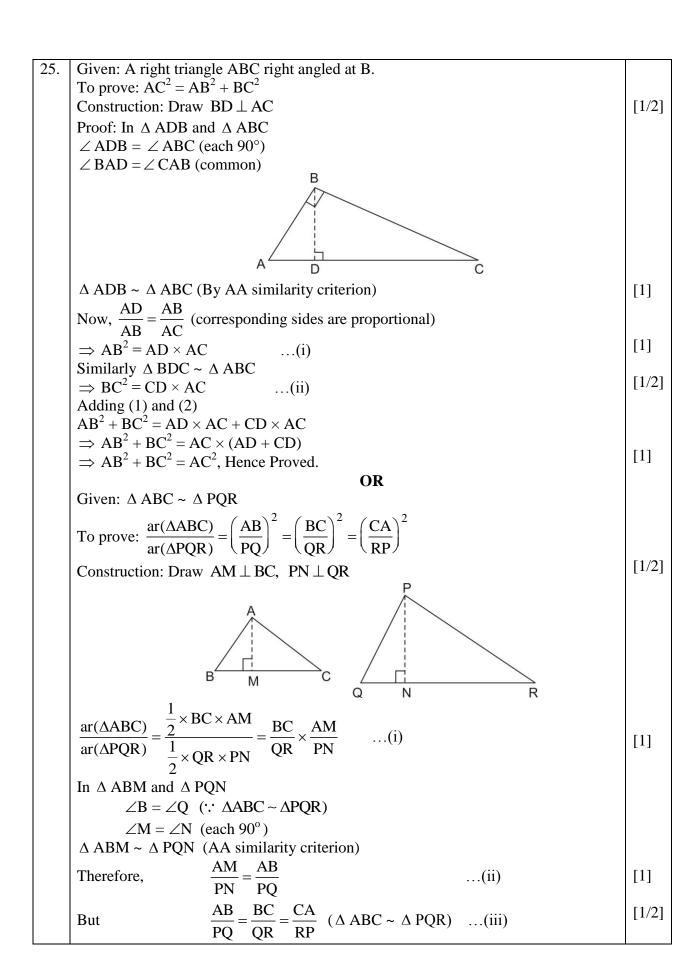
$$\frac{x^2 + 2x + 1}{3x^4 + 6x^3 - 2x^2 - 10x - 5}$$

$$\frac{x^2 + 2x + 1}{3x^4 - 5x^2}$$

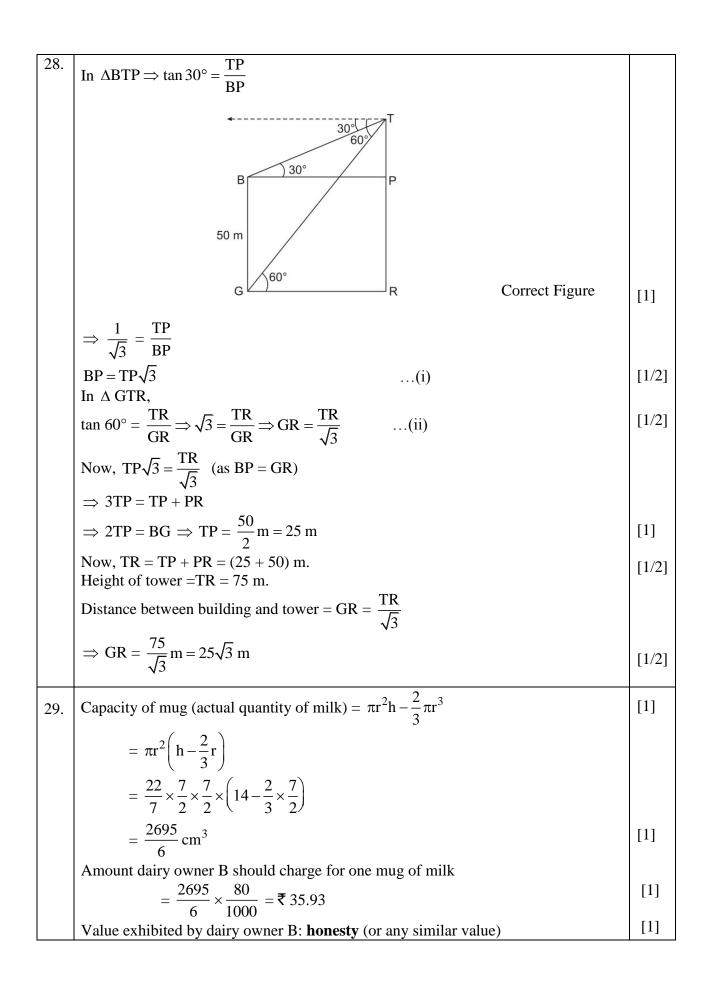
$$\frac{x^2 + 2x + 1}{3x^2 - 5}$$

$$\frac{x^2 + 2x + 1}$$

15.	Let the ten's and the units digit be y and x respectively.	
	So, the number is $10y + x$.	[1/2]
	The number when digits are reversed is $10x + y$.	[1/2]
	Now, $7(10y + x) = 4(10x + y) \Rightarrow 2y = x$ (i)	[1]
	Also $x - y = 3$ (ii)	[1/2]
	Solving (1) and (2), we get $y = 3$ and $x = 6$.	[1,2]
	Hence the number is 36.	[1/2]
16.	Let x-axis divides the line segment joining $(-4, -6)$ and $(-1, 7)$ at the point P in the	[1/2]
10.	ratio 1: k.	[1/2]
	1 41- 7 (1-)	
	Now, coordinates of point of division $P\left(\frac{-1-4k}{k+1}, \frac{7-6k}{k+1}\right)$	
	$\left(\begin{array}{cc} k+1 & k+1 \end{array}\right)$	
	7-6k	Γ11
	Since P lies on x-axis, therefore $\frac{7-6k}{k+1} = 0$	[1]
	$\Rightarrow 7 - 6k = 0$	
	$\Rightarrow k = \frac{7}{6}$	
	_	F1 /O1
	Hence the ratio is $1:\frac{7}{6}=6:7$	[1/2]
	6	F43
	$\left(-34\right)$	[1]
	Now, the coordinates of P are $\left(\frac{-34}{13},0\right)$.	
	OR	
	Let the height of parallelogram taking AB as base be h.	
	Now AB = $\sqrt{(7-4)^2 + (2+2)^2} = \sqrt{3^2 + 4^2} = 5$ units.	[1]
	Area $(\Delta ABC) = \frac{1}{2} [4(2-9) + 7(9+2) + 0(-2-2)] = \frac{49}{2} \text{ sq units}.$	[1]
	Now, $\frac{1}{2} \times AB \times h = \frac{49}{2}$	
	$\Rightarrow \frac{1}{2} \times 5 \times h = \frac{49}{2}$	
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
	49	
	$\Rightarrow h = \frac{49}{5} = 9.8 \text{ units}$.	[1]
17.	$\angle SQN = \angle TRM$ (CPCT as $\triangle NSQ \cong \triangle MTR$)	[1]
	P	
	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	
	S T	
	M Q R N	
	Since, $\angle P + \angle 1 + \angle 2 = \angle P + \angle PQR + \angle PRQ$ (Angle sum property)	
	$\Rightarrow \angle 1 + \angle 2 = \angle PQR + \angle PRQ$	
	$\Rightarrow 2\angle 1 = 2\angle PQR \text{ (as } \angle 1 = \angle 2 \text{ and } \angle PQR = \angle PRQ)$	[1]
	$\angle 1 = \angle PQR$	
	l	


Also $\angle 2 = \angle PRQ$ And $\angle SPT = \angle QPR$ (common) APTS ~ $\triangle APRQ$ (By AAA similarity criterion) OR Construction: Draw $\triangle AP \perp BC$ In $\triangle AADP$, $\triangle AD^2 = AP^2 + DP^2$ $\triangle AD^2 = AP^2 + (BP - BD)^2$ $\triangle AD^2 = AP^2 + BP^2 + BD^2 - 2(BP)(BD)$ $\triangle AD^2 = AB^2 + (\frac{1}{3}BC)^2 - 2(\frac{BC}{2})(\frac{BC}{3})$ II] $\triangle AD^2 = \frac{7}{4}AB^2$ [1] $\triangle AD^2 = \frac{7}{4}AB^2$ [1] ISINITIATION OC In $\triangle OPA = \triangle OCA$ (By SSS congruency criterion) Hence, $\angle I = \angle 2$ (CPCT) Similarly $\angle 3 = \angle 4$ Now, $\angle PAB + \angle QBA = 180^\circ$ $\Rightarrow \angle 2 \angle 2 + \angle 2 \angle 4 = 180^\circ$ $\Rightarrow \angle 2 \angle 2 + \angle 4 = 90^\circ$ $\Rightarrow \angle AOB = 90^\circ$ (Angle sum property)			
$\Delta PTS \sim \Delta PRQ \qquad (By AAA similarity criterion)$ Construction: Draw AP \perp BC In ΔADP , $\Delta D^2 = AP^2 + DP^2$ AD ² = $\Delta P^2 + (BP - BD)^2$ AD ² = $\Delta P^2 + (BP - BD)^2$ AD ² = $\Delta P^2 + (BP - BD)^2$ AD ² = $\Delta P^2 + (BP - BD)^2 - 2(BP)(BD)$ AD ² = $\Delta P^2 + (BP - BD)^2 - 2(BP)(BD)$ AD ² = $\Delta P^2 + (BP - BD)^2 - 2(BP)(BD)$ AD ² = $\Delta P^2 + (BP - BD)^2 - 2(BP)(BD)$ AD ² = $\Delta P^2 + (BP - BD)^2 - 2(BP)(BD)$ AD ² = $\Delta P^2 + (BP - BD)^2 - 2(BP)(BD)$ [1] 18. Join OC In ΔOPA and ΔOCA OP = OC (radii of same circle) PA = CA (length of two tangents) X P AO = AO (Common) ∴ $\Delta OPA = \Delta OCA$ (By SSS congruency criterion) Hence, $\Delta P = \Delta P^2 + \Delta P^2 - \Delta$		Also $\angle 2 = \angle PRQ$	
Construction: Draw $AP \perp BC$ In $\triangle ADP$, $AD^2 = AP^2 + DP^2$ $AD^2 = AP^2 + BP - BD)^2$ $AD^2 = AP^2 + BP^2 + BD^2 - 2(BP)(BD)$ $AD^2 = AB^2 + \left(\frac{1}{3}BC\right)^2 - 2\left(\frac{BC}{2}\right)\left(\frac{BC}{3}\right)$ $AD^2 = \frac{7}{9}AB^2$ (· · BC = AB) 9AD^2 = 7AB^2 18. Join OC In \triangle OPA and \triangle OCA OP = OC (radii of same circle) PA = CA (length of two tangents) $AO = AO$ (Common) $AO = AO$ (Common) $AO = AO$ (Sy SSS congruency criterion) Hence, $\angle AO = AO$ (Para Source of the congruency of		And $\angle SPT = \angle QPR$ (common)	
Construction: Draw AP \perp BC In \triangle ADP, AD ² = AP ² + DP ² AD ² = AP ² + (BP - BD) ² AD ² = AP ² + BP ² + BD ² - 2(BP)(BD) AD ² = AB ² + $\left(\frac{1}{3}BC\right)^2 - 2\left(\frac{BC}{2}\right)\left(\frac{BC}{3}\right)$ AD ² = $\frac{7}{9}$ AB ² (: BC = AB) 9AD ² = 7AB ² 18. In \triangle OPA and \triangle OCA OP = OC (radii of same circle) PA = CA (length of two tangents) AO = AO (Common) \therefore \triangle OPA \cong \triangle OCA (By SSS congruency criterion) Hence, \angle 1 = \angle 2 (CPCT) Similarly \angle 3 = \angle 4 Now, \angle PAB + \angle QBA = 180° \Rightarrow 22 2 + 24 = 180° \Rightarrow 22 + 24 = 90°		$\Delta PTS \sim \Delta PRQ$ (By AAA similarity criterion)	[1]
Construction: Draw AP \perp BC In \triangle ADP, AD ² = AP ² + DP ² AD ² = AP ² + (BP - BD) ² AD ² = AP ² + BP ² + BD ² - 2(BP)(BD) AD ² = AB ² + $\left(\frac{1}{3}BC\right)^2 - 2\left(\frac{BC}{2}\right)\left(\frac{BC}{3}\right)$ AD ² = $\frac{7}{9}$ AB ² (: BC = AB) 9AD ² = 7AB ² 18. In \triangle OPA and \triangle OCA OP = OC (radii of same circle) PA = CA (length of two tangents) AO = AO (Common) \therefore \triangle OPA \cong \triangle OCA (By SSS congruency criterion) Hence, \angle 1 = \angle 2 (CPCT) Similarly \angle 3 = \angle 4 Now, \angle PAB + \angle QBA = 180° \Rightarrow 22 2 + 24 = 180° \Rightarrow 22 + 24 = 90°			
In $\triangle ADP$, $AD^2 = AP^2 + DP^2$ [1/2] $AD^2 = AP^2 + (BP - BD)^2$ [1/2] $AD^2 = AP^2 + BP^2 + BD^2 - 2(BP)(BD)$ $AD^2 = AB^2 + \left(\frac{1}{3}BC\right)^2 - 2\left(\frac{BC}{2}\right)\left(\frac{BC}{3}\right)$ [1] $AD^2 = \frac{7}{9}AB^2 \left(\because BC = AB\right)$ $9AD^2 = 7AB^2$ [1/2] 18. Join OC In \triangle OPA and \triangle OCA OP = OC (radii of same circle) PA = CA (length of two tangents) X X X X X X X X			
In $\triangle ADP$, $AD^2 = AP^2 + DP^2$ [1/2] $AD^2 = AP^2 + (BP - BD)^2$ [1/2] $AD^2 = AP^2 + BP^2 + BD^2 - 2(BP)(BD)$ $AD^2 = AB^2 + \left(\frac{1}{3}BC\right)^2 - 2\left(\frac{BC}{2}\right)\left(\frac{BC}{3}\right)$ [1] $AD^2 = \frac{7}{9}AB^2\left(\because BC = AB\right)$ [1/2] $9AD^2 = 7AB^2$ [1/2] $18. Join OC$ In $\triangle OPA$ and $\triangle OCA$ OP = OC (radii of same circle) $PA = CA \text{ (length of two tangents)}$ $X \qquad P \qquad A \qquad Y$ $AO = AO \text{ (Common)}$ $\therefore \triangle OPA \cong \triangle OCA \text{ (By SSS congruency criterion)}$ $Hence, \angle 1 = \angle 2 \text{ (CPCT)}$ $Similarly \angle 3 = \angle 4$ $Now, \angle PAB + \angle QBA = 180^\circ$ $\Rightarrow 2\angle 2 + 2\angle 4 = 180^\circ$ $\Rightarrow 2\angle 2 + 2\angle 4 = 90^\circ$ [1]		Construction: Draw AP \perp BC	[1/2]
$AD^{2} = AP^{2} + (BP - BD)^{2}$ $AD^{2} = AP^{2} + BP^{2} + BD^{2} - 2(BP)(BD)$ $AD^{2} = AB^{2} + \left(\frac{1}{3}BC\right)^{2} - 2\left(\frac{BC}{2}\right)\left(\frac{BC}{3}\right)$ $AD^{2} = \frac{7}{9}AB^{2} (\because BC = AB)$ $9AD^{2} = 7AB^{2}$ $18. Ion OC$ $In \Delta OPA and \Delta OCA$ $OP = OC (radii of same circle)$ $PA = CA \text{ (length of two tangents)}$ $X = AO = AO \text{ (Common)}$ $AO = AO \text{ (Common)}$ $AOPA \cong \Delta OCA \text{ (By SSS congruency criterion)}$ $AOPA \cong \Delta OCA \text{ (By SSS congruency criterion)}$ $Hence, \angle 1 = \angle 2 \text{ (CPCT)}$ $Similarly \angle 3 = \angle 4$ $Now, \angle PAB + \angle QBA = 180^{\circ}$ $\Rightarrow 2\angle 2 + 2\angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$		In $\triangle ADP$, $AD^2 = AP^2 + DP^2$	
$AD^{2} = AP^{2} + BP^{2} + BD^{2} - 2(BP)(BD)$ $AD^{2} = AB^{2} + \left(\frac{1}{3}BC\right)^{2} - 2\left(\frac{BC}{2}\right)\left(\frac{BC}{3}\right)$ $AD^{2} = \frac{7}{9}AB^{2} (\because BC = AB)$ $9AD^{2} = 7AB^{2}$ [1/2] 18. Join OC In \triangle OPA and \triangle OCA OP = OC (radii of same circle) PA = CA (length of two tangents) X X Y $AO = AO (Common)$ $\therefore \triangle OPA \cong \triangle OCA (By SSS congruency criterion)$ Hence, $\angle 1 = \angle 2$ (CPCT) Similarly $\angle 3 = \angle 4$ Now, $\angle PAB + \angle QBA = 180^{\circ}$ $\Rightarrow 2\angle 2 + 2\angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$ [1]			
$AD^{2} = AB^{2} + \left(\frac{1}{3}BC\right)^{2} - 2\left(\frac{BC}{2}\right)\left(\frac{BC}{3}\right)$ $AD^{2} = \frac{7}{9}AB^{2} \left(\because BC = AB\right)$ $9AD^{2} = 7AB^{2}$ [1/2] 18. Join OC In \triangle OPA and \triangle OCA OP = OC (radii of same circle) PA = CA (length of two tangents) $X \qquad P \qquad A \qquad Y$ $AO = AO (Common)$ $\therefore \triangle OPA \cong \triangle OCA (By SSS congruency criterion)$ Hence, $\angle 1 = \angle 2$ (CPCT) Similarly $\angle 3 = \angle 4$ Now, $\angle PAB + \angle QBA = 180^{\circ}$ $\Rightarrow 2\angle 2 + 2\angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$ [1]		·	[1/2]
AD ² = $\frac{7}{9}$ AB ² (: BC = AB) 9AD ² = 7AB ² 18. Join OC In \triangle OPA and \triangle OCA OP = OC (radii of same circle) PA = CA (length of two tangents) $ \begin{array}{cccccccccccccccccccccccccccccccccc$			
9AD ² = 7AB ² 18. Join OC In \triangle OPA and \triangle OCA OP = OC (radii of same circle) PA = CA (length of two tangents) $ \begin{array}{cccccccccccccccccccccccccccccccccc$		$AD^{2} = AB^{2} + \left(\frac{1}{3}BC\right)^{2} - 2\left(\frac{BC}{2}\right)\left(\frac{BC}{3}\right)$	[1]
18. Join OC In \triangle OPA and \triangle OCA OP = OC (radii of same circle) PA = CA (length of two tangents) $ \begin{array}{cccccccccccccccccccccccccccccccccc$		$AD^2 = \frac{7}{9}AB^2 (\because BC = AB)$	
18. Join OC In \triangle OPA and \triangle OCA OP = OC (radii of same circle) PA = CA (length of two tangents) $ \begin{array}{cccccccccccccccccccccccccccccccccc$		$9AD^2 = 7AB^2$	[1/2]
OP = OC (radii of same circle) PA = CA (length of two tangents) $ \begin{array}{cccccccccccccccccccccccccccccccccc$	18.		
PA = CA (length of two tangents) $ \begin{array}{cccccccccccccccccccccccccccccccccc$		In \triangle OPA and \triangle OCA	
AO = AO (Common) $\therefore \triangle OPA \cong \triangle OCA \text{ (By SSS congruency criterion)}$ Hence, $\angle 1 = \angle 2 \text{ (CPCT)}$ Similarly $\angle 3 = \angle 4$ Now, $\angle PAB + \angle QBA = 180^{\circ}$ $\Rightarrow 2\angle 2 + 2\angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$ [1]			
AO = AO (Common) $\therefore \Delta \text{ OPA} \cong \Delta \text{ OCA (By SSS congruency criterion)}$ Hence, $\angle 1 = \angle 2$ (CPCT) Similarly $\angle 3 = \angle 4$ Now, $\angle \text{PAB} + \angle \text{QBA} = 180^{\circ}$ $\Rightarrow 2\angle 2 + 2\angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$ [1]		Α	
AO = AO (Common) $\therefore \triangle OPA \cong \triangle OCA \text{ (By SSS congruency criterion)}$ Hence, $\angle 1 = \angle 2 \text{ (CPCT)}$ Similarly $\angle 3 = \angle 4$ Now, $\angle PAB + \angle QBA = 180^{\circ}$ $\Rightarrow 2\angle 2 + 2\angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$ [1]		X P A Y	
AO = AO (Common) $\therefore \triangle OPA \cong \triangle OCA \text{ (By SSS congruency criterion)}$ Hence, $\angle 1 = \angle 2 \text{ (CPCT)}$ Similarly $\angle 3 = \angle 4$ Now, $\angle PAB + \angle QBA = 180^{\circ}$ $\Rightarrow 2\angle 2 + 2\angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$ [1]			
AO = AO (Common) $\therefore \triangle OPA \cong \triangle OCA \text{ (By SSS congruency criterion)}$ Hence, $\angle 1 = \angle 2 \text{ (CPCT)}$ Similarly $\angle 3 = \angle 4$ Now, $\angle PAB + \angle QBA = 180^{\circ}$ $\Rightarrow 2\angle 2 + 2\angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$ [1]			
.: \triangle OPA \cong \triangle OCA (By SSS congruency criterion) Hence, $\angle 1 = \angle 2$ (CPCT) Similarly $\angle 3 = \angle 4$ Now, \angle PAB + \angle QBA = 180° $\Rightarrow 2\angle 2 + 2\angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$ [1]			[1]
Hence, $\angle 1 = \angle 2$ (CPCT) Similarly $\angle 3 = \angle 4$ Now, $\angle PAB + \angle QBA = 180^{\circ}$ $\Rightarrow 2\angle 2 + 2\angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$ [1]		· · · · · · · · · · · · · · · · · · ·	
Similarly $\angle 3 = \angle 4$ Now, $\angle PAB + \angle QBA = 180^{\circ}$ $\Rightarrow 2\angle 2 + 2\angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$ [1]			[1]
$\Rightarrow 2 \angle 2 + 2 \angle 4 = 180^{\circ}$ $\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$ [1]		Similarly $\angle 3 = \angle 4$	
$\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$			
			[1]
$\Rightarrow \angle AOB = 90^{\circ}$ (Angle sum property)			
		$\Rightarrow \angle AOB = 90^{\circ}$ (Angle sum property)	

$$\begin{array}{c} 19. \\ \hline 19. \\ \hline cot^2 66^\circ + \sec^2 27^\circ \\ \hline cot^2 66^\circ + \sec^2 27^\circ \\ \hline = \frac{\cos \csc^2 63^\circ + \tan^2 24^\circ}{\cos(2^\circ 65^\circ + \tan^2 24^\circ)} \\ \hline = \frac{\cos \csc^2 63^\circ + \tan^2 24^\circ}{\tan^2 (90^\circ - 66^\circ) + \csc^2 (90^\circ - 27^\circ)} \\ \hline = \frac{\cos \csc^2 63^\circ + \tan^2 24^\circ}{\tan^2 (90^\circ - 66^\circ) + \csc^2 (90^\circ - 27^\circ)} \\ \hline = \frac{\cos \csc^2 63^\circ + \tan^2 24^\circ}{\tan^2 24^\circ + \csc^2 63^\circ} \\ \hline = \frac{\cos \csc^2 63^\circ + \tan^2 24^\circ}{\tan^2 24^\circ + \csc^2 63^\circ} \\ \hline = \frac{1 + \frac{1+1}{2(1)}}{1} = 2 \\ \hline OR \\ \hline sin \theta + \cos \theta = \sqrt{2} \\ \hline \Rightarrow \sin \theta + \cos \theta = \sqrt{2} \\ \hline \Rightarrow \sin \theta + \cos \theta = 2 \\ \hline \Rightarrow \sin \theta + \cos \theta = 2 \\ \hline \Rightarrow \sin \theta + \cos \theta = 2 \\ \hline \Rightarrow \sin \theta \cos \theta = 2 \\ \hline \Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ \hline \cos \theta + \cos^2 \theta + 2 \sin \theta \cos \theta = 2 \\ \hline \Rightarrow \sin \theta \cos \theta = \frac{1}{1/2} \\ \hline \Rightarrow \tan \theta + \cot \theta = 2 \\ \hline 20. \\ \hline We know, \sin^2 \theta + \cos^2 \theta = 1 \\ \hline \ln A ACB, BC^2 = AC^2 + AB^2 \\ \hline \Rightarrow BC = AC\sqrt{2} \\ \hline \therefore AB = AC) \\ \hline \Rightarrow BC = r\sqrt{2} \\ \hline Required area = ar(\Delta ACB) + ar(semicircle on BC as diameter) - ar(quadrant ABPC) \\ \hline = \frac{r^2}{2} + \frac{\pi r^2}{4} - \frac{\pi r^2}{4} \\ \hline = \frac{r^2}{2} = \frac{196}{2} \text{cm}^2 = 98 \text{ cm}^2 \\ \hline \end{array}$$


21.	Let the area that can be irrigated in 30 minute be A m ² .	
	Water flowing in canal in 30 minutes = $\left(10,000 \times \frac{1}{2}\right)$ m = 5000 m	[1/2]
	Volume of water flowing out in 30 minutes = $(5000 \times 6 \times 1.5) \text{ m}^3 = 45000 \text{ m}^3$ (i)	[1]
	Volume of water required to irrigate the field = $A \times \frac{8}{100}$ m ³	[1/2]
	(ii) Equating (i) and (ii), we get	
	$A \times \frac{8}{100} = 45000$	[1]
	$A = 562500 \text{ m}^2.$	
	OR	[1/2]
	$l = \sqrt{7^2 + 14^2} = 7\sqrt{5}$	[1]
	Surface area of remaining solid = $6l^2 - \pi r^2 + \pi r l$, where r and l are the radius and slant height of the cone.	
	14 cm	
		[1]
	$= 6 \times 14 \times 14 - \frac{22}{7} \times 7 \times 7 + \frac{22}{7} \times 7 \times 7 \sqrt{5}$	F1 (0)
	$= 1176 - 154 + 154\sqrt{5}$	[1/2]
	$= (1022 + 154\sqrt{5}) \text{ cm}^2$	
22.	$Mode = \ell + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$	[1]
	$= 60 + \left(\frac{29-21}{58-21-17}\right) \times 20$	543
	= 68	[1]
	So, the mode marks is 68.	
	Empirical relationship between the three measures of central tendencies is:	
	3 Median = Mode + 2 Mean	
	3 Median = $68 + 2 \times 53$	[1]
	Median = 58 marks	
		'

Section D

23.	Let original speed of the train be x km/h.	
	Time taken at original speed = $\frac{360}{}$ hours	[1]
	X	
	Time taken at increased aread = 360 hours	[1/2]
	Time taken at increased speed = $\frac{360}{x+5}$ hours	
	360 360 48	
	Now, $\frac{360}{x} - \frac{360}{x+5} = \frac{48}{60}$	$[1\frac{1}{2}]$
	Γ1 1 1 4	
	$\Rightarrow 360\left[\frac{1}{x} - \frac{1}{x+5}\right] = \frac{4}{5}$	
	$\Rightarrow x^2 + 5x - 2250 = 0$	
	$\Rightarrow x = 45 \text{ or } -50 \text{ (as speed cannot be negative)}$	[1]
	$\Rightarrow x = 45 \text{ km/h}$ $\Rightarrow x = 45 \text{ km/h}$	[1]
	OR	
	Discriminant = $b^2 - 4ac = 36 - 4 \times 5 \times (-2) = 76 > 0$	[1]
	So, the given equation has two distinct real roots	
	$5x^2 - 6x - 2 = 0$	
	Multiplying both sides by 5.	
	$(5x)^2 - 2 \times (5x) \times 3 = 10$	
	$\Rightarrow (5x)^2 - 2 \times (5x) \times 3 + 3^2 = 10 + 3^2$	
	$\Rightarrow (5x - 3)^2 = 19$	[1]
	$\Rightarrow 5x - 3 = \pm \sqrt{19}$	
	$\Rightarrow x = \frac{3 \pm \sqrt{19}}{5}$	543
	$\Rightarrow x = \frac{3 - \sqrt{3}}{5}$	[1]
	Verification:	
	$5\left(\frac{3+\sqrt{19}}{5}\right)^2 - 6\left(\frac{3+\sqrt{19}}{5}\right) - 2 = \frac{9+6\sqrt{19}+19}{5} - \frac{18+6\sqrt{19}}{5} - \frac{10}{5} = 0$	
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	[1/2]
	$(2 \sqrt{10})^2 (2 \sqrt{10})$	
	Similarly, $5\left(\frac{3-\sqrt{19}}{5}\right)^2 - 6\left(\frac{3-\sqrt{19}}{5}\right) - 2 = 0$	F4 /03
	$\begin{pmatrix} 5 \end{pmatrix} \begin{pmatrix} 5 \end{pmatrix}$	[1/2]
24.	Let the three middle most terms of the AP be $a - d$, a , $a + d$.	
	We have, $(a - d) + a + (a + d) = 225$	[1]
	$\Rightarrow 3a = 225 \Rightarrow a = 75$	[1/2]
	Now, the AP is	
	a - 18d,, a - 2d, a - d, a, a + d, a + 2d,, a + 18d	
	Sum of last three terms: $(a+18d)+(a+17d)+(a+16d)=420$	[1]
	(a + 18d) + (a + 17d) + (a + 16d) = 429 $\Rightarrow 3a + 51d - 420 \Rightarrow a + 17d - 143$	[1]
	$\Rightarrow 3a + 51d = 429 \Rightarrow a + 17d = 143 \Rightarrow 75 + 17d = 143$	
	$\Rightarrow 73 + 17d = 143$ $\Rightarrow d = 4$	[1/2]
	\rightarrow d = 4 Now, first term = a - 18d = 75 - 18(4) = 3	[[- / 2]
	\therefore The AP is 3, 7, 11,, 147.	[1]
	· · · · · · · · · · · · · ·	

	Hence, $\frac{\operatorname{ar}(\Delta ABC)}{\Delta ABC} = \frac{BC}{ABC} \times \frac{AM}{ABC}$ from (i)					
	$ar(\Delta PQR)$ QR PN					
	$= \frac{AB}{PQ} \times \frac{AB}{PQ}$ [from (ii) and (iii)]					
	$= \left(\frac{AB}{PQ}\right)^2$					
	$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2 \text{ Using (iii)}$					
26.	Draw \triangle ABC in which BC = 7 cm, \angle B = 45°, \angle A = 105° and hence \angle C = 30°. Construction of similar triangle A' BC' as shown below:					
	B_1 B_2 B_3 B_4 X					
27.	LHS = $\frac{\cos \theta - \sin \theta + 1}{\cos \theta + \sin \theta - 1}$ $\cos \theta - \sin \theta + 1 \cos \theta + \sin \theta + 1$	F13				
	$= \frac{\cos\theta - \sin\theta + 1}{\cos\theta + \sin\theta - 1} \times \frac{\cos\theta + \sin\theta + 1}{\cos\theta + \sin\theta + 1}$	[1]				
	$-\frac{(\cos\theta+1)^2-\sin^2\theta}{}$	[1]				
	$-\frac{(\cos\theta+\sin\theta)^2-1^2}{(\cos\theta+\sin\theta)^2-1^2}$					
	$=\frac{\cos^2\theta+1+2\cos\theta-\sin^2\theta}{2}$					
	$\cos^2\theta + \sin^2\theta + 2\sin\theta\cos\theta - 1$					
	$=\frac{2\cos^2\theta+2\cos\theta}{2\cos^2\theta+2\cos\theta}$					
	$2\sin\theta\cos\theta$	[1]				
	$=\frac{2\cos\theta(\cos\theta+1)}{2\sin\theta\cos\theta}$					
	$\cos \theta + 1$					
	$= \frac{\cos \theta + 1}{\sin \theta} = \csc \theta + \cot \theta = RHS$	[1]				
		[1]				

	Daily pocket	Number of	Mid-point	$x_{i} - 18$	$f_i u_i$			
30.	allowance (in ₹)	children (f _i)	(x_i)	$u_i = \frac{x_i - 18}{2}$				
	11–13	3	12	-3	-9			
	13–15	6	14	-3 -2	-12			
	15–17	9	16	-1	-9			
	17–19	13	18	0	0			
	19–21	k	20	1	k			
	21–23	5	22	2	10	[2]		
	23–25	4	24	3	12	[2]		
	$\Sigma f_i = 40 + k$ $\Sigma f_i u_i = k - 8$ $Mean = \overline{x} = a + h \left(\frac{\Sigma f_i u_i}{\Sigma f_i}\right)$							
	$18 = 18 + 2\left(\frac{k-8}{40+k}\right)$							
	$\Rightarrow k = 8$ OR							
		Less than	_	er of Students				
		10		4				
		20		9				
		30		22				
		40		42				
		50		56				
		60		64		F13		
		70		68		[1]		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	Therefore, Median distance = 36 m							