

	Contents
6.1	Introduction
6.2	Representation of vectors
6.3	Types of vector
6.4	Rectangular resolution of a vector in two and three dimensional system
6.5	Properties of vectors
6.6	Position vector
6.7	Linear combination of vector
6.8	Linear in dependence and dependence of vector
6.9	Product of two vectors
6.10	Vector or cross product of two vectors
6.11	Moment of a force and couple
6.12	Scalar triple product
6.13	Vector triple product
6.14	Scalar product of four vectors
6.15	Vector product of four vectors
6.16	Vector equations
A	Assignment (Basic and Advance Level)
	Answer Sheet of Assignment

 $oldsymbol{T}$ he word vector is derived from Latin word meaning "to carry". The subject vector analysis was developed in the later part of the 19th century by the American Physicist and mathematician Josiah Willard Gibbs (1839-1903 A.D.) and the English enginner Oliver Heaviside (1850-1925 A.D.) workign independently. Many of the ideas came earlier, however, especially from Irish mathematician William Rowen Hamilton (1805-1865 A.D.) Scottish physicist James Clerk Maxwell (1831-1879 A.D) and H.G. Grassmann (1809-1877 A.D.). It was Hamiliton introduced scalar and vector terms In who 1844, Grassman published his work in lineale ausdehnungslehre and in 1883 appeared Hamilton's Lectures on Quatermions. Hamilton's method of quaternions was a solution to the problem of multiplying vectors in three dimensional space. Maxwell used some of Hamilton's ideas in his study of electro-magnetic theory.

6.1 Introduction

Vectors represent one of the most important mathematical systems, which is used to handle certain types of problems in Geometry, Mechanics and other branches of Applied Mathematics, Physics and Engineering.

Scalar and vector quantities : Physical quantities are divided into two categories – scalar quantities and vector quantities. Those quantities which have only magnitude and which are not related to any fixed direction in space are called *scalar quantities*, or briefly scalars. Examples of scalars are mass, volume, density, work, temperature etc.

A scalar quantity is represented by a real number along with a suitable unit.

Second kind of quantities are those which have both magnitude and direction. Such quantities are called vectors. Displacement, velocity, acceleration, momentum, weight, force etc. are examples of vector quantities.

6.2 Representation of Vectors

Geometrically a vector is represented by a line segment. For example, $\mathbf{a} = \overline{AB}$. Here A is called the initial point and B, the terminal point or tip.

Magnitude or modulus of **a** is expressed as $|\mathbf{a}| \neq \overrightarrow{AB}| = AB$.

Note : **D** The magnitude of a vector is always a non-negative real r

 \Box Every vector *AB* has the following three characteristics:

Length : The length of AB will be denoted by |AB| or AB.

Support : The line of unlimited length of which *AB* is a segment is called the support of the vector \overrightarrow{AB} .

Sense : The sense of *AB* is from *A* to *B* and that of *BA* is from *B* to *A*. Thus, the sense of a directed line segment is from its initial point to the terminal point.

6.3 Types of Vector

(1) **Zero or null vector** : A vector whose magnitude is zero is called zero or null vector and it is represented by \vec{o} .

The initial and terminal points of the directed line segment representing zero vector are coincident and its direction is arbitrary.

(2) Unit vector : A vector whose modulus is unity, is called a unit vector. The unit vector in the direction of a vector **a** is denoted by $\hat{\mathbf{a}}$, read as "*a cap*". Thus, $|\hat{\mathbf{a}}| = 1$.

$$\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\text{Vector } a}{\text{Magnitude of } a}$$

 I_{Mote} : \Box Unit vectors parallel to *x*-axis, *y*-axis and *z*-axis are denoted by **i**, **j** and **k** respectively.

T Two unit vectors may not be equal unless they have the same direction.

(3) **Like and unlike vectors** : Vectors are said to be like when they have the same sense of direction and unlike when they have opposite directions.

(4) **Collinear or parallel vectors :** Vectors having the same or parallel supports are called collinear vectors.

(5) **Co-initial vectors** : Vectors having the same initial point are called *co-initial vectors*.

(6) **Co-planar vectors :** A system of vectors is said to be coplanar, if their supports are parallel to the same plane.

Note : \Box Two vectors having the same initial point are always coplanar but such three or

more vectors may or may not be coplanar.

(7) **Coterminous vectors** : Vectors having the same terminal point are called *coterminous vectors*.

(8) Negative of a vector : The vector which has the same magnitude as the vector **a** but opposite direction, is called the negative of **a** and is denoted by $-\mathbf{a}$. Thus, if $\overrightarrow{PQ} = \mathbf{a}$, then $\overrightarrow{QP} = -\mathbf{a}$.

(9) **Reciprocal of a vector :** A vector having the same direction as that of a given vector **a** but magnitude equal to the reciprocal of the given vector is known as the reciprocal of **a** and is denoted

by
$$\mathbf{a}^{-1}$$
. Thus, if $|\mathbf{a}| = a$, $|\mathbf{a}^{-1}| = \frac{1}{a}$

Note : \Box A unit vector is self reciprocal.

(10) **Localized and free vectors** : A vector which is drawn parallel to a given vector through a specified point in space is called a localized vector. For example, a force acting on a rigid body is a localized vector as its effect depends on the line of action of the force. If the value of a vector depends only on its length and direction and is independent of its position in the space, it is called a free vector.

(11) **Position vectors :** The vector *OA* which represents the position of the point *A* with respect to a fixed point *O* (called origin) is called position vector of the point *A*. If (*x*, *y*, *z*) are co-ordinates of the point *A*, then $\overrightarrow{OA} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

(12) **Equality of vectors :** Two vectors **a** and **b** are said to be equal, if

(i) |a| = |b|(ii) They have the same or parallel support and(iii) Thesame sense.

6.4 Rectangular resolution of a Vector in Two and Three dimensional systems

(1) Any vector **r** can be expressed as a linear combination of two unit vectors **i** and **j** at right angle *i.e.*, $\mathbf{r} = x\mathbf{i} + y\mathbf{j}$

The vector $x\mathbf{i}$ and $y\mathbf{j}$ are called the perpendicular component vectors of \mathbf{r} . The scalars x and y are called the components or resolved parts of \mathbf{r} in the directions of x-axis and y-axis

respectively and the ordered pair (x, y) is known as co-ordinates of point whose position vector is \mathbf{r} .

Also the magnitude of $\mathbf{r} = \sqrt{x^2 + y^2}$ and if θ be the inclination of \mathbf{r} with the *x*-axis, then $\theta = \tan^{-1}(y/x)$

(2) If the coordinates of *P* are (*x*, *y*, *z*) then the position vector of **r** can be written as $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

The vectors xi, yj and zk are called the right angled components of **r**.

The scalars x, y, z are called the components or resolved parts of **r** in the directions of *x*-axis, *y*-axis and *z*-axis respectively and ordered triplet (*x*, *y*, *z*) is known as coordinates of *P* whose position vector is **r**.

Also the magnitude or modulus of $\mathbf{r} \neq |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$

Direction cosines of **r** are the cosines of angles that the vector **r** makes with the positive direction of *x*, *y* and *z*-axes. $\cos \alpha = l = \frac{x}{\sqrt{x^2 + y^2 + z^2}} = \frac{x}{|\mathbf{r}|}, \quad \cos \beta = m = \frac{y}{\sqrt{x^2 + y^2 + z^2}} = \frac{y}{|\mathbf{r}|}$ and $\cos \gamma = n = \frac{z}{\sqrt{x^2 + y^2 + z^2}} = \frac{z}{|\mathbf{r}|}$

Clearly, $l^2 + m^2 + n^2 = 1$. Here $\alpha = \angle POX$, $\beta = \angle POY$ $\gamma = \angle POZ$ and i, j, k are the unit vectors along *OX*, *OY*, *OZ* respectively.

Example: 1 If a is a non-zero vector of modulus a and m is a non-zero scalar, then m a is a unit vector if

(a)
$$m = \pm 1$$
 (b) $m = |\mathbf{a}|$ (c) $m = \frac{1}{|\mathbf{a}|}$ (d) $m = \pm 2$

Solution: (c) As *m* **a** is a unit vector, $|m\mathbf{a}|=1 \Rightarrow |m||\mathbf{a}|=1 \Rightarrow |m|=\frac{1}{|\mathbf{a}|} \Rightarrow m=\pm\frac{1}{|\mathbf{a}|}$

Example: 2 For a non-zero vector \mathbf{a} , the set of real numbers, satisfying $|(5-x)\mathbf{a}| < |2\mathbf{a}|$ consists of all x such that

(a) 0 < x < 3 (b) 3 < x < 7 (c) -7 < x < -3 (d) -7 < x < 3Solution: (b) We have, $|(5-x)\mathbf{a}| < |2\mathbf{a}|$

Example: 3 The direction cosines of the vector 3i - 4j + 5k are

(a)
$$\frac{3}{5}, \frac{-4}{5}, \frac{1}{5}$$
 (b) $\frac{3}{5\sqrt{2}}, \frac{-4}{5\sqrt{2}}, \frac{1}{\sqrt{2}}$ (c) $\frac{3}{\sqrt{2}}, \frac{-4}{\sqrt{2}}, \frac{1}{\sqrt{2}}$ (d) $\frac{3}{5\sqrt{2}}, \frac{4}{5\sqrt{2}}, \frac{1}{\sqrt{2}}$

x < 7.

Solution: (b) $\mathbf{r} = 3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}$; $|\mathbf{r}| = \sqrt{3^2 + (-4)^2 + 5^2} = 5\sqrt{2}$

Hence, direction cosines are $\frac{3}{5\sqrt{2}}, \frac{-4}{5\sqrt{2}}, \frac{5}{5\sqrt{2}}$ *i.e.*, $\frac{3}{5\sqrt{2}}, \frac{-4}{5\sqrt{2}}, \frac{1}{\sqrt{2}}$.

6.5 Properties of Vectors

(1) Addition of vectors

(i) **Triangle law of addition :** If two vectors are represented by two consecutive sides of a triangle then their sum is represented by the third side of the triangle, but in opposite direction. This is

known as the triangle law of addition of vectors. Thus, if $\overrightarrow{AB} = \mathbf{a}, \overrightarrow{BC} = \mathbf{b}$ and $\overrightarrow{AC} = \mathbf{c}$ then $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ *i.e.*, $\mathbf{a} + \mathbf{b} = \mathbf{c}$.

(ii) Parallelogram law of addition : If two vectors are represented by two adjacent sides

of a parallelogram, then their sum is represented by the diagonal of the parallelogram whose initial point is the same as the initial point of the given vectors. This is known as parallelogram law of addition of vectors.

Thus, if $OA = \mathbf{a}, OB = \mathbf{b}$ and $OC = \mathbf{c}$

Then OA + OB = OC i.e., $\mathbf{a} + \mathbf{b} = \mathbf{c}$, where OC is a diagonal of the parallelogram OABC.

(iii) Addition in component form : If the vectors are defined in terms of i, j and k, *i.e.*, if $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$, then their sum is defined as $\mathbf{a} + \mathbf{b} = (a_1 + b_1)\mathbf{i} + (a_2 + b_2)\mathbf{j} + (a_3 + b_3)\mathbf{k}$.

Properties of vector addition : Vector addition has the following properties.

(a) **Binary operation :** The sum of two vectors is always a vector.

(b) **Commutativity :** For any two vectors \mathbf{a} and \mathbf{b} , $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$

(c) Associativity : For any three vectors \mathbf{a}, \mathbf{b} and \mathbf{c} , $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$

(d) **Identity :** Zero vector is the identity for addition. For any vector \mathbf{a} , $\mathbf{0} + \mathbf{a} = \mathbf{a} = \mathbf{a} + \mathbf{0}$

(e) Additive inverse : For every vector **a** its negative vector $-\mathbf{a}$ exists such that $\mathbf{a} + (-\mathbf{a}) = (-\mathbf{a}) + \mathbf{a} = \mathbf{0}$ *i.e.*, $(-\mathbf{a})$ is the additive inverse of the vector **a**.

(2) **Subtraction of vectors :** If **a** and **b** are two vectors, then their subtraction $\mathbf{a} - \mathbf{b}$ is defined as $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$ where $-\mathbf{b}$ is the negative of **b** having magnitude equal to that of **b** and direction opposite to **b**.

If
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$
Then $\mathbf{a} - \mathbf{b} = (a_1 - b_1)\mathbf{i} + (a_2 - b_2)\mathbf{j} + (a_3 - b_3)\mathbf{k}$.

$$a + b$$

$$a + b$$

$$a + (-b) = a - b$$

$$B'$$

Properties of vector subtraction

(i) $\mathbf{a} - \mathbf{b} \neq \mathbf{b} - \mathbf{a}$

(ii) $(a-b)-c \neq a-(b-c)$

(iii) Since any one side of a triangle is less than the sum and greater than the difference of the other two sides, so for any two vectors *a* and *b*, we have

(a)
$$| a + b | \le | a | + | b |$$
 (b) $| a + b | \ge | a | - | b |$

(c)
$$|a - b| \le |a| + |b|$$
 (d) $|a - b| \ge |a| - |b|$

(3) Multiplication of a vector by a scalar : If a is a vector and m is a scalar (*i.e.*, a real number) then ma is a vector whose magnitude is m times that of a and whose direction is the same as that of a , if m is positive and opposite to that of a , if m is negative.

 \therefore Magnitude of $m\mathbf{a} \neq m\mathbf{a} \mid \Rightarrow m$ (magnitude of \mathbf{a}) = $m \mid \mathbf{a} \mid$

Again if $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ then $m\mathbf{a} = (ma_1)\mathbf{i} + (ma_2)\mathbf{j} + (ma_3)\mathbf{k}$

Properties of Multiplication of vectors by a scalar : The following are properties of multiplication of vectors by scalars, for vectors \mathbf{a}, \mathbf{b} and scalars m, n

(i)
$$m(-a) = (-m)a = -(ma)$$

- (iii) $m(n\mathbf{a}) = (mn)\mathbf{a} = n(m\mathbf{a})$
- (v) $m(\mathbf{a} + \mathbf{b}) = m\mathbf{a} + m\mathbf{b}$
- (4) Resultant of two forces

$$\vec{R} = \vec{P} + \vec{Q}$$

Example: 4

(a) \vec{o}

CET 2002]

$$|\vec{R}| = R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$$

where $|\vec{P}| = P$, $|\vec{Q}| = Q$, $\tan \alpha = \frac{Q \sin \theta}{P + Q \cos \theta}$

 $= \overrightarrow{AB} + \overrightarrow{O} + \overrightarrow{O} + \overrightarrow{AB} + 2 \overrightarrow{AB} = 4 \overrightarrow{AB}$

(ii)
$$(-m)(-\mathbf{a}) = m\mathbf{a}$$

(iv)
$$(m+n)\mathbf{a} = m\mathbf{a} + n\mathbf{a}$$

Karnataka

Deduction : When $|\vec{P}| \neq \vec{Q}|$, *i.e.*, P = Q, $\tan \alpha = \frac{P \sin \theta}{P + P \cos \theta} = \frac{\sin \theta}{1 + \cos \theta} = \tan \frac{\theta}{2}$; $\therefore \quad \alpha = \frac{\theta}{2}$

Hence, the angular bisector of two unit vectors \mathbf{a} and \mathbf{b} is along the vector sum $\mathbf{a} + \mathbf{b}$.

Important Tips

- The internal bisector of the angle between any two vectors is along the vector sum of the corresponding unit vectors.
- The external bisector of the angle between two vectors is along the vector difference of the corresponding unit vectors.

If ABCDEF is a regular hexagon, then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} =$

(b) $2\overrightarrow{AB}$ (c) 3AB(d) $4\overrightarrow{AB}$ **Solution:** (d) We have $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$ $= (\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}) + (\overrightarrow{ED} + \overrightarrow{DC} + \overrightarrow{CB}) + \overrightarrow{FC}$ $= \overrightarrow{AB} + (\overrightarrow{BC} + \overrightarrow{CB}) + (\overrightarrow{CD} + \overrightarrow{DC}) + \overrightarrow{ED} + \overrightarrow{FC}$ С

 $\overrightarrow{ED} = \overrightarrow{AB}, \overrightarrow{FC} = 2 \overrightarrow{AB}$

Example: 5 The unit vector parallel to the resultant vector of
$$2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$$
 and $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ is
(a) $\frac{1}{7}(3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k})$ (b) $\frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}$ (c) $\frac{\mathbf{i} + \mathbf{j} + 2\mathbf{k}}{\sqrt{6}}$ (d) $\frac{1}{\sqrt{69}}(-\mathbf{i} - \mathbf{j} + 8\mathbf{k})$
Solution: (a) Resultant vector $\mathbf{r} = (2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}) + (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$
Unit vector parallel to $\mathbf{r} = \frac{1}{|\mathbf{r}|}\mathbf{r} = \frac{1}{\sqrt{3^2 + 6^2 + (-2)^2}}(3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}) = \frac{1}{7}(3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k})$

0[°]

Example: 6	If the sum of two v	ectors is a unit vector,	then the ma	agnitude of th [Kurul	heir difference is kshetra CEE 1996; Rajasthan PET 199)6]
	(a) $\sqrt{2}$	(b) $\sqrt{3}$	(c)	$\frac{1}{\sqrt{3}}$	(d) 1	
Solution: (b)	Let $ a = 1$, $ b = 1$ a	and $ \mathbf{a} + \mathbf{b} = 1 \implies \mathbf{a} + \mathbf{b} $	$ ^2 = 1 \implies$	$1+1+2\cos\theta =$	$=1 \implies \cos \theta = -\frac{1}{2} \implies \theta = 120^{\circ}$	
Example: 7	$\therefore \mathbf{a} - \mathbf{b} ^2 = 1 + 1 - 1$ The length of longer $ \mathbf{a} = 2\sqrt{2}, \mathbf{b} = 3 \text{ and } 1$	$2\cos\theta = 3 \implies \mathbf{a} - \mathbf{b} = \sqrt{3}$ er diagonal of the para and angle between a and	$\overline{3}$. llelogram co l b is $\frac{\pi}{4}$, is	onstructed or	n 5 a + 2b and a - 3b, it is given th	ıat
Solution: (c)	(a) 15 Length of the two d^{2} $\Rightarrow d_{1} \neq 6\mathbf{a} - \mathbf{b}$, $d_{2} \neq \mathbf{b}$	(b) $\sqrt{113}$ liagonals will be $d_1 = 0$ $= 4\mathbf{a} + 5\mathbf{b}$	(c) 5 a + 2 b) + (a -	$\sqrt{593}$ - 3b) and d_2	(d) $\sqrt{369}$ $\Rightarrow (5\mathbf{a}+2\mathbf{b})-(\mathbf{a}-3\mathbf{b}) $	
	Thus, $d_1 = \sqrt{ 6\mathbf{a} ^2} +$	$ -\mathbf{b} ^{2}+2 \mathbf{6a} -\mathbf{b} \cos(\pi$	$\overline{(-\pi/4)} = \sqrt{3}$	$36(2\sqrt{2})^2 + 9 +$	$12.2\sqrt{2.3} \cdot \left(-\frac{1}{\sqrt{2}}\right) = 15.$	
	$d_2 = \sqrt{ 4\mathbf{a} ^2 + 4\mathbf{a} ^2}$	$(5\mathbf{b})^2 + 2 4\mathbf{a} 5\mathbf{b} \cos\frac{\pi}{4} =$	$=\sqrt{16\times8+25}$	$5 \times 9 + 40 \times 2\sqrt{2}$	$\overline{2} \times 3 \times \frac{1}{\sqrt{2}} = \sqrt{593} .$	
Example: 8	\therefore Length of the lo The sum of two for	onger diagonal = $\sqrt{593}$ rces is 18 N and result	ant whose d	lirection is a	t right angles to the smaller force	is
Solution: (a)	(a) 13, 5 We have, $ \vec{P} + \vec{O} $	(b) 12, 6 = $18N : \vec{R} = \vec{P} + \vec{O} = 12$	(c)	14, 4	(d) 11, 7	
	$\alpha = 90^{\circ} \implies P + Q \cos \theta$ Now, $R^2 = P^2 + Q^2 $	$s\theta = 0 \implies Q \cos \theta = -P$ + 2PQ cos $\theta \implies R^2 = P^2 + q$ P) = 18(Q - P) + P = 18 \implies Q = 13, P = wo forces are 5N, 13N.	$Q^2 + 2P(-P) =$ 5	$=Q^2-P^2$	\overrightarrow{Q} \overrightarrow{R} $\overrightarrow{\theta}$ \overrightarrow{R} \overrightarrow{P} \overrightarrow{P}	
Example: 9	The vector \mathbf{c} , direction $\mathbf{b} = -2\mathbf{i} = \mathbf{i} + 2\mathbf{k}$ with	cted along the internal $1 - 5\sqrt{6}$ is	bisector of	the angle bet	tween the vectors $\mathbf{a} = 7\mathbf{i} - 4\mathbf{j} - 4\mathbf{k}$ a	nd
	(a) $\frac{5}{3}(\mathbf{i} - 7\mathbf{j} + 2\mathbf{k})$	(b) $\frac{5}{3}(5\mathbf{i}+5\mathbf{j}+2\mathbf{k})$	(c)	$\frac{5}{3}(\mathbf{i}+7\mathbf{j}+2\mathbf{k})$	(d) $\frac{5}{3}(-5i+5j+2k)$	
Solution: (a)	Let $\mathbf{a} = 7\mathbf{i} - 4\mathbf{j} - 4\mathbf{k}$	and $\mathbf{b} = -2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$			2	
	Now required vector	or $\mathbf{c} = \lambda \left(\frac{\mathbf{a}}{ \mathbf{a} } + \frac{\mathbf{b}}{ \mathbf{b} } \right) = \lambda$	$\left(\frac{7\mathbf{i}-4\mathbf{j}-4\mathbf{k}}{9}\right)$	$+\frac{-2\mathbf{i}-\mathbf{j}+2\mathbf{k}}{3}$	$= \frac{\lambda}{9}(\mathbf{i} - 7\mathbf{j} + 2\mathbf{k})$	
	$ \mathbf{c} ^2 = \frac{\lambda^2}{81} \times 54 = 150 =$	$\Rightarrow \lambda = \pm 15 \Rightarrow \mathbf{c} = \pm \frac{5}{3} (\mathbf{i}$	-7j + 2k)			
6.6 Position	n Vector					

If a point *O* is fixed as the origin in space (or plane) and *P* is any point, then \overrightarrow{OP} is called the position vector of *P* with respect to *O*.

If we say that *P* is the point **r**, then we mean that the position vector of Origin**r** with respect to some origin *O*. *P* is r with respect to some origin *O*.

(1) \overrightarrow{AB} in terms of the position vectors of points *A* and *B* : If **a** and **b** are position vectors of points *A* and *B* respectively. Then, $\overrightarrow{OA} = \mathbf{a}, \overrightarrow{OB} = \mathbf{b}$

In $\triangle OAB$, we have $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB} \Rightarrow \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \mathbf{b} - \mathbf{a}$

 $\Rightarrow \overrightarrow{AB}$ = (Position vector of B) – (Position vector of A)

 $\Rightarrow \overrightarrow{AB}$ = (Position vector of head) – (Position vector of tail)

(2) Position vector of a dividing point

(i) **Internal division :** Let *A* and *B* be two points with position vectors **a** and **b** respectively, and let *C* be a point dividing *AB* internally in the ratio *n*

Then the position vector of *C* is given by

$$\overrightarrow{OC} = \frac{m\mathbf{b} + n\mathbf{a}}{m+n}$$

(ii) **External division :** Let A and B be two points with position vectors **a** and **b** respectively and let C be a point dividing AB externally in the ratio r

Then the position vector of *C* is given by

$$\overrightarrow{OC} = \frac{m\mathbf{b} - n\mathbf{a}}{m - n}$$

Important Tips

The Position vector of the mid point of AB is $\frac{\mathbf{a} + \mathbf{b}}{2}$

 \mathbb{F} If **a**, **b**, **c** are position vectors of vertices of a triangle, then position vector of its centroid is $\frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{2}$

F If $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are position vectors of vertices of a tetrahedron, then position vector of its centroid is $\frac{\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}}{4}$.

If position vector of a point A is $\mathbf{a} + 2\mathbf{b}$ and \mathbf{a} divides AB in the ratio 2 : 3, then the position vector of B is Example: 10 [MP PET 2002] (a) 2**a**-**b** (b) **b**−2**a** (c) **a**-3**b** (d) b **Solution:** (c) Let position vector of *B* is **x**. (a + 2b)The point $C(\mathbf{a})$ divides AB in 2 : 3. $\mathbf{a} = \frac{2\mathbf{x} + 3\left(\mathbf{a} + 2\mathbf{b}\right)}{2\mathbf{a} + 2\mathbf{b}}$ (a) 2 + 3 \Rightarrow 5**a** = 2**x** + 3**a** + 6**b** $B(\mathbf{x})$ $\therefore \mathbf{x} = \mathbf{a} - 3\mathbf{b}$ Let α , β , γ be distinct real numbers. The points with position vectors $\alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}$, $\beta \mathbf{i} + \gamma \mathbf{j} + \alpha \mathbf{k}$, Example: 11 $\gamma \mathbf{i} + \alpha \mathbf{j} + \beta \mathbf{k}$ [IIT Screening 1994]

- (a) Are collinear
- (b) Form an equilateral triangle
- (c) Form a scalene triangle
- (d) Form a right angled triangle

 $AB = \sqrt{(\alpha - \beta)^{2} + (\beta - \gamma)^{2} + (\gamma - \alpha)^{2}} = BC = CA$ **Solution:** (b) \therefore ABC is an equilateral triangle. Example: 12 The position vectors of the vertices A, B, C of a triangle are i-j-3k, 2i+j-2k and -5i+2j-6krespectively. The length of the bisector AD of the angle BAC where D is on the segment BC, is (c) $\frac{11}{2}$ (a) $\frac{3}{4}\sqrt{10}$ (b) $\frac{1}{4}$ (d) None of these **Solution:** (a) $|\overrightarrow{AB}| = |(2\mathbf{i} + \mathbf{j} - 2\mathbf{k}) - (\mathbf{i} - \mathbf{j} - 3\mathbf{k})| = |\mathbf{i} + 2\mathbf{j} + \mathbf{k}| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}$ $A (\mathbf{i} - \mathbf{j} - 3\mathbf{k})$ $|\vec{AC}| = |(-5\mathbf{i} + 2\mathbf{j} - 6\mathbf{k}) - (\mathbf{i} - \mathbf{j} - 3\mathbf{k})| = |-6\mathbf{\hat{i}} + 3\mathbf{\hat{j}} - 3\mathbf{\hat{k}}| = \sqrt{(-6)^2 + 3^2 + (-3)^2}$ $=\sqrt{54} = 3\sqrt{6}$ $BD: DC = AB: AC = \frac{\sqrt{6}}{3\sqrt{6}} = \frac{1}{3}.$ $\frac{B}{(2\mathbf{i}+\mathbf{j}-2\mathbf{k})} D$ $\therefore \text{ Position vector of } D = \frac{1 \cdot (-5\mathbf{i} + 2\mathbf{j} - 6\mathbf{k}) + 3(2\mathbf{i} + \mathbf{j} - 2\mathbf{k})}{1 + 3} = \frac{1}{4}(\mathbf{i} + 5\mathbf{j} - 12\mathbf{k})$ $\therefore \overrightarrow{AD} = \text{ position vector of } D - \text{ Position vector of } A = \frac{1}{4}(\mathbf{i} + 5\mathbf{j} - 12\mathbf{k}) - (\mathbf{i} - \mathbf{j} - 3\mathbf{k}) = \frac{1}{4}(-3\mathbf{i} + 9\mathbf{j}) = \frac{3}{4}(-\mathbf{i} + 3\mathbf{j})$ $|\overrightarrow{AD}| = \frac{3}{4}\sqrt{(-1)^2 + 3^2} = \frac{3}{4}\sqrt{10}$. The median AD of the triangle ABC is bisected at E, BE meets AC in F. Then AF : AC = Example: 13 (a) 3/4(b) 1/3 (c) 1/2 (d) 1/4Let position vector of A with respect to B is a and that of C w.r.t. B is a Solution: (b) Position vector of D w.r.t. $B = \frac{0+c}{2} = \frac{c}{2}$ Position vector of $E = \frac{\mathbf{a} + \frac{\mathbf{c}}{2}}{2} = \frac{\mathbf{a}}{2} + \frac{\mathbf{c}}{4}$(i) Let $AF : FC = \lambda : 1$ and $BE : EF = \mu : 1$ Position vector of $F = \frac{\lambda \mathbf{c} + \mathbf{a}}{1 + \lambda}$ Now, position vector of $E = \frac{\mu\left(\frac{\lambda \mathbf{c} + \mathbf{a}}{1 + \lambda}\right) + 1.0}{\mu + 1}$(ii). From (i) and (ii) , $\frac{\mathbf{a}}{2} + \frac{\mathbf{c}}{4} = \frac{\mu}{(1+\lambda)(1+\mu)} \mathbf{a} + \frac{\lambda\mu}{(1+\lambda)(1+\mu)} \mathbf{c}$ $\Rightarrow \frac{1}{2} = \frac{\mu}{(1+\lambda)(1+\mu)} \text{ and } \frac{1}{4} = \frac{\lambda\mu}{(1+\lambda)(1+\mu)} \Rightarrow \lambda = \frac{1}{2}, \therefore \frac{AF}{AC} = \frac{AF}{AF+FC} = \frac{\lambda}{1+\lambda} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3}.$

6.7 Linear Combination of Vectors

A vector **r** is said to be a linear combination of vectors **a**, **b**, **c**..... etc, if there exist scalars *x*, *y*, *z* etc., such that $\mathbf{r} = x\mathbf{a} + y\mathbf{b} + z\mathbf{c} + ...$

Examples : Vectors $\mathbf{r}_1 = 2\mathbf{a} + \mathbf{b} + 3\mathbf{c}$, $\mathbf{r}_2 = \mathbf{a} + 3\mathbf{b} + \sqrt{2}\mathbf{c}$ are linear combinations of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

(1) **Collinear and Non-collinear vectors :** Let **a** and **b** be two collinear vectors and let **x** be the unit vector in the direction of **a**. Then the unit vector in the direction of **b** is **x** or $-\mathbf{x}$ according as **a** and **b** are like or unlike parallel vectors. Now, $\mathbf{a} \neq \mathbf{a} | \hat{\mathbf{x}}$ and $\mathbf{b} = \pm | \mathbf{b} | \hat{\mathbf{x}}$.

$$\therefore \qquad \mathbf{a} = \left(\frac{|\mathbf{a}|}{|\mathbf{b}|}\right) |\mathbf{b}| \ \hat{\mathbf{x}} \ \Rightarrow \ \mathbf{a} = \left(\pm \frac{|\mathbf{a}|}{|\mathbf{b}|}\right) \mathbf{b} \ \Rightarrow \ \mathbf{a} = \lambda \mathbf{b} \text{, where } \lambda = \pm \frac{|\mathbf{a}|}{|\mathbf{b}|} \text{.}$$

Thus, if \mathbf{a}, \mathbf{b} are collinear vectors, then $\mathbf{a} = \lambda \mathbf{b}$ or $\mathbf{b} = \lambda \mathbf{a}$ for some scalar λ .

(2) Relation between two parallel vectors

(i) If a and b be two parallel vectors, then there exists a scalar k such that $\mathbf{a} = k \mathbf{b}$.

i.e., there exist two non-zero scalar quantities x and y so that $x \mathbf{a} + y \mathbf{b} = \mathbf{0}$.

If **a** and **b** be two non-zero, non-parallel vectors then $x\mathbf{a} + y\mathbf{b} = \mathbf{0} \implies x = 0$ and y = 0.

Obviously
$$x\mathbf{a} + y\mathbf{b} = \mathbf{0} \implies \begin{cases} \mathbf{a} = \mathbf{0}, \mathbf{b} = \mathbf{0} \\ \text{or} \\ x = 0, y = 0 \\ \text{or} \\ \mathbf{a} \parallel \mathbf{b} \end{cases}$$

(ii) If $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$ then from the property of parallel vectors, we have

$$\mathbf{a} \parallel \mathbf{b} \Longrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$$

(3) **Test of collinearity of three points**: Three points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are collinear iff there exist scalars x, y, z not all zero such that $x\mathbf{a} + y\mathbf{b} + z\mathbf{c} = \mathbf{0}$, where x + y + z = 0. If $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j}$, $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j}$ and $\mathbf{c} = c_1\mathbf{i} + c_2\mathbf{j}$, then the points with position vector $\mathbf{a}, \mathbf{b}, \mathbf{c}$ will be $\begin{vmatrix} a_1 & a_2 & 1 \end{vmatrix}$

collinear iff $\begin{vmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ c_1 & c_2 & 1 \end{vmatrix} = 0$.

(4) **Test of coplanarity of three vectors** : Let **a** and **b** two given non-zero non-collinear vectors. Then any vectors **r** coplanar with **a** and **b** can be uniquely expressed as $\mathbf{r} = x\mathbf{a} + y\mathbf{b}$ for some scalars *x* and *y*.

(5) **Test of coplanarity of Four points :** Four points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are coplanar iff there exist scalars x, y, z, u not all zero such that $x\mathbf{a} + y\mathbf{b} + z\mathbf{c} + u\mathbf{d} = \mathbf{0}$, where x + y + z + u = 0.

Four points with position vectors

$$\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$$
, $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$, $\mathbf{c} = c_1\mathbf{i} + c_2\mathbf{j} + c_3\mathbf{k}$, $\mathbf{d} = d_1\mathbf{i} + d_2\mathbf{j} + d_3\mathbf{k}$

will be coplanar, iff
$$\begin{vmatrix} a_1 & a_2 & a_3 & 1 \\ b_1 & b_2 & b_3 & 1 \\ c_1 & c_2 & c_3 & 1 \\ d_1 & d_2 & d_3 & 1 \end{vmatrix} = 0$$

6.8 Linear Independence and Dependence of Vectors

(1) Linearly independent vectors : A set of non-zero vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ is said to be linearly independent, if $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{0} \Rightarrow x_1 = x_2 = \dots = x_n = 0$.

.....(iv)

(2) Linearly dependent vectors : A set of vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ is said to be linearly dependent if there exist scalars x_1, x_2, \dots, x_n not all zero such that $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{0}$

Three vectors $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$, $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ and $\mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k}$ will be linearly dependent vectors iff $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$.

Properties of linearly independent and dependent vectors

(i) Two non-zero, non-collinear vectors are linearly independent.

(ii) Any two collinear vectors are linearly dependent.

(iii) Any three non-coplanar vectors are linearly independent.

(iv) Any three coplanar vectors are linearly dependent.

Also, $\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} = \mathbf{a} + 2(\mathbf{b} + 3\mathbf{c}) = \mathbf{a} + 2\mu\mathbf{a} = (2\mu + 1)\mathbf{a}$

(v) Any four vectors in 3-dimensional space are linearly dependent.

Example: 14 The points with position vectors $60\mathbf{i} + 3\mathbf{j}$, $40\mathbf{i} - 8\mathbf{j}$, $a\mathbf{i} - 52\mathbf{j}$ are collinear, if a =

			[Rajasthan PI	ET 1991; IIT 1983; MP PET 2002]
	(a) - 40	(b) 40	(c) 20	(d) None of these
Solution: (a)	As the three points are co	ollinear, $x(60i + 3j) + y(40)$	$(\mathbf{i} - 8\mathbf{j}) + z(a\mathbf{i} - 52\mathbf{j}) = 0$	
	such that x, y, z are not	all zero and $x + y + z = 0$		
	$\Rightarrow (60x + 40y + az)\mathbf{i} + (3x - az)\mathbf{i} + (3x$	-8y-52z) j = 0 and $x + y$	+ z = 0	
	$\Rightarrow 60x + 40y + az = 0$, $3x$	-8y - 52z = 0 and x + y - 52z = 0	+z = 0	
	For non-trivial solution,	$\begin{vmatrix} 60 & 40 & a \\ 3 & -8 & -52 \\ 1 & 1 & 1 \end{vmatrix} = 0 \implies a =$	= -40	
	Trick : If <i>A</i> , <i>B</i> , <i>C</i> are give	en points, then $\overrightarrow{AB} = k(\overrightarrow{B})$	\vec{BC} $\Rightarrow -20\mathbf{i} - 11\mathbf{j} = k[(a - 40)]$	[i - 44j]
	On comparing, $-11 = -44k$	$k \Rightarrow k = \frac{1}{4}$ and $-20 = \frac{1}{4}$	$(a-40) \Rightarrow a = -40$.	
Example: 15 will be	If the position vectors of	<i>A, B, C, D</i> are 2 i + j , i –	$3\mathbf{j}, 3\mathbf{i} + 2\mathbf{j}$ and $\mathbf{i} + \lambda \mathbf{j}$ resp	ectively and $\overrightarrow{AB} \parallel \overrightarrow{CD}$, then λ
				[Rajasthan PET 1988]
	(a) - 8	(b) – 6	(c) 8	(d) 6
Solution: (b)	$\overrightarrow{AB} = (\mathbf{i} - 3\mathbf{j}) - (2\mathbf{i} + \mathbf{j}) = -\mathbf{i} - 4$	4j; $\overrightarrow{CD} = (\mathbf{i} + \lambda \mathbf{j}) - (3\mathbf{i} + 2)$	$2\mathbf{j}$) = $-2\mathbf{i} + (\lambda - 2)\mathbf{j}; \overrightarrow{AB} \parallel \overrightarrow{CA}$	$\overrightarrow{D} \Rightarrow \overrightarrow{AB} = x \overrightarrow{CD}$
	$-i - 4j = x \{-2i + (\lambda - 2)j\} =$	$\Rightarrow -1 = -2x, -4 = (\lambda - 2)x$	$\Rightarrow x = \frac{1}{2}, \lambda = -6.$	
Example: 16	Let a , b and c be three	non-zero vectors such	that no two of these are	collinear. If the vector $\mathbf{a} + 2\mathbf{b}$
	is collinear with c and equals	b +3 c is collinear wit	The a (λ being some nor [AIEEE 2004]	a-zero scalar) then $\mathbf{a} + 2\mathbf{b} + 6\mathbf{c}$
	(a) o	(b) λ b	(c) λc	(d) $\lambda \mathbf{a}$
Solution: (a)	As $\mathbf{a} + 2\mathbf{b}$ and \mathbf{c} are coll	inear $\mathbf{a} + 2\mathbf{b} = \lambda \mathbf{c}$	(i)	
	Again $\mathbf{b} + 3\mathbf{c}$ is collinear	with a		
	$\therefore \mathbf{b} + 3\mathbf{c} = \mu \mathbf{a}$		(ii)	
	Now, $a + 2b + 6c = (a + 2b)$.	$+6\mathbf{c} = \lambda \mathbf{c} + 6\mathbf{c} = (\lambda + 6)\mathbf{c}$	e(iii)	

From (iii) and (iv), $(\lambda + 6)\mathbf{c} = (2\mu + 1)\mathbf{a}$ But a and c are non-zero, non-collinear vectors, $\therefore \lambda + 6 = 0 = 2\mu + 1$. Hence, $\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} = \mathbf{0}$. Example: 17 If the vectors $4\mathbf{i}+11\mathbf{j}+m\mathbf{k}$, $7\mathbf{i}+2\mathbf{j}+6\mathbf{k}$ and $\mathbf{i}+5\mathbf{j}+4\mathbf{k}$ are coplanar, then *m* is [Karnataka CET 2003] (b) o(c) 10 (d) - 10(a) 38 **Solution:** (c) As the three vectors are coplanar, one will be a linear combination of the other two. $\therefore \quad 4\mathbf{i} + 11\mathbf{j} + m\mathbf{k} = x(7\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}) + y(\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}) \implies 4 = 7x + y \quad \dots (\mathbf{i})$(ii) 11 = 2x + 5ym = 6x + 4y.....(iii) From (i) and (ii), $x = \frac{3}{11}, y = \frac{23}{11}$; From (iii), $m = 6 \times \frac{3}{11} + 4 \times \frac{23}{11} = 10$. **Trick :** \therefore Vectors $4\mathbf{i}+11\mathbf{j}+m\mathbf{k}$, $7\mathbf{i}+2\mathbf{j}+6\mathbf{k}$ and $\mathbf{i}+5\mathbf{j}+4\mathbf{k}$ are coplanar. $\therefore \begin{vmatrix} 7 & 2 & 6 \\ 1 & 5 & 4 \end{vmatrix} = 0$ $\Rightarrow 4(8-30)-11(28-6)+m(35-2)=0 \Rightarrow -88-11\times 22+33m=0 \Rightarrow -8-22+3m=0 \Rightarrow 3m=30 \Rightarrow m=10.$ Example: 18 The value of λ for which the four points $2\mathbf{i}+3\mathbf{j}-\mathbf{k},\mathbf{i}+2\mathbf{j}+3\mathbf{k},3\mathbf{i}+4\mathbf{j}-2\mathbf{k},\mathbf{i}-\lambda\mathbf{j}+6\mathbf{k}$ are coplanar[MP PET 2004] (a) 8 (b) 0 (c) - 2(d) 6 **Solution:** (c) The given four points are coplanar $\therefore \ x(2i+3j-k)+y(i+2j+3k)+z(3i+4j-2k)+w(i-\lambda j+6k)=0 \text{ and } x+y+z+w=0,$ where x, y, z, w are not all zero. \Rightarrow $(2x+y+3z+w)\mathbf{i}+(3x+2y+4z-\lambda w)\mathbf{j}+(-x+3y-2z+6w)\mathbf{k}=0$ and x+y+z+w=02x + y + 3z + w = 0, $3x + 2y + 4z - \lambda w = 0$, -x + 3y - 2z + 6w = 0 and x + y + z + w = 0For non-trivial solution, $\begin{vmatrix} 2 & 1 & 3 & 1 \\ 3 & 2 & 4 & -\lambda \\ -1 & 3 & -2 & 6 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0 \implies \begin{vmatrix} 2 & 1 & 3 & 1 \\ 0 & 0 & 0 & -(\lambda+2) \\ -1 & 3 & -2 & 6 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0$, Operating $[R_2 \rightarrow R_2 - R_1 - R_4]$ $\Rightarrow -(\lambda+2) \begin{vmatrix} 2 & 1 & 3 \\ -1 & 3 & -2 \\ 1 & 1 & 1 \end{vmatrix} = 0 \Rightarrow \lambda = -2.$ If $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = 4\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ and $\mathbf{c} = \mathbf{i} + \alpha \mathbf{j} + \beta \mathbf{k}$ are linearly dependent vectors and $|\mathbf{c}| = \sqrt{3}$, then [IIT 1998] Example: 19 (b) $\alpha = 1, \beta = \pm 1$ (c) $\alpha = -1, \beta = \pm 1$ (a) $\alpha = 1, \beta = -1$ (d) $\alpha = \pm 1, \beta = 1$ The given vectors are linearly dependent hence, there exist scalars x, y, z not all zero, such that Solution: (d) $x\mathbf{a} + y\mathbf{b} + z\mathbf{c} = \mathbf{0}$ *i.e.*, $x(\mathbf{i} + \mathbf{j} + \mathbf{k}) + y(4\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + z(\mathbf{i} + \alpha\mathbf{j} + \beta\mathbf{k}) = \mathbf{0}$, *i.e.*, $(x + 4y + z)\mathbf{i} + (x + 3y + \alpha z)\mathbf{j} + (x + 4y + \beta z)\mathbf{k} = \mathbf{0}$ \Rightarrow x + 4y + z = 0, $x + 3y + \alpha z = 0$, $x + 4y + \beta z = 0$ For non-trivial solution, $\begin{vmatrix} 1 & 4 & 1 \\ 1 & 3 & \alpha \\ 1 & 4 & \beta \end{vmatrix} = 0 \implies \beta = 1$ $|c|^2 = 3 \Rightarrow 1 + \alpha^2 + \beta^2 = 3 \Rightarrow \alpha^2 = 2 - \beta^2 = 2 - 1 = 1; \therefore \alpha = \pm 1$ **Trick :** $|\mathbf{c}| = \sqrt{1 + \alpha^2 + \beta^2} = \sqrt{3} \Rightarrow \alpha^2 + \beta^2 = 2$ ∴ **a**,**b**,**c** are linearly dependent, hence $\begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & 4 \\ 1 & \alpha & \beta \end{vmatrix} = 0 \implies \beta = 1$. $\therefore \alpha^2 = 1 \Rightarrow \alpha = \pm 1$. 6.9 Product of Two Vectors

Product of two vectors is processed by two methods. When the product of two vectors results is a scalar quantity, then it is called scalar product. It is also known as dot product because we are putting a dot (.) between two vectors.

When the product of two vectors results is a vector quantity then this product is called

vector product. It is also known as cross product because we are putting a cross (×) between two vectors.

(1) Scalar or Dot product of two vectors: If a and b are two nonzero vectors and θ be the angle between them, then their scalar product (or dot product) is denoted by $\mathbf{a} \cdot \mathbf{b}$ and is defined as the scalar $|\mathbf{a}| |\mathbf{b}| \cos \theta$, where $|\mathbf{a}|$ and $|\mathbf{b}|$ are modulii of \mathbf{a} and \mathbf{b} respectively and $0 \le \theta \le \pi$.

Important Tips

 $\mathfrak{P} \mathbf{a} \cdot \mathbf{b} \in R$

☞ a.b ≤ a || b |

 \Rightarrow **a**.**b** > 0 \Rightarrow angle between **a** and **b** is acute.

 $\mathbf{a} \cdot \mathbf{b} < 0 \Rightarrow$ angle between \mathbf{a} and \mathbf{b} is obtuse.

The dot product of a zero and non-zero vector is a scalar zero.

(i) **Geometrical Interpretation of scalar product :** Let **a** and **b** be two vectors represented by \overrightarrow{OA} and \overrightarrow{OB} respectively. Let θ be the angle between \overrightarrow{OA} and \overrightarrow{OB} . Draw $BL \perp OA$ and $AM \perp OB$.

From Δs *OBL* and *OAM*, we have $OL = OB \cos \theta$ and $OM = OA \cos \theta$. Here *OL* and *OM* are known as projection of **b** on **a** and **a** on **b** respectively.

Now $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = |\mathbf{a}| (OB \cos \theta) = |\mathbf{a}| (OL)$

= (Magnitude of \mathbf{a})(Projection of \mathbf{b} on \mathbf{a})

Again, $\mathbf{a} \cdot \mathbf{b} \neq \mathbf{a} \mid \mid \mathbf{b} \mid \cos \theta \neq \mathbf{b} \mid (\mid \mathbf{a} \mid \cos \theta) = \mid \mathbf{b} \mid (OA \cos \theta) \neq \mathbf{b} \mid (OM)$

 $\mathbf{a}.\mathbf{b} = (\text{Magnitude of } \mathbf{b}) (\text{Projection of } \mathbf{a} \text{ on } \mathbf{b})$

Thus geometrically interpreted, the scalar product of two vectors is the product of modulus of either vector and the projection of the other in its direction.

.....(i)

.....(ii)

(ii) Angle between two vectors : If \mathbf{a}, \mathbf{b} be two vectors inclined at an angle θ , then, $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} || \mathbf{b} | \cos \theta$

 $\Rightarrow \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \Rightarrow \theta = \cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \right)$

If
$$\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$$
 and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$; $\theta = \cos^{-1}\left(\frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}}\right)$

(2) Properties of scalar product

(i) **Commutativity :** The scalar product of two vector is commutative *i.e.*, $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$.

(ii) **Distributivity of scalar product over vector addition:** The scalar product of vectors is distributive over vector addition *i.e.*,

(a) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ (Left distributivity) (b) $(\mathbf{b} + \mathbf{c}) \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{a} + \mathbf{c} \cdot \mathbf{a}$ (Right distributivity)

(iii) Let **a** and **b** be two non-zero vectors $\mathbf{a} \cdot \mathbf{b} = 0 \Leftrightarrow \mathbf{a} \perp \mathbf{b}$.

As i, j, k are mutually perpendicular unit vectors along the co-ordinate axes, therefore

 $i \cdot j = j \cdot i = 0$; $j \cdot k = k \cdot j = 0$; $k \cdot i = i \cdot k = 0$.

(iv) For any vector $\mathbf{a}, \mathbf{a} \cdot \mathbf{a} \neq \mathbf{a} \mid^2$.

As i, j, k are unit vectors along the co-ordinate axes, therefore $i.i \neq i|^2 = 1$, $j.j \neq j|^2 = 1$ and $k. k \neq k|^2 = 1$

(v) If *m* is a scalar and \mathbf{a}, \mathbf{b} be any two vectors, then $(m\mathbf{a}) \cdot \mathbf{b} = m(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (m\mathbf{b})$

(vi) If *m*, *n* are scalars and \mathbf{a}, \mathbf{b} be two vectors, then $m\mathbf{a} \cdot n\mathbf{b} = mn(\mathbf{a} \cdot \mathbf{b}) = (mn \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (mn \mathbf{b})$

(vii) For any vectors **a** and **b**, we have (a) $\mathbf{a} \cdot (-\mathbf{b}) = -(\mathbf{a} \cdot \mathbf{b}) = (-\mathbf{a}) \cdot \mathbf{b}$ (b) $(-\mathbf{a}) \cdot (-\mathbf{b}) = \mathbf{a} \cdot \mathbf{b}$

(viii) For any two vectors a and b, we have

- (a) $|\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a} \cdot \mathbf{b}$ (b) $|\mathbf{a} \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 2\mathbf{a} \cdot \mathbf{b}$
- (c) $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} \mathbf{b}) = |\mathbf{a}|^2 |\mathbf{b}|^2$ (d) $|\mathbf{a} + \mathbf{b}| = |\mathbf{a}| + |\mathbf{b}| \Rightarrow \mathbf{a} ||\mathbf{b}|$
- (e) $|\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 \Rightarrow \mathbf{a} \perp \mathbf{b}$ (f) $|\mathbf{a} + \mathbf{b}| = |\mathbf{a} \mathbf{b}| \Rightarrow \mathbf{a} \perp \mathbf{b}$

(3) Scalar product in terms of components : If $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$,

then, $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$. Thus, scalar product of two vectors is equal to the sum of the products of their corresponding components. In particular, $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 = a_1^2 + a_2^2 + a_3^2$.

Example: 20	(a . i)i + (a . j)j + (a . k)k =			[Karnataka CET 2004]
Solution: (a)	(a) a Let $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$	(b) 2 a	(c) 3a	(d) 0
	$\therefore \mathbf{a} \cdot \mathbf{i} = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \cdot \mathbf{i} =$	$= a_1$, a . j $= a_2$, a . k $= a_3$		
	$\therefore (a.i)i + (a.j)j + (a.k)k$	$= a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} = \mathbf{a} \ .$		
Example: 21	If $ \mathbf{a} = 3$, $ \mathbf{b} = 4$ then a value of $\mathbf{b} = 4$	lue of λ for which $\mathbf{a} + \lambda$	b is perpendicular to \mathbf{a} –	λ b is
Solution: (b)	(a) $9/16$ a + λ b is perpendicular	(b) 3/4 to a -λ b	(c) 3/2	(d) 4/3
	$\therefore (\mathbf{a} + \lambda \mathbf{b}).(\mathbf{a} - \lambda \mathbf{b}) = 0 \implies$	$ \mathbf{a} ^2 - \lambda(\mathbf{a} \cdot \mathbf{b}) + \lambda(\mathbf{b} \cdot \mathbf{a}) - \lambda^2 $	$\mathbf{b} ^2 = 0 \implies \mathbf{a} ^2 - \lambda^2 \mathbf{b} ^2 = 0$	$\Rightarrow \lambda = \pm \frac{ \mathbf{a} }{ \mathbf{b} } = \pm \frac{3}{4}$
Example: 22	A unit vector in the plan	ie of the vectors $2\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{i} - \mathbf{j} + \mathbf{k}$ and orthogonal	to $5\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}$ is
	(a) $\frac{6\mathbf{i}-5\mathbf{k}}{\sqrt{61}}$	(b) $\frac{3j-k}{\sqrt{10}}$	(c) $\frac{2i-5j}{\sqrt{29}}$	$(d) \frac{2\mathbf{i}+\mathbf{j}-2\mathbf{k}}{3}$
Solution: (b)	Let a unit vector in the	plane of $2i + j + k$ and $i - j$	$\mathbf{j} + \mathbf{k}$ be	
	$\hat{\mathbf{a}} = \alpha(2\mathbf{i} + \mathbf{j} + \mathbf{k}) + \beta(\mathbf{i} - \mathbf{j} + \mathbf{k})$	$\mathbf{x} = (2\alpha + \beta)\mathbf{i} + (\alpha - \beta)\mathbf{j} + (\alpha - \beta$	$(\beta)\mathbf{k}$	
	As \hat{a} is unit vector, we	have		
	$= (2\alpha + \beta)^2 + (\alpha - \beta)^2 + (\alpha + \beta)^2 + ($	$(\beta)^2 = 1$		
	$\Rightarrow 6\alpha^2 + 4\alpha\beta + 3\beta^2 = 1$			(i)
	As \hat{a} is orthogonal to 5i	$+2\mathbf{j}+6\mathbf{k}$, we get $5(2\alpha+)$	$(\beta) + 2(\alpha - \beta) + 6(\alpha + \beta) = 0 \implies$	$18\alpha + 9\beta = 0 \implies \beta = -2\alpha$

From (i), $\frac{dy}{dx} = 2x + 1$ Equation of tangent at A is $y - 12 = \left(\frac{dy}{dx}\right)_{(1,12)} (x-1) \Rightarrow y - 12 = (2 \times 1 + 1)(x-1) \Rightarrow y - 12 = 3x - 3$ \therefore y = 3(x+3)This tangent cuts *x*-axis (*i.e.*, y = 0) at (-3,0) $\therefore B \equiv (-3, 0)$ $\overrightarrow{OB} = -3\mathbf{i} + 0, \mathbf{j} = -3\mathbf{i}; \quad \overrightarrow{OA}, \quad \overrightarrow{AB} = \overrightarrow{OA}, \quad (\overrightarrow{OB} - \overrightarrow{OA}) = (\mathbf{i} + 12\mathbf{j}), \quad (-3\mathbf{i} - \mathbf{i} - 12\mathbf{j}) = (\mathbf{i} + 12\mathbf{j}), \quad (-4\mathbf{i} - 12\mathbf{j}) = -4 - 144 = -148$. If three non-zero vectors are $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$, $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$ and $\mathbf{c} = c_1\mathbf{i} + c_2\mathbf{j} + c_3\mathbf{k}$. If **c** is the unit Example: 27 vector perpendicular to the vectors **a** and **b** and the angle between **a** and **b** is $\frac{\pi}{6}$, then $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$ is equal to [IIT 1986] (b) $\frac{3(\Sigma a_1^2)(\Sigma b_1^2)(\Sigma c_1^2)}{4}$ (c) 1 (d) $\frac{(\Sigma a_1^2)(\Sigma b_1^2)}{4}$ (a) o As c is the unit vector perpendicular to a and b, we have |c|=1, a.c = 0 = b.cSolution: (d) Now, $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2 = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 & a_1c_1 + a_2c_2 + a_3c_3 \\ a_1b_1 + a_2b_2 + a_3b_3 & b_1^2 + b_2^2 + b_3^2 & b_1c_1 + b_2c_2 + b_3c_3 \\ a_1c_1 + a_2c_2 + a_3c_3 & b_1c_1 + b_2c_2 + b_3c_3 & c_1^2 + c_2^2 + c_3^2 \end{vmatrix}$ $= \begin{vmatrix} |\mathbf{a}|^{2} & \mathbf{a}.\mathbf{b} & \mathbf{a}.\mathbf{c} \\ |\mathbf{a}.\mathbf{b}| & |\mathbf{b}|^{2} & \mathbf{b}.\mathbf{c} \\ |\mathbf{a}.\mathbf{c} & |\mathbf{b}.\mathbf{c}| & |\mathbf{c}|^{2} \end{vmatrix} = \begin{vmatrix} |\mathbf{a}|^{2} & \mathbf{a}.\mathbf{b} & 0 \\ |\mathbf{a}.\mathbf{b}| & |\mathbf{b}|^{2} & 0 \\ 0 & 0 & 1 \end{vmatrix} \neq |\mathbf{a}|^{2} |\mathbf{b}|^{2} - (\mathbf{a}.\mathbf{b})^{2}$ $= |\mathbf{a}|^{2} |\mathbf{b}|^{2} - \left(|\mathbf{a}||\mathbf{b}|\cos\frac{\pi}{6}\right)^{2} = |\mathbf{a}|^{2} |\mathbf{b}|^{2} \left(1 - \frac{3}{4}\right) = \frac{1}{4} |\mathbf{a}|^{2} |\mathbf{b}|^{2} = \frac{1}{4} (\Sigma a_{1}^{2})(\Sigma b_{1}^{2})$

(4) **Components of a vector along and perpendicular to another vector :** If **a** and **b** be two vectors represented by \overrightarrow{OA} and \overrightarrow{OB} . Let θ be the angle between **a** and **b**. Draw $BM \perp OA$. In $\triangle OBM$, we have $\overrightarrow{OB} = \overrightarrow{OM} + \overrightarrow{MB} \Rightarrow \mathbf{b} = \overrightarrow{OM} + \overrightarrow{MB}$

Thus, \overline{OM} and \overline{MB} are components of **b** along **a** and perpendicular to **a** respectively.

Now,
$$\overrightarrow{OM} = (OM) \hat{\mathbf{a}} = (OB \cos \theta) \hat{\mathbf{a}} = (|\mathbf{b}| \cos \theta) \hat{\mathbf{a}} = \left(|\mathbf{b}| \frac{(\mathbf{a} \cdot \mathbf{b})}{|\mathbf{a}|| |\mathbf{b}|}\right) \hat{\mathbf{a}} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \hat{\mathbf{a}$$

Thus, the components of **b** along and perpendicular to **a** are $\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)\mathbf{a}$ and $\mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)\mathbf{a}$ respectively.

Example: 28 The projection of $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$ on $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ is

(a)
$$\frac{1}{\sqrt{14}}$$
 (b) $\frac{2}{\sqrt{14}}$ (c) $\sqrt{14}$ (d) $\frac{-2}{\sqrt{14}}$

Solution: (b) Projection of **a** on **b** = a,
$$\tilde{b} = a, \frac{|b|}{|b|} = \frac{(2+3)-2k_1(4+2)+3k_1}{|1+2|+3k|} = \frac{2+6-6}{\sqrt{14}} = \frac{2}{\sqrt{14}}$$

Example: 29 Let u,v,w be such that | u| = 1, v| = 2, w| = 3. If the projection v along u is equal to that of w along u and v, w are perpendicular to each other then | u - v + w| equals
(a) 14 (b) $\sqrt{7}$ (c) $\sqrt{14}$ (d) 2
Solution: (c) Without loss of generality, we can assume v=21 and w=3j. Let $u = xi + yj + zk$, $|u| = 1 \Rightarrow x^2 + y^2 + z^2 = 1$ (i)
Projection of v along u = Projection of w along u
 $\Rightarrow v.u = w.u = 2(1/(1+y)1+2k)=3j.(41+yj+3k) = 2x-3y \Rightarrow 3y-2x=0$
Now, $|u - v - w| = |xi + yj + zk - 21 + 3j| = |(x - 2)i + (v + 3)j + zk| = \sqrt{(x - 2)^2 + (v - 3)^2 + z^2}$
 $= \sqrt{(x^2 + y^2 + z^2) + 2(3y - 2x) + 13} = \sqrt{1 + 2x + 13} = \sqrt{44}$.
Example: 30 Let b = 3j + 4k, a = 1 j and let b, and b, be component vectors of b parallel and perpendicular to a.
If $b_1 = \frac{3}{2}i + \frac{3}{2}j + 4k$ (b) $-\frac{3}{2}i + \frac{3}{2}j + 4k$ (c) $-\frac{3}{2}i + \frac{3}{2}j$ (d) None of these
Solution: (b) b = b_1 + b_2
 \therefore $b_2 = b - b_1 = (3j + 4k) - (\frac{3}{2}i + \frac{3}{2}j) = -\frac{3}{2}i + \frac{3}{2}i + 4k$
Clearly, $b_1 = \frac{3}{2}(6+j) = \frac{3}{2}a$ i.e., b_1 is parallel to a
 $b_1, a = (-\frac{3}{2}i + \frac{3}{2}i + 4k) (d+j) = 0; \therefore b_2$ is $\bot r$ to a.
Example: 31 A vector a has components $2p$ and 1 with respect to a rectangular cartesian system. The system is rotated through a certain angle about the origin in the anti-clockwise sense. If a has components $p + 1$ and 1 with respect to the new system, then
(a) $p = 0$ (b) $p = 1$ or $-\frac{1}{3}$ (c) $p = -1$ or $\frac{1}{3}$ (d) $p = 1$ or -1
Solution: (b) Without loss of generality, we can write $a = 2pi + j = (p+1)\hat{1} + \hat{j}$ (i)
Now, $\hat{1} = \cos \theta i + \sin \theta j$
 $\hat{2} = -\sin \theta i + \cos \theta j$
 \therefore From ((i), $2pi + j = (p+1)(\cos \theta i + \sin \theta j) + (-\sin \theta i + \cos \theta j)$
 $\Rightarrow 2p = (p+1)\cos \theta - \sin \theta$ (ii) and $1 = (p+1)\sin \theta + \cos \theta$ (iii)
Squaring and adding, $4p^2 + 1 = (p+1)^2 + 1$
 $\Rightarrow (p+1)^2 = 4p^2 \Rightarrow p + 1 = 2p \Rightarrow p = 1, -\frac{1}{3}$.

(5) **Work done by a force :** A force acting on a particle is said to do work if the particle is displaced in a direction which is not perpendicular to the force.

The work done by a force is a scalar quantity and its measure is equal to the product of the magnitude of the force and the resolved part of the displacement in the direction of the force.

If a particle be placed at O and a force \vec{F} represented by \overrightarrow{OB} be acting on the particle at O. Due to the application of force \vec{F} the particle is displaced in the direction of \overrightarrow{OA} . Let \overrightarrow{OA} be the displacement. Then the component of \overrightarrow{OA} in the direction of the force \vec{F} is $|\overrightarrow{OA}| \cos \theta$.

... Work done = $|\vec{F}||\vec{OA}|\cos\theta = \vec{F}.\vec{OA} = \vec{F}.\mathbf{d}$, where $\mathbf{d} = \vec{OA}$ Or Work done = (Force). (Displacement)

If a number of forces are acting on a particle, then the sum of the works done by the separate forces is equal to the work done by the resultant force.

Example: 32 A particle is acted upon by constant forces $4\mathbf{i} + \mathbf{j} - 3\mathbf{k}$ and $3\mathbf{i} + \mathbf{j} - \mathbf{k}$ which displace it from a point $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ to the point $5\mathbf{i} + 4\mathbf{j} + \mathbf{k}$. The work done in standard units by the force is given by (a) 15 (b) 30 (c) 25 (d) 40

Solution: (d) Total force $\vec{F} = (4\mathbf{i} + \mathbf{j} - 3\mathbf{k}) + (3\mathbf{i} + \mathbf{j} - \mathbf{k}) = 7\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$ Displacement $\mathbf{d} = (5\mathbf{i} + 4\mathbf{j} + \mathbf{k}) - (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = 4\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ Work done = $\vec{F} \cdot \mathbf{d} = (7\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}) \cdot (4\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) = 28 + 4 + 8 = 40$.

Example: 33 A groove is in the form of a broken line *ABC* and the position vectors of the three points are respectively $2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$, $3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{i} + \mathbf{j} + \mathbf{k}$. A force of magnitude $24\sqrt{3}$ acts on a particle of unit mass kept at the point *A* and moves it along the groove to the point *C*. If the line of action of the force is parallel to the vector $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ all along, the number of units of work done by the force is

(a)
$$144\sqrt{2}$$
 (b) $144\sqrt{3}$ (c) $72\sqrt{2}$ (d) $72\sqrt{3}$

Solution: (c) $\vec{F} = (24\sqrt{3}) \frac{\mathbf{i} + 2\mathbf{j} + \mathbf{k}}{|\mathbf{i} + 2\mathbf{j} + \mathbf{k}|} = \frac{24\sqrt{3}}{\sqrt{6}} (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = 12\sqrt{2}(\mathbf{i} + 2\mathbf{j} + \mathbf{k})$

Displacement \mathbf{r} = position vector of C - Position vector of $A = (\mathbf{i} + \mathbf{j} + \mathbf{k}) - (2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) = (-\mathbf{i} + 4\mathbf{j} - \mathbf{k})$ Work done by the force $W = \mathbf{r} \cdot \vec{F} = (-\mathbf{i} + 4\mathbf{j} - \mathbf{k}) \cdot 12\sqrt{2} (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = 12\sqrt{2}(-1 + 8 - 1) = 72\sqrt{2}$.

6.10 Vector or Cross product of Two Vectors

Let \mathbf{a}, \mathbf{b} be two non-zero, non-parallel vectors. Then the vector product $\mathbf{a} \times \mathbf{b}$, in that order,

is defined as a vector whose magnitude is $|\mathbf{a}||\mathbf{b}| \sin \theta$ where θ is the angle between \mathbf{a} and \mathbf{b} whose direction is perpendicular to the plane of \mathbf{a} and \mathbf{b} in such a way that \mathbf{a},\mathbf{b} and this direction constitute a right handed system.

In other words, $\mathbf{a} \times \mathbf{b} \neq \mathbf{a} || \mathbf{b} | \sin \theta \hat{\mathbf{\eta}}$ where θ is the angle $\overset{O}{\mathbf{a}}$ **a** between \mathbf{a} and \mathbf{b} , $\hat{\mathbf{\eta}}$ is a unit vector perpendicular to the plane of \mathbf{a} and \mathbf{b} such that $\mathbf{a}, \mathbf{b}, \hat{\mathbf{\eta}}$ form a right handed system.

(1) **Geometrical interpretation of vector product :** If \mathbf{a}, \mathbf{b} be two non-zero, non-parallel vectors represented by \overrightarrow{OA} and \overrightarrow{OB} respectively and let θ be the angle between them. Complete the parallelogram *OACB*. Draw *BL* \perp *OA*.

In $\triangle OBL$, $\sin \theta = \frac{BL}{OB} \implies BL = OB \sin \theta = |\mathbf{b}| \sin \theta$ (i) Now, $\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \hat{\mathbf{\eta}} = (OA)(BL) \hat{\mathbf{\eta}}$ = (Base × Height) $\hat{\mathbf{\eta}}$ = (area of paralle logram *OACB*) $\hat{\mathbf{\eta}}$ = Vector area of the parallelogram *OACB*

Thus, $\mathbf{a} \times \mathbf{b}$ is a vector whose magnitude is equal to the area of the parallelogram having \mathbf{a} and \mathbf{b} as its adjacent sides and whose direction $\hat{\mathbf{\eta}}$ is perpendicular to the plane of \mathbf{a} and \mathbf{b} such that $\mathbf{a}, \mathbf{b}, \hat{\mathbf{\eta}}$ form a right handed system. Hence $\mathbf{a} \times \mathbf{b}$ represents the vector area of the parallelogram having adjacent sides along \mathbf{a} and \mathbf{b} .

Thus, area of parallelogram $OACB = |\mathbf{a} \times \mathbf{b}|$.

Also, area of
$$\triangle OAB = \frac{1}{2}$$
 area of parallelogram $OACB = \frac{1}{2} |\mathbf{a} \times \mathbf{b}| = \frac{1}{2} |\overrightarrow{OA} \times \overrightarrow{OB}|$

(2) Properties of vector product

(i) Vector product is not commutative *i.e.*, if a and b are any two vectors, then $a \times b \neq b \times a$, however, $a \times b = -(b \times a)$

(ii) If **a**,**b** are two vectors and *m* is a scalar, then $m\mathbf{a} \times \mathbf{b} = m(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times m\mathbf{b}$

(iii) If \mathbf{a}, \mathbf{b} are two vectors and m, n are scalars, then $m\mathbf{a} \times n\mathbf{b} = mn(\mathbf{a} \times \mathbf{b}) = m(\mathbf{a} \times n\mathbf{b}) = n(m\mathbf{a} \times \mathbf{b})$ (iv) Distributivity of vector product over vector addition.

Let **a**,**b**,**c** be any three vectors. Then

(a) $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$ (Left distributivity)

(b) $(\mathbf{b} + \mathbf{c}) \times \mathbf{a} = \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a}$ (Right distributivity)

(v) For any three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ we have $\mathbf{a} \times (\mathbf{b} - \mathbf{c}) = \mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}$

(vi) The vector product of two non-zero vectors is zero vector *iff* they are parallel (Collinear) *i.e.*, $\mathbf{a} \times \mathbf{b} = \mathbf{0} \Leftrightarrow \mathbf{a} \parallel \mathbf{b}, \mathbf{a}, \mathbf{b}$ are non-zero vectors.

It follows from the above property that $a\times a=0\,$ for every non-zero vector a , which in turn implies that $i\times i=j\times j=k\times k=0\,$

(vii) Vector product of orthonormal triad of unit vectors **i**, **j**, **k** using the definition of the vector product, we obtain $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$, $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$, $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$, $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$

(viii) Lagrange's identity: If **a**, **b** are any two vector then $|\mathbf{a} \times \mathbf{b}|^2 \neq |\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2$ or $|\mathbf{a} \times \mathbf{b}|^2 + (\mathbf{a} \cdot \mathbf{b})^2 \neq |\mathbf{a}|^2 |\mathbf{b}|^2$

(3) Vector product in terms of components : If $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$.

Then,
$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
.

(4) Angle between two vectors : If θ is the angle between **a** and **b**, then $\sin \theta = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}||\mathbf{b}|}$

Expression for $\sin \theta$: If $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$, $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ and θ be angle between \mathbf{a} and \mathbf{b} , then

$$\sin^2 \theta = \frac{(a_2b_3 - a_3b_2)^2 + (a_1b_3 - a_3b_1)^2 + (a_1b_2 - a_2b_1)^2}{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)}$$

(5) (i) **Right handed system of vectors :** Three mutually perpendicular vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ form a right handed system of vector *iff* $\mathbf{a} \times \mathbf{b} = \mathbf{c}, \mathbf{b} \times \mathbf{c} = \mathbf{a}, \mathbf{c} \times \mathbf{a} = \mathbf{b}$

Example: The unit vectors **i**,**j**, **k** form a right-handed system,

 $i\times j=k, j\times k=i, k\times i=j$

(ii) Left handed system of vectors : The vectors a,b,c, mutually perpendicular to one another form a left handed system of vector *iff*

$$\mathbf{c} \times \mathbf{b} = \mathbf{a}, \mathbf{a} \times \mathbf{c} = \mathbf{b}, \mathbf{b} \times \mathbf{a} = \mathbf{c}$$

(6) Vector normal to the plane of two given vectors : If \mathbf{a}, \mathbf{b} be two non-zero, nonparallel vectors and let θ be the angle between them. $\mathbf{a} \times \mathbf{b} \neq \mathbf{a} || \mathbf{b} | \sin \theta \hat{\eta}$ where $\hat{\eta}$ is a unit vector \bot to the plane of \mathbf{a} and \mathbf{b} such that $\mathbf{a}, \mathbf{b}, \eta$ from a right-handed system.

$$\Rightarrow (\mathbf{a} \times \mathbf{b}) \stackrel{1}{\Rightarrow} \mathbf{a} \times \mathbf{b} | \hat{\mathbf{\eta}} \Rightarrow \hat{\mathbf{\eta}} = \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}$$

Thus, $\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}$ is a unit vector \perp to the plane of \mathbf{a} and \mathbf{b} . Note that $-\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}$ is also a unit vector \perp to the plane of \mathbf{a} and \mathbf{b} . Vectors of magnitude ' λ ' normal to the plane of \mathbf{a} and \mathbf{b} are given by $\pm \frac{\lambda(\mathbf{a} \times \mathbf{b})}{|\mathbf{a} \times \mathbf{b}|}$.

Example: 34 If a is any vector, then $(\mathbf{a} \times \mathbf{i})^2 + (\mathbf{a} \times \mathbf{k})^2$ is equal to [EAMCET 1988; Rajasthan PET 2000; Orissa JEE 2003; MP PET 1984, 2004] (a) $|\mathbf{a}|^2$ (b) 0 (c) $3|\mathbf{a}|^2$ (d) $2|\mathbf{a}|^2$ Solution: (d) Let $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ $\therefore \mathbf{a} \times \mathbf{i} = (a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}) \times \mathbf{i} = -a_2\mathbf{k} + a_3\mathbf{j}$ $(\mathbf{a} \times \mathbf{i})^2 = (\mathbf{a} \times \mathbf{i}).(\mathbf{a} \times \mathbf{i}) = (-a_2\mathbf{k} + a_3\mathbf{j}).(-a_2\mathbf{k} + a_3\mathbf{j}) = a_2^2 + a_3^2$ Similarly $(\mathbf{a} \times \mathbf{j})^2 = a_3^2 + a_1^2$ and $(\mathbf{a} \times \mathbf{k})^2 = a_1^2 + a_2^2$ $\therefore (\mathbf{a} \times \mathbf{i})^2 + (\mathbf{a} \times \mathbf{j})^2 + (\mathbf{a} \times \mathbf{k})^2 = 2(a_1^2 + a_2^2 + a_3^2) = 2|\mathbf{a}|^2$.

Example: 35 $(\mathbf{a} \times \mathbf{b})^2 + (\mathbf{a} \cdot \mathbf{b})^2$ is equal to

(a)
$$a^2 + b^2$$
 (b) $a^3 b^2$ (c) $2a \cdot b$ (d) 1
Solution: (b) $(a \times b)^3 + (a, b)^2 = (|a|| b| \sin^2 \eta^2 \le (|a|| b| \cos^2 \theta) = a^2 b^2 \cdot 1 = a^$

 \checkmark *Note* : \Box Three points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are collinear if $(\mathbf{a} \times \mathbf{b}) + (\mathbf{b} \times \mathbf{c}) + (\mathbf{c} \times \mathbf{a}) = \mathbf{0}$

The area of a triangle whose vertices are A(1,-1,2), B(2,1,-1) and C(3,-1,2) is Example: 39 (b) $\sqrt{13}$ (d) $\sqrt{6}$ (c) 6 (a) 13 $\overrightarrow{AB} = (2\mathbf{i} + \mathbf{j} - \mathbf{k}) - (\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}, \quad \overrightarrow{AC} = (3\mathbf{i} - \mathbf{j} + 2\mathbf{k}) - (\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = 2\mathbf{i}$ Solution: (b) Area of triangle $ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} |(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \times 2\mathbf{i}| = \frac{1}{2} |-4\mathbf{k} - 6\mathbf{j}| = |-3\mathbf{j} - 2\mathbf{k}| = \sqrt{13}$ If $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and $\mathbf{c} = 7\mathbf{i} + 9\mathbf{j} + 11\mathbf{k}$, then the area of the parallelogram having diagonals Example: 40 $\mathbf{a} + \mathbf{b}$ and $\mathbf{b} + \mathbf{c}$ is [Haryana CET 2002] (c) $\frac{\sqrt{6}}{2}$ (b) $\frac{1}{2}\sqrt{21}$ (a) $4\sqrt{6}$ (d) $\sqrt{6}$ **Solution:** (a) Area of the parallelogram with diagonals $\mathbf{a} + \mathbf{b}$ and $\mathbf{b} + \mathbf{c} = \frac{1}{2} |(\mathbf{a} + \mathbf{b}) \times (\mathbf{b} + \mathbf{c})|$ $= \frac{1}{2} | \{ (\mathbf{i} + \mathbf{j} + \mathbf{k}) + (\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}) \} \times \{ (\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}) + (7\mathbf{i} + 9\mathbf{j} + 11\mathbf{k}) \} | = \frac{1}{2} | \{ (2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 16\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 16\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k}) \} | = \frac{1}{2} | \{ (1 + 3\mathbf{j} + 16\mathbf{k} + 16\mathbf{k} + 16\mathbf{k}) + 16\mathbf{k} + 16\mathbf$ = 4 | (**i** + 2**j** + 3**k**)×(2**i** + 3**j** + 4**k**)| = 4 | $\begin{vmatrix}$ **i**&**j**&**k** $\\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{vmatrix}$ | = 4 | -**i** + 2**j** - **k**| = 4 $\sqrt{6}$ Example: 41 The position vectors of the vertices of a quadrilateral ABCD are **a**, **b**, **c** and **d** respectively. Area of the quadrilateral formed by joining the middle points of its sides is (a) $\frac{1}{4} |\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{d} + \mathbf{d} \times \mathbf{a}|$ (b) $\frac{1}{4}$ | $\mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{a}$ | (c) $\frac{1}{4} | \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{d} \times \mathbf{a} |$ (d) $\frac{1}{4}$ | **b**×**c**+**c**×**d**+**d**×**b**| **Solution:** (c) Let P, Q, R, S be the middle points of the sides of the quadrilateral ABCD. Position vector of $P = \frac{\mathbf{a} + \mathbf{b}}{2}$, that of $Q = \frac{\mathbf{b} + \mathbf{c}}{2}$, that of $R = \frac{\mathbf{c} + \mathbf{d}}{2}$ and that of $S = \frac{\mathbf{d} + \mathbf{a}}{2}$ Mid point of diagonal $SQ = \left(\frac{\mathbf{d} + \mathbf{a}}{2} + \frac{\mathbf{b} + \mathbf{c}}{2}\right) \frac{1}{2} = \frac{1}{4}(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d})$ Similarly mid point of $PR = \frac{1}{4}(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d})$ $\left(\frac{\mathbf{d}+\mathbf{a}}{2}\right)$ As the diagonals bisect each other, PQRS is a parallelogram. $\overrightarrow{SP} = \frac{\mathbf{a} + \mathbf{b}}{2} - \frac{\mathbf{d} + \mathbf{a}}{2} = \frac{\mathbf{b} - \mathbf{d}}{2}$; $\overrightarrow{SR} = \frac{\mathbf{c} + \mathbf{d}}{2} - \frac{\mathbf{d} + \mathbf{a}}{2} = \frac{\mathbf{c} - \mathbf{a}}{2}$ (a (b $\mathbf{a} + \mathbf{b}$ Area of parallelogram $PQRS = |\overrightarrow{SP} \times \overrightarrow{SR}| = \left| \left(\frac{\mathbf{b} - \mathbf{d}}{2} \right) \times \left(\frac{\mathbf{c} - \mathbf{a}}{2} \right) \right|$ $= \frac{1}{4} | \mathbf{b} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} - \mathbf{d} \times \mathbf{c} + \mathbf{d} \times \mathbf{a} | = \frac{1}{4} | \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{d} \times \mathbf{a} |.$ 6.11 Moment of a Force and Couple

(1) Moment of a force

(i) **About a point :** Let a force \vec{F} be applied at a point *P* of a rigid body. Then the moment

of \vec{F} about a point *O* measures the tendency of \vec{F} to turn the body about point *O*. If this tendency of rotation about *O* is in anticlockwise direction, the moment is positive, otherwise it is negative.

Let **r** be the position vector of *P* relative to *O*. Then the moment or torque of \vec{F} about the point *O* is defined as the vector $\vec{M} = \mathbf{r} \times \vec{F}$.

If several forces are acting through the same point *P*, then the vector sum of the moment of the separate forces about *O* is equal to the moment of their resultant force about *O*.

(ii) **About a line:** The moment of a force \vec{F} acting at a point *P* about a line *L* is a scalar given by $(\mathbf{r} \times \vec{F}) \cdot \hat{\mathbf{a}}$ where $\hat{\mathbf{a}}$ is a unit vector in the direction of the line, and $\overrightarrow{OP} = \mathbf{r}$, where *O* is any point on the line.

Thus, the moment of a force \vec{F} about a line is the resolved part (component) along this line, of the moment of \vec{F} about any point on the line.

Note : □ The moment of a force about a point is a vector while the moment about a straight line is a scalar quantity.

(2) **Moment of a couple :** A system consisting of a pair of equal unlike parallel forces is called a couple. The vector sum of two forces of a couple is always zero $\frac{\vec{F}}{\vec{F}} \frac{\partial}{\partial A} A N}{\sqrt{\theta}}$

The moment of a couple is a vector perpendicular to the plane of couple and its magnitude is the product of the magnitude of either force with the perpendicular distance between the lines of the forces.

 $\vec{M} = \mathbf{r} \times \vec{F}$, where $\mathbf{r} = \vec{BA}$ $|\vec{M}| = |\vec{BA} \times \vec{F}| = |\vec{F}||\vec{BA}|\sin\theta$, where θ is the angle between \vec{BA} and \vec{F} $= |\vec{F}|(BN) = |\vec{F}|a$

where a = BN is the arm of the couple and +ve or -ve sign is to be taken according as the forces indicate a counter-clockwise rotation or clockwise rotation.

(3) Rotation about an axis: When a rigid body rotates about a fixed axis *ON* with an angular velocity ω , then the velocity **v** of a particle *P* is given by $\mathbf{v} = \omega \times \mathbf{r}$, where $\mathbf{r} = \overrightarrow{OP}$ and $\omega = |\omega|$ (unit vector along *ON*)

Example: 42 Three forces $\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$, $2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ and $\mathbf{i} - \mathbf{j} + \mathbf{k}$ are acting on a particle at the point (0, 1, 2). The magnitude of the moment of the forces about the point (1, -2, 0) is [MNR 1983] (a) $2\sqrt{35}$ (b) $6\sqrt{10}$ (c) $4\sqrt{17}$ (d) None of these

Solution: (b) Total force $\vec{F} = (\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) + (2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + (\mathbf{i} - \mathbf{j} + \mathbf{k}) = 4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ Moment of the forces about $P = \mathbf{r} \times \vec{F} = \overrightarrow{PA} \times \vec{F}$

$$\overrightarrow{PA} = (0-1)\mathbf{i} + (1+2)\mathbf{j} + (2-0)\mathbf{k} = -\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$$

 $\therefore \text{ Moment about } P = (-\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}) \times (4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 2 \\ 4 & 4 & 2 \end{vmatrix} = -2\mathbf{i} + 10\mathbf{j} - 16\mathbf{k}$

Magnitude of the moment = $|-2\mathbf{i} + 10\mathbf{j} - 16\mathbf{k}| = 2\sqrt{1^2 + 5^2 + 8^2} = 2\sqrt{90} = 6\sqrt{10}$

Example: 43 The moment of the couple formed by the forces $5\mathbf{i} + \mathbf{k}$ and $-5\mathbf{i} - \mathbf{k}$ acting at the points (9, -1, 2) and (3, -2, 1) respectively is [AMU 1998]

6.12 Scalar Triple Product

If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three vectors, then their scalar triple product is defined as the dot product of two vectors \mathbf{a} and $\mathbf{b} \times \mathbf{c}$. It is generally denoted by \mathbf{a} . ($\mathbf{b} \times \mathbf{c}$) or [\mathbf{abc}]. It is read as box product of $\mathbf{a}, \mathbf{b}, \mathbf{c}$. Similarly other scalar triple products can be defined as ($\mathbf{b} \times \mathbf{c}$). $\mathbf{a}, (\mathbf{c} \times \mathbf{a})$. \mathbf{b} . By the property of scalar product of two vectors we can say, $\mathbf{a}.(\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}).\mathbf{c}$

(1) Geometrical interpretation of scalar triple product : The scalar triple product of three vectors is equal to the volume of the parallelopiped whose three coterminous edges are represented by the given vectors. $\mathbf{a}, \mathbf{b}, \mathbf{c}$ form a right handed system of vectors. Therefore $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = [\mathbf{abc}] =$ volume of the parallelopiped, whose coterminous edges are \mathbf{a} , \mathbf{b} and \mathbf{c} .

(2) Properties of scalar triple product

(i) If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are cyclically permuted, the value of scalar triple product remains the same. *i.e.*, $(\mathbf{a} \times \mathbf{b}).\mathbf{c} = (\mathbf{b} \times \mathbf{c}).\mathbf{a} = (\mathbf{c} \times \mathbf{a}).\mathbf{b}$ or $[\mathbf{a} \mathbf{b} \mathbf{c}] = [\mathbf{b} \mathbf{c} \mathbf{a}] = [\mathbf{c} \mathbf{a} \mathbf{b}]$

(ii) The change of cyclic order of vectors in scalar triple product changes the sign of the scalar triple product but not the magnitude *i.e.*, $[\mathbf{a} \mathbf{b} \mathbf{c}] = -[\mathbf{b} \mathbf{a} \mathbf{c}] = -[\mathbf{c} \mathbf{b} \mathbf{a}] = -[\mathbf{a} \mathbf{c} \mathbf{b}]$

(iii) In scalar triple product the positions of dot and cross can be interchanged provided that the cyclic order of the vectors remains same *i.e.*, $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$

(iv) The scalar triple product of three vectors is zero if any two of them are equal.

(v) For any three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and scalar λ , $[\lambda \mathbf{a} \mathbf{b} \mathbf{c}] = \lambda [\mathbf{a} \mathbf{b} \mathbf{c}]$

(vi) The scalar triple product of three vectors is zero if any two of them are parallel or collinear.

(vii) If $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are four vectors, then $[(\mathbf{a} + \mathbf{b}) \mathbf{c} \mathbf{d}] = [\mathbf{a} \mathbf{c} \mathbf{d}] + [\mathbf{b}\mathbf{c}\mathbf{d}]$

(viii) The necessary and sufficient condition for three non-zero non-collinear vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ to be coplanar is that $[\mathbf{a} \mathbf{b} \mathbf{c}] = 0$ *i.e.*, $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are coplanar $\Leftrightarrow [\mathbf{a} \mathbf{b} \mathbf{c}] = 0$.

(ix) Four points with position vectors \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} will be coplanar, if $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] + [\mathbf{d} \ \mathbf{c} \ \mathbf{a}] + [\mathbf{d} \ \mathbf{a} \ \mathbf{b}] = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$.

(3) Scalar triple product in terms of components

(i) If $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$, $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$ and $\mathbf{c} = c_1\mathbf{i} + c_2\mathbf{j} + c_3\mathbf{k}$ be three vectors.

Then, $[\mathbf{a} \mathbf{b} \mathbf{c}] = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$

(ii) If $\mathbf{a} = a_1 \mathbf{l} + a_2 \mathbf{m} + a_3 \mathbf{n}, \mathbf{b} = b_1 \mathbf{l} + b_2 \mathbf{m} + b_3 \mathbf{n}$ and $\mathbf{c} = c_1 \mathbf{l} + c_2 \mathbf{m} + c_3 \mathbf{n}$, then $[\mathbf{a} \mathbf{b} \mathbf{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} [\mathbf{l} \mathbf{m} \mathbf{n}]$

(iii) For any three vectors **a**, **b** and **c**

(a) $[a + b \ b + c \ c + a] = 2[a \ b \ c]$ (b) $[a - b \ b - c \ c - a] = 0$ (c) $[a \times b \ b \times c \ c \times a] = [a \ b \ c]^2$

(4) **Tetrahedron :** A tetrahedron is a three-dimensional figure formed by four triangle *OABC* is a tetrahedron with $\triangle ABC$ as the base. *OA*, *OB*, *OC*, *AB*, *BC* and *CA* are known as edges of the

tetrahedron. OA, BC; OB, CA and OC, AB are known as the pairs of opposite edges. A tetrahedron in which all edges are equal, is called a regular tetrahedron.

Properties of tetrahedron

(i) If two pairs of opposite edges of a tetrahedron are perpendicular, then the opposite edges of the third pair are also perpendicular to each other.

(ii) In a tetrahedron, the sum of the squares of two opposite edges is the same for each pair.

(iii) Any two opposite edges in a regular tetrahedron are perpendicular.

Volume of a tetrahedron

(i) The volume of a tetrahedron =
$$\frac{1}{3}$$
 (area of the base) (corresponding altitude)
= $\frac{1}{3} \cdot \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| |\overrightarrow{ED}| = \frac{1}{6} |\overrightarrow{AB} \times \overrightarrow{AC}| |\overrightarrow{ED}| \cos 0^{\circ}$ for $\overrightarrow{AB} \times \overrightarrow{AC}| |\overrightarrow{ED}|$

$$= \frac{1}{6} (\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{ED} = \frac{1}{6} [\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{EA} + \overrightarrow{AD}] = \frac{1}{6} [\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD}].$$

Because $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{EA}$ are coplanar, so $[\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{EA}] = 0$

(ii) If **a**, **b**, **c** are position vectors of vertices *A*, *B* and *C* with respect to *O*, then volume of tetrahedron

$$OABC = \frac{1}{6} [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$$

(iii) If **a**, **b**, **c**, **d** are position vectors of vertices *A*, *B*, *C*, *D* of a tetrahedron *ABCD*, then

its volume =
$$\frac{1}{6}$$
 [**b** - **a c** - **a d** - **a**]

(5) Reciprocal system of vectors : Let a, b, c be three non-coplanar vectors, and let
$$\mathbf{a}^{\prime} = \frac{\mathbf{a} \times \mathbf{a}}{|\mathbf{a}\mathbf{b}\mathbf{c}|}$$
, $\mathbf{b}^{\prime} = \frac{\mathbf{a} \times \mathbf{a}}{|\mathbf{a}\mathbf{b}\mathbf{c}|}$, \mathbf{a}^{\prime} , $\mathbf{b}^{\prime} = \frac{\mathbf{a} \times \mathbf{a}}{|\mathbf{a}\mathbf{b}\mathbf{c}|}$, \mathbf{a}^{\prime} , $\mathbf{b}^{\prime} \in \mathbf{c}^{\prime}$ are said to form a reciprocal system of vectors for the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
If $\mathbf{a}, \mathbf{b}, \mathbf{c}^{\prime}$ are said to form a reciprocal system of vectors for the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
If $\mathbf{a}, \mathbf{b}, \mathbf{c}^{\prime}$ are said to form a reciprocal system of vectors for the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}^{\prime}$.
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{a}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ form a reciprocal system of vectors for the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}^{\prime}$.
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{a}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ form a reciprocal system of vectors for the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}^{\prime}$.
If $\mathbf{a}, \mathbf{b}, \mathbf{c}^{\prime}$ are said to form a reciprocal system of vectors for the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}^{\prime}$.
Example: 41 If \mathbf{u}, \mathbf{v} and \mathbf{w} are three non-coplanar vectors, then $(\mathbf{u} + \mathbf{v} - \mathbf{w}), (\mathbf{u} - \mathbf{v} \times (\mathbf{v} - \mathbf{w})$ and $(\mathbf{u} + \mathbf{v} - \mathbf{w}), (\mathbf{u} + \mathbf{v} - \mathbf{w}) = (\mathbf{u} + \mathbf{v} - \mathbf{w}), (\mathbf{u} - \mathbf{v} \times (\mathbf{v} - \mathbf{w})$ and $(\mathbf{u}, \mathbf{v} - \mathbf{w})$.
Solution: (0) $(\mathbf{u} + \mathbf{v} - \mathbf{w}), (\mathbf{u} - \mathbf{v} - \mathbf{w}), (\mathbf{u} - \mathbf{v} - \mathbf{w}) = (\mathbf{u} + \mathbf{v} - \mathbf{w}), (\mathbf{u} - \mathbf{v} + \mathbf{w})$ and $\mathbf{u} + \mathbf{v} = \mathbf{w} + \mathbf{w} + \mathbf{v} = \mathbf{w} + \mathbf{w} + \mathbf{w}$.
Example: 45 The value of 'a' so that the volue of parallelepide formed by $\mathbf{i} + \mathbf{i} + \mathbf{i} + \mathbf{k}$, $(\mathbf{i} + \mathbf{a}) + (\mathbf{i} + \mathbf{u}) + (\mathbf{i} + \mathbf{u})$

Thus, given vectors will be non-coplanar for all values of λ except two values: $\lambda = 0$ and $\frac{1}{2}$.

Example: 48 x, y, z are distinct scalars such that $[x\mathbf{a} + y\mathbf{b} + z\mathbf{c}, x\mathbf{b} + y\mathbf{c} + z\mathbf{a}, x\mathbf{c} + y\mathbf{a} + z\mathbf{b}] = 0$ where **a**, **b**, **c** are non-coplanar vectors then (b) xy + yz + zx = 0 (c) $x^3 + y^3 + z^3 = 0$ (d) $x^2 + y^2 + z^2 = 0$ (a) x + y + z = 0Solution: (a) **a**, **b**, **c** are non-coplanar $\therefore [\mathbf{a} \mathbf{b} \mathbf{c}] \neq 0$ Now, $[x\mathbf{a} + y\mathbf{b} + z\mathbf{c}, x\mathbf{b} + y\mathbf{c} + z\mathbf{a}, x\mathbf{c} + y\mathbf{a} + z\mathbf{b}] = 0$ $\Rightarrow (x\mathbf{a} + y\mathbf{b} + z\mathbf{c}).\{(x\mathbf{b} + y\mathbf{c} + z\mathbf{a}) \times (x\mathbf{c} + y\mathbf{a} + z\mathbf{b})\} = 0 \Rightarrow (x\mathbf{a} + y\mathbf{b} + z\mathbf{c}).\{(x^2 - yz)(\mathbf{b} \times \mathbf{c}) + (z^2 - xy)(\mathbf{a} \times \mathbf{b}) + (y^2 - zx)(\mathbf{c} \times \mathbf{a})\} = 0$ $\Rightarrow x(x^{2} - yz)[\mathbf{abc}] + y(y^{2} - zx)[\mathbf{b} \mathbf{c} \mathbf{a}] + z(z^{2} - xy)[\mathbf{c} \mathbf{a} \mathbf{b}] = 0 \Rightarrow (x^{3} - xyz)[\mathbf{a} \mathbf{b} \mathbf{c}] + (y^{3} - xyz)[\mathbf{abc}] + (z^{3} - xyz)[\mathbf{abc}] = 0$ As $[abc] \neq 0$, $x^3 + y^3 + z^3 - 3xyz = 0 \Rightarrow (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) = 0$ $\Rightarrow \quad \frac{1}{2}(x+y+z)\{(x-y)^2+(y-z)^2+(z-x)^2\}=0 \Rightarrow x+y+z=0 \text{ or } x=y=z$ But x, y, z are distinct. $\therefore x + y + z = 0$.

6.13 Vector Triple Product

Let **a**, **b**, **c** be any three vectors, then the vectors $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ and $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ are called vector triple product of **a**, **b**, **c**.

Thus, $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$

(1) Properties of vector triple product

(i) The vector triple product $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is a linear combination of those two vectors which are within brackets.

(ii) The vector $\mathbf{r} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is perpendicular to \mathbf{a} and lies in the plane of \mathbf{b} and \mathbf{c} .

(iii) The formula $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$ is true only when the vector outside the bracket is on the left most side. If it is not, we first shift on left by using the properties of cross product and then apply the same formula.

Thus,
$$(\mathbf{b} \times \mathbf{c}) \times \mathbf{a} = -\{\mathbf{a} \times (\mathbf{b} \times \mathbf{c})\} = -\{(\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}\} = (\mathbf{a} \cdot \mathbf{b})\mathbf{c} - (\mathbf{a} \cdot \mathbf{c})\mathbf{b}$$

(iv) If
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
, $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ and $\mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k}$
then $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_2 c_3 - b_3 c_2 & b_3 c_1 - b_1 c_3 & b_1 c_2 - b_2 c_1 \end{vmatrix}$

Note : • Vector triple product is a vector quantity.

$$\Box \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$$

(a) $\frac{2\sqrt{2}}{2}$

Example: 49

Let \mathbf{a}, \mathbf{b} and \mathbf{c} be non-zero vectors such that $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \frac{1}{3} |\mathbf{b}| |\mathbf{c}| \mathbf{a}$. If θ is the acute angle between the vectors \mathbf{b} and \mathbf{c} , then $\sin \theta$ equals [AIEEE 2004]

(a)
$$\frac{2\sqrt{2}}{3}$$
 (b) $\frac{\sqrt{2}}{3}$ (c) $\frac{2}{3}$ (d) $\frac{1}{3}$
 \therefore $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \frac{1}{3} |\mathbf{b}|| \mathbf{c} |\mathbf{a} \Rightarrow (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} = \frac{1}{3} |\mathbf{b}|| \mathbf{c} |\mathbf{a}$
 \Rightarrow $(\mathbf{a} \cdot \mathbf{c}) \mathbf{b} = \{(\mathbf{b} \cdot \mathbf{c}) + \frac{1}{3} |\mathbf{b}|| \mathbf{c} |\mathbf{a} \Rightarrow (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} = |\mathbf{b}|| \mathbf{c} |\left\{\cos \theta + \frac{1}{3}\right\} \mathbf{a}$
As \mathbf{a} and \mathbf{b} are not parallel, $\mathbf{a} \cdot \mathbf{c} = 0$ and $\cos \theta + \frac{1}{3} = 0$
 $\Rightarrow \cos \theta = -\frac{1}{3} \Rightarrow \sin \theta = \frac{2\sqrt{2}}{3}$

(b) $\frac{\sqrt{2}}{2}$ (c) $\frac{2}{3}$

Example: 50

If $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{j}$, $\mathbf{c} = \mathbf{i}$ and $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$, then $\lambda + \mu = \lambda \mathbf{a} + \mu \mathbf{b}$

[EAMCT 2003]

	(a) 0	(b) 1	(c) 2	(d) 3
Solution: (a)	$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$	$\Rightarrow (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{b} \cdot \mathbf{c})\mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{b}$	$\Rightarrow \lambda = -\mathbf{b} \cdot \mathbf{c} \ , \ \mu = \mathbf{a} \cdot \mathbf{c}$	
	$\therefore \lambda + \mu = \mathbf{a} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{c}$	$= (a-b).c = \{(i+j+k)-(i+j+k)$	$+ \mathbf{j}$). $\mathbf{i} = \mathbf{k} \cdot \mathbf{i} = 0$.	
Example: 51	If a, b, c and p, q, r	are reciprocal system of vectors	, then $\mathbf{a} \times \mathbf{p} + \mathbf{b} \times \mathbf{q} + \mathbf{c} \times \mathbf{r}$	equals
	(a) [a b c]	(b) $(p+q+r)$	(c) 0	(d) $\mathbf{a} + \mathbf{b} + \mathbf{c}$
Solution: (c)	$\mathbf{p} = \frac{\mathbf{b} \times \mathbf{c}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}, \ \mathbf{q} = \frac{\mathbf{c} \times \mathbf{c}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}$	$\frac{\mathbf{a}}{\mathbf{c}}, \mathbf{r} = \frac{\mathbf{a} \times \mathbf{b}}{[\mathbf{a} \mathbf{b} \mathbf{c}]}$		
	$\mathbf{a} \times \mathbf{p} = \mathbf{a} \times \frac{(\mathbf{b} \times \mathbf{c})}{[\mathbf{a} \mathbf{b} \mathbf{c}]} = \frac{\mathbf{a}}{\mathbf{c}}$	$\frac{\mathbf{a} \cdot \mathbf{c} \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}}{[\mathbf{a} \mathbf{b} \mathbf{c}]}$		
	Similarly $\mathbf{b} \times \mathbf{q} = \frac{(\mathbf{a} \cdot \mathbf{b})}{\mathbf{b}}$	$\mathbf{b} \cdot \mathbf{c} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a}$ and $\mathbf{c} \times \mathbf{r} = \frac{(\mathbf{b} \cdot \mathbf{c})}{[\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}]}$	$\frac{\mathbf{a} - (\mathbf{a} \cdot \mathbf{c}) \mathbf{b}}{\mathbf{a} \mathbf{b} \mathbf{c}]}$	
	$\therefore \mathbf{a} \times \mathbf{p} + \mathbf{b} \times \mathbf{q} + \mathbf{c}$	$\mathbf{x}\mathbf{r} = \frac{1}{[\mathbf{a} \mathbf{b} \mathbf{c}]} \{ (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \}$	+(a . b)c -(b . c)a +(b . c)a	$\mathbf{a} - (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} \} = \frac{1}{[\mathbf{a} \mathbf{b} \mathbf{c}]} \times 0 = 0$

6.14 Scalar product of Four Vectors

 $(\mathbf{a} \times \mathbf{b}).(\mathbf{c} \times \mathbf{d})$ is a scalar product of four vectors. It is the dot product of the vectors $\mathbf{a} \times \mathbf{b}$ and $\mathbf{c} \times \mathbf{d}$.

It is a scalar triple product of the vectors \mathbf{a} , \mathbf{b} and $\mathbf{c} \times \mathbf{d}$ as well as scalar triple product of the vectors $\mathbf{a} \times \mathbf{b}$, \mathbf{c} and \mathbf{d} .

$$(\mathbf{a} \times \mathbf{b}).(\mathbf{c} \times \mathbf{d}) = \begin{vmatrix} \mathbf{a}.\mathbf{c} & \mathbf{a}.\mathbf{d} \\ \mathbf{b}.\mathbf{c} & \mathbf{b}.\mathbf{d} \end{vmatrix}$$

6.15 Vector product of Four Vectors

(1) $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d})$ is a vector product of four vectors.

It is the cross product of the vectors $\mathbf{a} \times \mathbf{b}$ and $\mathbf{c} \times \mathbf{d}$.

(2) $\mathbf{a} \times \{\mathbf{b} \times (\mathbf{c} \times \mathbf{d})\}, \{(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}\} \times \mathbf{d}$ are also different vector products of four vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} .

Example: 52 a	$\mathbf{a} \times [\mathbf{a} \times (\mathbf{a} \times \mathbf{b})]$ is equal to			ו	[AMU 2001]
(a	a) $(\mathbf{a} \times \mathbf{a}).(\mathbf{b} \times \mathbf{a})$	(b) $\mathbf{a}.(\mathbf{b}\times\mathbf{a})-\mathbf{b}.(\mathbf{a}\times\mathbf{b})$	(c) $[\mathbf{a}.(\mathbf{a}\times\mathbf{b})]\mathbf{a}$	(d) $(\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \times \mathbf{a})$	
Solution: (d) a	$\mathbf{a} \times [\mathbf{a} \times (\mathbf{a} \times \mathbf{b})] = \mathbf{a} \times [(\mathbf{a} \cdot \mathbf{b})\mathbf{a} - \mathbf{b}]$	$(\mathbf{a} \cdot \mathbf{a})\mathbf{b}] = (\mathbf{a} \cdot \mathbf{b})(\mathbf{a} \times \mathbf{a}) - (\mathbf{a} \cdot \mathbf{a})$	$(\mathbf{a} \times \mathbf{b}) = (\mathbf{a} \cdot \mathbf{b})0 + (\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \times \mathbf{a})$	$\mathbf{u}) = (\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \times \mathbf{a})$	
Example: 53 [h	$\mathbf{b} \times \mathbf{c} \ \mathbf{c} \times \mathbf{a} \ \mathbf{a} \times \mathbf{b}$] is equal to			[MI	P PET 2004]
(a	a) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$	(b) 2[a b c]	(c) $[a b c]^2$	(d) [a b c]	
Solution: (c) [($[(\mathbf{b} \times \mathbf{c})(\mathbf{c} \times \mathbf{a}), (\mathbf{a} \times \mathbf{b})] = (\mathbf{b} \times \mathbf{c})$	$\{[\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})\} = (\mathbf{b} \times \mathbf{c}).$	{[c a b] a –[a a b]c}		
	$= (\mathbf{b} \times \mathbf{c}).$	$\{[\mathbf{a}\mathbf{b}\mathbf{c}]\mathbf{a}-0\}=[\mathbf{b}\mathbf{c}\mathbf{a}][\mathbf{a}\mathbf{b}\mathbf{c}]$	$] = [\mathbf{abc}]^2$		
Example: 54 Le	Let the vectors a , b , c and d be	such that $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = 0$. Let P_1 and P_2 be planes determined by the planes determined by	rmined by pair of vector	s a , b and
c	\mathbf{c}, \mathbf{d} respectively. Then the angle	e between P_1 and P_2 is		[IIT Screening 2000]	
(a	a) 0°	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$	
Solution: (a) (a	$(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = 0 \implies (\mathbf{a} \times \mathbf{b})$	is parallel to $(\mathbf{c} \times \mathbf{d})$			
H	Hence plane P_1 , determined by	vectors a , b is parallel to the	plane P_2 determined by \mathbf{c}, \mathbf{d}		
	: Angle between P_1 and P_2 =	= 0 (As the planes P_1 and P_2	$_2$ are parallel).		
C, (a Solution: (a) (a H ∴	a) 0° ($\mathbf{a} \times \mathbf{b}$)×($\mathbf{c} \times \mathbf{d}$) = $0 \implies (\mathbf{a} \times \mathbf{b})$ Hence plane P_1 , determined by \therefore Angle between P_1 and P_2 =	e between P_1 and P_2 is (b) $\frac{\pi}{4}$ is parallel to ($\mathbf{c} \times \mathbf{d}$) vectors \mathbf{a}, \mathbf{b} is parallel to the = 0 (As the planes P_1 and P_2	(c) $\frac{\pi}{3}$ e plane P_2 determined by c , d P_2 are parallel).	[IIT Screening 2000] (d) $\frac{\pi}{2}$	5 44,10

6.16 Vector Equations

Solving a vector equation means determining an unknown vector or a number of vectors satisfying the given conditions. Generally, to solve a vector equation, we express the unknown vector as a linear combination of three known non-coplanar vectors and then we determine the coefficients from the given conditions.

If \mathbf{a}, \mathbf{b} are two known non-collinear vectors, then $\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}$ are three non-coplanar vectors.

Thus, any vector $\mathbf{r} = x\mathbf{a} + y\mathbf{b} + z(\mathbf{a} \times \mathbf{b})$ where x, y, z are unknown scalars.

Example: 55 If $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{a} \cdot \mathbf{b} = 1$ and $\mathbf{a} \times \mathbf{b} = \mathbf{j} - \mathbf{k}$, then $\mathbf{b} = \mathbf{j} - \mathbf{k}$ [IIT Screening 2004] (b) i - j + k(a) **i** (c) 2j - k(d) 2i Solution: (a) Let $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ Now, $\mathbf{j} - \mathbf{k} = \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ b_1 & b_2 & b_3 \end{vmatrix} \Rightarrow b_3 - b_2 = 0, b_1 - b_3 = 1, b_2 - b_1 = -1 \Rightarrow b_3 = b_2, b_1 = b_2 + 1$ Now, $\mathbf{a} \cdot \mathbf{b} = 1 \Rightarrow b_1 + b_2 + b_3 = 1 \Rightarrow 3b_2 + 1 = 1 \Rightarrow b_2 = 0 \Rightarrow b_1 = 1, b_3 = 0$. Thus $\mathbf{b} = \mathbf{i}$ The point of intersection of $\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}$ and $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$ where $\mathbf{a} = \mathbf{i} + \mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} - \mathbf{k}$ is Example: 56 [Orissa JEE 2004] (a) 3i + j - k(b) 3i - k(c) 3i + 2j + k(d) None of these Solution: (a) We have $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$ and $\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}$ Adding, $\mathbf{r} \times (\mathbf{a} + \mathbf{b}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{b} \times \mathbf{a})$ \Rightarrow **r**×(**a**+**b**) = **0** \Rightarrow **r** is parallel to **a**+**b** $\therefore \mathbf{r} = \lambda(\mathbf{a} + \mathbf{b}) = \lambda\{(\mathbf{i} + \mathbf{j}) + (2\mathbf{i} - \mathbf{k})\} = \lambda\{3\mathbf{i} + \mathbf{j} - \mathbf{k}\}$ For $\lambda = 1$, $\mathbf{r} = 3\mathbf{i} + \mathbf{j} - \mathbf{k}$ Let $\mathbf{a} = \mathbf{i} - \mathbf{j}, \mathbf{b} = \mathbf{j} - \mathbf{k}, \mathbf{c} = \mathbf{k} - \mathbf{i}$. If $\hat{\mathbf{d}}$ is a unit vector such that $\mathbf{a} \cdot \mathbf{d} = 0 = [\mathbf{b} \mathbf{c} \mathbf{d}]$, then $\hat{\mathbf{d}}$ is equal to Example: 57 [IIT 1995] (b) $\pm \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}$ (c) $\pm \frac{\mathbf{i} + \mathbf{j} - 2\mathbf{k}}{\sqrt{6}}$ (a) $\pm \frac{\mathbf{i} + \mathbf{j} - \mathbf{k}}{\sqrt{2}}$ (d) ±**k** Let $\hat{\mathbf{d}} = \alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}$ Solution: (c) $\mathbf{a} \cdot \mathbf{\hat{d}} = 0 \implies (\mathbf{i} - \mathbf{j}) \cdot (\alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}) = 0 \implies \alpha - \beta = 0 \implies \alpha = \beta$ $[\mathbf{b} \mathbf{c} \mathbf{d}] = 0 \Rightarrow (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{d} = 0 \Rightarrow \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{vmatrix} \quad . \quad (\alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}) = 0 \Rightarrow (\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot (\alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}) = 0 \Rightarrow \alpha + \beta + \gamma = 0$ $\Rightarrow \gamma = -(\alpha + \beta) = -2\alpha ; \ (\beta = \alpha)$ $|\hat{\mathbf{d}}|=1 \Rightarrow \alpha^2 + \beta^2 + \gamma^2 = 1 \Rightarrow \alpha^2 + \alpha^2 + 4\alpha^2 = 1 \Rightarrow \alpha = \pm \frac{1}{\sqrt{6}} = \beta \text{ and } \gamma = \pm \frac{2}{\sqrt{6}}$ $\therefore \quad \hat{\mathbf{d}} = \pm \frac{1}{\sqrt{6}} (\mathbf{i} + \mathbf{j} - 2\mathbf{k}).$ Example: 58 Let **p**, **q**, **r** be three mutually perpendicular vectors of the same magnitude. If a vector **x** satisfies equation $\mathbf{p} \times |(\mathbf{x} - \mathbf{q}) \times \mathbf{p}| + \mathbf{q} \times |(\mathbf{x} - \mathbf{r}) \times \mathbf{q}| + \mathbf{r} \times |(\mathbf{x} - \mathbf{p}) \times \mathbf{r}| = 0$, then **x** is given by [IIT 1997] (a) $\frac{1}{2}(\mathbf{p}+\mathbf{q}-2\mathbf{r})$ (b) $\frac{1}{2}(\mathbf{p}+\mathbf{q}+\mathbf{r})$ (c) $\frac{1}{3}(\mathbf{p}+\mathbf{q}+\mathbf{r})$ (d) $\frac{1}{3}(2\mathbf{p}+\mathbf{q}-\mathbf{r})$ Solution: (b) Let $|\mathbf{p}| = |\mathbf{q}| = |\mathbf{r}| = \mathbf{k}$ \therefore **p** = $k \hat{\mathbf{p}}, \mathbf{q} = k \hat{\mathbf{q}}, \mathbf{r} = k \hat{\mathbf{r}}$ Let $\mathbf{x} = \alpha \,\hat{\mathbf{p}} + \beta \,\hat{\mathbf{q}} + \gamma \,\hat{\mathbf{r}}$ Now, $\mathbf{p} \times \{\mathbf{x} - \mathbf{q}\} \times \mathbf{p}\} = (\mathbf{p}, \mathbf{p})(\mathbf{x} - \mathbf{q}) - \{\mathbf{p}, (\mathbf{x} - \mathbf{q})\}\mathbf{p} = |\mathbf{p}|^2 (\mathbf{x} - \mathbf{q}) - \{(\mathbf{p}, \mathbf{x}) - \mathbf{p}, \mathbf{q}\}\mathbf{p}$ $=k^{2}(\mathbf{x}-\mathbf{q})-\{|\mathbf{p}|(\hat{\mathbf{p}},\hat{\mathbf{x}})-0\}|\mathbf{p}|\hat{\mathbf{p}}=k^{2}(\mathbf{x}-\mathbf{q})-|\mathbf{p}|^{2}(\hat{\mathbf{p}},\hat{\mathbf{x}})\hat{\mathbf{p}}=k^{2}\{\mathbf{x}-\mathbf{q}-\alpha\,\hat{\mathbf{p}}\}$ $\therefore \mathbf{p} \times \{(\mathbf{x} - \mathbf{q}) \times \mathbf{p}\} + \mathbf{q} \times (\mathbf{x} - \mathbf{r}) \times \mathbf{q}\} + \mathbf{r} \times \{(\mathbf{x} - \mathbf{p}) \times \mathbf{r}\} = \mathbf{0}$ $\Rightarrow k^{2} \{ \mathbf{x} - \mathbf{q} - \alpha \mathbf{p} + \mathbf{x} - \mathbf{r} - \beta \mathbf{q} + \mathbf{x} - \mathbf{p} - \gamma \mathbf{r} \} = 0 \Rightarrow 3\mathbf{x} - (\mathbf{p} + \mathbf{q} + \mathbf{r}) - (\alpha \mathbf{p} + \beta \mathbf{q} + \gamma \mathbf{r}) = 0$ $\Rightarrow 3\mathbf{x} - (\mathbf{p} + \mathbf{q} + \mathbf{r}) - \mathbf{x} = 0 \Rightarrow 2\mathbf{x} - (\mathbf{p} + \mathbf{q} + \mathbf{r}) = 0$ \therefore $\mathbf{x} = \frac{1}{2}(\mathbf{p} + \mathbf{q} + \mathbf{r})$

Example: 59 Let the unit vectors **a** and **b** be perpendicular and the unit vector **c** be inclined at an angle θ to both **a** and **b**. If $\mathbf{c} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma (\mathbf{a} \times \mathbf{b})$, then [Orissa JEE 2003] (a) $\alpha = \beta = \cos \theta$, $\gamma^2 = \cos 2\theta$ (b) $\alpha = \beta = \cos \theta, \gamma^2 = -\cos 2\theta$ (c) $\alpha = \cos \theta, \beta = \sin \theta, \gamma^2 = \cos 2\theta$ (d) None of these Solution: (b) We have, $|\mathbf{a}| = |\mathbf{b}| = 1$ $\mathbf{a} \cdot \mathbf{b} = 0$; (as $\mathbf{a} \perp \mathbf{b}$) $\mathbf{c} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma (\mathbf{a} \times \mathbf{b})$(i) Taking dot product by **a**, **a**.**c** = α |**a**|² + β (**a**.**b**) + γ [**a a b**] $\Rightarrow |\mathbf{a}| |\mathbf{c}| \cos \theta = \alpha \cdot 1 + 0 + 0 \Rightarrow 1 |\mathbf{c}| \cdot \cos \theta = \alpha$ As $|\mathbf{c}| = 1$; $\therefore \alpha = \cos \theta$ Taking dot product of (i) by **b** $\mathbf{b} \cdot \mathbf{c} = \mathbf{b} \cdot \mathbf{a} + \beta |\mathbf{b}|^2 + \gamma [\mathbf{b} \mathbf{a} \mathbf{b}] \Rightarrow |\mathbf{b}| |\mathbf{c}| \cos \theta = 0 + \beta \cdot 1 + 0$ $\therefore \quad \beta = 1.1 \cos \theta = \cos \theta$ $|\mathbf{c}|^2 = 1 \implies \alpha^2 + \beta^2 + \gamma^2 = 1 \implies \cos^2 \theta + \cos^2 \theta + \gamma^2 = 1$ $\therefore \gamma^2 = 1 - 2\cos^2\theta = -\cos 2\theta$ Hence, $\alpha = \beta = \cos \theta$, $\gamma^2 = -\cos 2\theta$ Example: 60 The locus of a point equidistant from two given points whose position vectors are **a** and **b** is equal to (b) $\left[\mathbf{r} - \frac{1}{2}(\mathbf{a} + \mathbf{b})\right] \cdot (\mathbf{a} - \mathbf{b}) = 0$ (a) $\left| \mathbf{r} - \frac{1}{2} (\mathbf{a} + \mathbf{b}) \right| . (\mathbf{a} + \mathbf{b}) = 0$ (c) $\left[\mathbf{r} - \frac{1}{2}(\mathbf{a} + \mathbf{b})\right] \cdot \mathbf{a} = 0$ (d) $[r - (a + b)] \cdot b = 0$ Solution: (b) Let $P(\mathbf{r})$ be a point on the locus. $P(\mathbf{r})$ $\therefore AP = BP$ $\Rightarrow |\mathbf{r}-\mathbf{a}| = |\mathbf{r}-\mathbf{b}| \Rightarrow |\mathbf{r}-\mathbf{a}|^2 = |\mathbf{r}-\mathbf{b}|^2 \Rightarrow (\mathbf{r}-\mathbf{a}).(\mathbf{r}-\mathbf{a}) = (\mathbf{r}-\mathbf{b}).(\mathbf{r}-\mathbf{b})$ $\Rightarrow 2\mathbf{r}.(\mathbf{a}-\mathbf{b}) = \mathbf{a}.\mathbf{a}-\mathbf{b}.\mathbf{b} \Rightarrow \mathbf{r}.(\mathbf{a}-\mathbf{b}) = \frac{1}{2}(\mathbf{a}+\mathbf{b}).(\mathbf{a}-\mathbf{b})$ $B(\mathbf{b})$ $A(\mathbf{a})$

 $\therefore \quad [\mathbf{r} - \frac{1}{2}(\mathbf{a} + \mathbf{b})] \cdot (\mathbf{a} - \mathbf{b}) = 0.$ This is the locus of *P*.

<u> </u>			Modulus and	Direction cosines of Vector
		Basic	c Level	
L .	The perimeter of a tria	ngle with sides $3i + 4j + 5k$, 4	i-3j-5k and $7i+j$ is	[MP PET 1991]
	(a) $\sqrt{450}$	(b) $\sqrt{150}$	(c) $\sqrt{50}$	(d) $\sqrt{200}$
2.	The magnitudes of mu of its resultant is	tually perpendicular forces a	a, b and c are 2, 10 and 11 re	spectively. Then the magnitude
				[IIT 1984]
	(a) 12	(b) 15	(c) 9	(d) None of these
•	If $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 8\mathbf{k}$ and $\mathbf{b} =$	$\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$, then the magnitud	$\mathbf{a} + \mathbf{b} = \mathbf{b}$	[MP PET 1996]
	(a) 13	(b) $\frac{13}{1}$	(c) $\frac{3}{3}$	(d) $\frac{4}{11}$
		3	13	13
•	The position vectors of	A and B are $2\mathbf{i} - 9\mathbf{j} - 4\mathbf{k}$, and	$6\mathbf{i} - 3\mathbf{j} + 8\mathbf{k}$ respectively, th	en the magnitude of \overrightarrow{AB} is [MP]
	(a) 11	(b) 12	(c) 13	(d) 14
•	If the position vectors	of <i>P</i> and <i>Q</i> are $(\mathbf{i} + 3\mathbf{j} - 7\mathbf{k})$ and	$(5\mathbf{i}-2\mathbf{j}+4\mathbf{k})$, then $ \overrightarrow{PQ} $ is	[MP PET 2001]
	(a) $\sqrt{158}$	(b) $\sqrt{160}$	(c) $\sqrt{161}$	(d) $\sqrt{162}$
•	If a, b, c are mutually p	perpendicular unit vectors, th	$\mathbf{en} \mathbf{a} + \mathbf{b} + \mathbf{c} =$	[Karnataka CET 2002]
	(a) $\sqrt{3}$	(b) 3	(c) 1	(d) 0
•	Let $\mathbf{a} = \mathbf{i} + \mathbf{j} + p\mathbf{k}$ and $\mathbf{b} =$	$\mathbf{i} + \mathbf{j} + \mathbf{k}$, then $ \mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{b} $, holds for	
	(a) All real <i>p</i>	(b) No real p	(c) $p = -1$	(d) $p = 1$
	For any two vectors a a	and b , which of the following	is true	
	(a) $ a+b \ge a + b $	(b) $ \mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{b} $	(c) $ a+b < a + b $	(d) $ a + b \le a + b $
	If a and b are the adia	cent sides of a parallelogram	then $ \mathbf{a} + \mathbf{b} = \mathbf{a} - \mathbf{b} $ is a neg	cessary and sufficient condition
-	for the parallelogram t	o he a	,	
	(a) Rhombus	(b) Square	(c) Rectangle	(d) Trapezium
о.	The direction cosines o	f vector $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ in the	direction of positive axis of	<i>x</i> , is [MP PET 1991]
-	3	4	3	4
	(a) $\pm \frac{5}{\sqrt{50}}$	(b) $\frac{1}{\sqrt{50}}$	(c) $\frac{3}{\sqrt{50}}$	(d) $-\frac{1}{\sqrt{50}}$
1	A force is a	¥ 50		v
1.	(a) Unit vector	(b) Localised vector	(c) Zero vector	(d) Free vector
	A zono vooton hoo			
2.	A ZERO VECTOR DAS			

13. The perimeter of the triangle whose vertices have the position vectors (i + j + k), (5i + 3j - 3k) and (2i + 5j + 9k) is given by

	(a) $15 + \sqrt{157}$	(b) $15 - \sqrt{157}$	(c) $\sqrt{15} - \sqrt{157}$	(d) $\sqrt{15} + \sqrt{157}$
14.	If the vectors $6\mathbf{i} - 2\mathbf{j} + \mathbf{j}$	$3\mathbf{k}$, $2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$ and $3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$	form a triangle, then it is	[Karnataka CET 1999]
	(a) Right angled	(b) Obtuse angled	(c) Equilateral	(d) Isosceles
15.	The vectors $\overrightarrow{AB} = 3\mathbf{i} + 4$ is	\mathbf{k} and $\overrightarrow{AC} = 5\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$ are th	e sides of a triangle <i>ABC</i> . The	length of the median through A
				[AIEEE 2003]
	(a) $\sqrt{18}$	(b) $\sqrt{72}$	(c) $\sqrt{33}$	(d) $\sqrt{288}$
6.	If a and b are two uni	t vectors inclined at an angle	2θ to each other, then $ \mathbf{a} + \mathbf{b} $	<1, if
	(a) $\frac{\pi}{3} < \theta < \frac{2\pi}{3}$	(b) $\theta < \frac{\pi}{3}$	(c) $\theta > \frac{2\pi}{3}$	(d) $\theta = \frac{\pi}{2}$
17.	If the position vectors	s of A and B are $i + 3j - 7k$ and	$5\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$, then the direction	n cosine of \overrightarrow{AB} along y- axis is [MN
	(a) $\frac{4}{\sqrt{162}}$	(b) $-\frac{5}{\sqrt{162}}$	(c) -5	(d) 11
18.	The position vectors \mathbf{c} $ \mathbf{a}-\mathbf{d} = \mathbf{b}-\mathbf{d} = \mathbf{c}-\mathbf{d} $	of four points <i>A, B, C, D</i> lying , then the point <i>D</i> is	in plane are a , b , c , d respec	ctively. They satisfy the relation
	(a) Centroid of $\triangle ABC$	(b) Circumcentre of ΔA	<i>BC</i> (c) Orthocentre of $\triangle AB$	C (d) Incentre of $\triangle ABC$
9.	In a parallelopiped th three coterminous edg	le ratio of the sum of the squ ges is	ares on the four diagonals to	o the sum of the squares on the
	(a) 2	(b) 3	(c) 4	(d) 1
((a) 2	(b) 3	(c) 4	(d) 1 Addition of Vectors
	(a) 2	(b) 3	(c) 4 ic Level	(d) 1 Addition of Vectors
20.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$	(b) 3 Bas ntersection of the diagonal	(c) 4 ic Level Is of the parallelogram <i>AE</i>	(d) 1 Addition of Vectors
20.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$	(b) 3 Bas ntersection of the diagonal	(c) 4 ic Level ls of the parallelogram AE	(d) 1 Addition of Vectors 3CD. If O is any point, then [Rajasthan PET 1989]
20.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP}	(b) 3 Bas Intersection of the diagonal (b) $2\overrightarrow{OP}$	(c) 4 ic Level ls of the parallelogram AE (c) $3\overrightarrow{OP}$	(d) 1 Addition of Vectors BCD. If O is any point, then [Rajasthan PET 1989] (d) $4\overrightarrow{OP}$
20.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP} If $\mathbf{p} = 7\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and	(b) 3 Bas Intersection of the diagonal (b) $2\overrightarrow{OP}$ $\mathbf{q} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$, then the magnit	(c) 4 ic Level Is of the parallelogram AE (c) $3\overrightarrow{OP}$ cude of $\mathbf{p} - 2\mathbf{q}$ is	 (d) 1 Addition of Vectors BCD. If O is any point, then [Rajasthan PET 1989] (d) 4 OP [MP PET 1987]
.0.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP} If $\mathbf{p} = 7\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and (a) $\sqrt{29}$	(b) 3 Bas Intersection of the diagonal (b) $2\overrightarrow{OP}$ $\mathbf{q} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$, then the magnit (b) 4	(c) 4 ic Level Is of the parallelogram AE (c) $3\overrightarrow{OP}$ cude of $\mathbf{p} - 2\mathbf{q}$ is (c) $\sqrt{62} - 2\sqrt{35}$	(d) 1 Addition of Vectors 3CD. If O is any point, then [Rajasthan PET 1989] (d) $4\overrightarrow{OP}$ [MP PET 1987] (d) $\sqrt{66}$
20. 21. 22.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP} If $\mathbf{p} = 7\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and (a) $\sqrt{29}$ If <i>C</i> is the middle point	(b) 3 Bas intersection of the diagonal (b) $2\overrightarrow{OP}$ $\mathbf{q} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$, then the magnit (b) 4 it of <i>AB</i> and <i>P</i> is any point out	(c) 4 ic Level Is of the parallelogram AE (c) $3\overrightarrow{OP}$ cude of $\mathbf{p} - 2\mathbf{q}$ is (c) $\sqrt{62} - 2\sqrt{35}$ cside AB, then	(d) 1 Addition of Vectors BCD. If O is any point, then [Rajasthan PET 1989] (d) $4\overrightarrow{OP}$ [MP PET 1987] (d) $\sqrt{66}$ [MNR 1991, UPSEAT 2000]
.0. 11. 22.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP} If $\mathbf{p} = 7\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and (a) $\sqrt{29}$ If <i>C</i> is the middle point (a) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$	(b) 3 Bas Intersection of the diagonal (b) $2\overrightarrow{OP}$ $\mathbf{q} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$, then the magnit (b) 4 It of <i>AB</i> and <i>P</i> is any point out (b) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{2PC}$	(c) 4 ic Level Is of the parallelogram AE (c) $3\overrightarrow{OP}$ cude of $\mathbf{p} - 2\mathbf{q}$ is (c) $\sqrt{62} - 2\sqrt{35}$ cside AB, then (c) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$	(d) 1 Addition of Vectors 3CD. If O is any point, then [Rajasthan PET 1989] (d) $4\overrightarrow{OP}$ [MP PET 1987] (d) $\sqrt{66}$ [MNR 1991, UPSEAT 2000] (d) $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = 0$
0. 1. 2. 3.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP} If $\mathbf{p} = 7\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and (a) $\sqrt{29}$ If <i>C</i> is the middle point (a) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$ If $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i}$	(b) 3 Bas Intersection of the diagonal (b) $2\overrightarrow{OP}$ $\mathbf{q} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$, then the magnit (b) 4 It of <i>AB</i> and <i>P</i> is any point out (b) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{2PC}$ $-\mathbf{j}$, then the unit vector along	(c) 4 ic Level Is of the parallelogram AE (c) $3\overrightarrow{OP}$ cude of $\mathbf{p} - 2\mathbf{q}$ is (c) $\sqrt{62} - 2\sqrt{35}$ cside AB, then (c) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$ g $\mathbf{a} + \mathbf{b}$ will be	(d) 1 Addition of Vectors BCD. If O is any point, then [Rajasthan PET 1989] (d) $4\overrightarrow{OP}$ [MP PET 1987] (d) $\sqrt{66}$ [MNR 1991, UPSEAT 2000] (d) $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = 0$ [Rajasthan PET 1985, 1995]
20. 21. 22. 23.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP} If $\mathbf{p} = 7\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and (a) $\sqrt{29}$ If <i>C</i> is the middle point (a) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$ If $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i}$ (a) $\frac{\mathbf{i} - \mathbf{j}}{\sqrt{2}}$	(b) 3 Bas Intersection of the diagonal (b) $2\overrightarrow{OP}$ $\mathbf{q} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$, then the magnit (b) 4 It of <i>AB</i> and <i>P</i> is any point out (b) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{2PC}$ $-\mathbf{j}$, then the unit vector along (b) $\mathbf{i} + \mathbf{j}$	(c) 4 ic Level Is of the parallelogram AE (c) $3\overrightarrow{OP}$ cude of $\mathbf{p} - 2\mathbf{q}$ is (c) $\sqrt{62} - 2\sqrt{35}$ cside AB, then (c) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$ g $\mathbf{a} + \mathbf{b}$ will be (c) $\sqrt{2}(\mathbf{i} + \mathbf{j})$	(d) 1 Addition of Vectors BCD. If O is any point, then [Rajasthan PET 1989] (d) $4\overrightarrow{OP}$ [MP PET 1987] (d) $\sqrt{66}$ [MNR 1991, UPSEAT 2000] (d) $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = 0$ [Rajasthan PET 1985, 1995] (d) $\frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}}$
.0. 11. .2. .3.	(a) 2 <i>P</i> is the point of if $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP} If $\mathbf{p} = 7\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and (a) $\sqrt{29}$ If <i>C</i> is the middle point (a) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$ If $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i}$ (a) $\frac{\mathbf{i} - \mathbf{j}}{\sqrt{2}}$ What should be added	(b) 3 Bas intersection of the diagonal (b) $2\overrightarrow{OP}$ $\mathbf{q} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$, then the magnit (b) 4 it of <i>AB</i> and <i>P</i> is any point out (b) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{2PC}$ $-\mathbf{j}$, then the unit vector along (b) $\mathbf{i} + \mathbf{j}$ l in vector $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ to ge	(c) 4 ic Level Is of the parallelogram AE (c) $3\overrightarrow{OP}$ cude of $\mathbf{p} - 2\mathbf{q}$ is (c) $\sqrt{62} - 2\sqrt{35}$ cside AB, then (c) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$ g $\mathbf{a} + \mathbf{b}$ will be (c) $\sqrt{2}(\mathbf{i} + \mathbf{j})$ et its resultant a unit vector \mathbf{i}	(d) 1 Addition of Vectors BCD. If O is any point, then [Rajasthan PET 1989] (d) $4\overrightarrow{OP}$ [MP PET 1987] (d) $\sqrt{66}$ [MNR 1991, UPSEAT 2000] (d) $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = 0$ [Rajasthan PET 1985, 1995] (d) $\frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}}$ [Roorkee 1977]
0. 1. 2. 3.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP} If $\mathbf{p} = 7\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and (a) $\sqrt{29}$ If <i>C</i> is the middle point (a) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$ If $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i}$ (a) $\frac{\mathbf{i} - \mathbf{j}}{\sqrt{2}}$ What should be added (a) $-2\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$	(b) 3 Bas Intersection of the diagonal (b) $2\overrightarrow{OP}$ $\mathbf{q} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$, then the magnit (b) 4 It of <i>AB</i> and <i>P</i> is any point out (b) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{2PC}$ $-\mathbf{j}$, then the unit vector along (b) $\mathbf{i} + \mathbf{j}$ l in vector $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ to get (b) $-2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$	(c) 4 ic Level Is of the parallelogram AE (c) $3\overrightarrow{OP}$ cude of $\mathbf{p} - 2\mathbf{q}$ is (c) $\sqrt{62} - 2\sqrt{35}$ cside AB, then (c) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$ g $\mathbf{a} + \mathbf{b}$ will be (c) $\sqrt{2}(\mathbf{i} + \mathbf{j})$ et its resultant a unit vector \mathbf{i} (c) $2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$	(d) 1 Addition of Vectors BCD. If O is any point, then [Rajasthan PET 1989] (d) $4\overrightarrow{OP}$ [MP PET 1987] (d) $\sqrt{66}$ [MNR 1991, UPSEAT 2000] (d) $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = 0$ [Rajasthan PET 1985, 1995] (d) $\frac{i+j}{\sqrt{2}}$ [Roorkee 1977] (d) None of these
0. 1. 2. 3. 4.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP} If $\mathbf{p} = 7\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and (a) $\sqrt{29}$ If <i>C</i> is the middle point (a) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$ If $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i}$ (a) $\frac{\mathbf{i} - \mathbf{j}}{\sqrt{2}}$ What should be added (a) $-2\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$ If $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = -\mathbf{i}$	(b) 3 Bas Intersection of the diagonal (b) $2\overrightarrow{OP}$ $\mathbf{q} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$, then the magnit (b) 4 It of <i>AB</i> and <i>P</i> is any point out (b) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{2PC}$ $-\mathbf{j}$, then the unit vector along (b) $\mathbf{i} + \mathbf{j}$ l in vector $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ to get (b) $-2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ $+ 2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = 3\mathbf{i} + \mathbf{j}$, then the	(c) 4 ic Level Is of the parallelogram AE (c) $3\overrightarrow{OP}$ cude of $\mathbf{p} - 2\mathbf{q}$ is (c) $\sqrt{62} - 2\sqrt{35}$ cside AB, then (c) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$ g $\mathbf{a} + \mathbf{b}$ will be (c) $\sqrt{2}(\mathbf{i} + \mathbf{j})$ et its resultant a unit vector \mathbf{i} (c) $2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ e unit vector along its resulta	(d) 1 Addition of Vectors BCD. If O is any point, then [Rajasthan PET 1989] (d) $4\overrightarrow{OP}$ [MP PET 1987] (d) $\sqrt{66}$ [MNR 1991, UPSEAT 2000] (d) $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = 0$ [Rajasthan PET 1985, 1995] (d) $\frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}}$ [Roorkee 1977] (d) None of these nt is [Roorkee 1980]
20. 21. 22. 23. 24. 25.	(a) 2 <i>P</i> is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP} If $\mathbf{p} = 7\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and (a) $\sqrt{29}$ If <i>C</i> is the middle point (a) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$ If $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i}$ (a) $\frac{\mathbf{i} - \mathbf{j}}{\sqrt{2}}$ What should be added (a) $-2\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$ If $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = -\mathbf{i}$ (a) $3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}$	(b) 3 Bas Intersection of the diagonal (b) $2\overrightarrow{OP}$ $\mathbf{q} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$, then the magnit (b) 4 It of <i>AB</i> and <i>P</i> is any point out (b) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{2PC}$ $-\mathbf{j}$, then the unit vector along (b) $\mathbf{i} + \mathbf{j}$ l in vector $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ to get (b) $-2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ $+ 2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = 3\mathbf{i} + \mathbf{j}$, then the (b) $\frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{50}$	(c) 4 ic Level Is of the parallelogram AE (c) $3\overrightarrow{OP}$ cude of $\mathbf{p} - 2\mathbf{q}$ is (c) $\sqrt{62} - 2\sqrt{35}$ cside AB, then (c) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$ g $\mathbf{a} + \mathbf{b}$ will be (c) $\sqrt{2}(\mathbf{i} + \mathbf{j})$ et its resultant a unit vector \mathbf{i} (c) $2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ e unit vector along its resulta (c) $\frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{5\sqrt{2}}$	(d) 1 Addition of Vectors BCD. If O is any point, then [Rajasthan PET 1989] (d) $4\overrightarrow{OP}$ [MP PET 1987] (d) $\sqrt{66}$ [MNR 1991, UPSEAT 2000] (d) $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = 0$ [Rajasthan PET 1985, 1995] (d) $\frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}}$ [Roorkee 1977] (d) None of these nt is [Roorkee 1980] (d) None of these
20. 21. 22. 23. 24. 25.	(a) 2 P is the point of i $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ (a) \overrightarrow{OP} If $\mathbf{p} = 7\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and (a) $\sqrt{29}$ If C is the middle point (a) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$ If $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i}$ (a) $\frac{\mathbf{i} - \mathbf{j}}{\sqrt{2}}$ What should be added (a) $-2\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$ If $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = -\mathbf{i}$ (a) $3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}$ In the triangle <i>ABC</i> , \overrightarrow{A}	(b) 3 Bas Intersection of the diagonal (b) $2\overrightarrow{OP}$ $\mathbf{q} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$, then the magnit (b) 4 It of <i>AB</i> and <i>P</i> is any point out (b) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{2PC}$ $-\mathbf{j}$, then the unit vector along (b) $\mathbf{i} + \mathbf{j}$ l in vector $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ to get (b) $-2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ $+ 2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = 3\mathbf{i} + \mathbf{j}$, then the (b) $\frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{50}$ $\overrightarrow{B} = \mathbf{a}, \ \overrightarrow{AC} = \mathbf{c}, \ \overrightarrow{BC} = \mathbf{b}$, then	(c) 4 ic Level Is of the parallelogram AE (c) $3\overrightarrow{OP}$ cude of $\mathbf{p} - 2\mathbf{q}$ is (c) $\sqrt{62} - 2\sqrt{35}$ cside AB, then (c) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$ g $\mathbf{a} + \mathbf{b}$ will be (c) $\sqrt{2}(\mathbf{i} + \mathbf{j})$ et its resultant a unit vector \mathbf{i} (c) $2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ e unit vector along its resultant (c) $\frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{5\sqrt{2}}$	(d) 1 Addition of Vectors 3CD. If O is any point, then [Rajasthan PET 1989] (d) $4\overrightarrow{OP}$ [MP PET 1987] (d) $\sqrt{66}$ [MNR 1991, UPSEAT 2000] (d) $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = 0$ [Rajasthan PET 1985, 1995] (d) $\frac{i+j}{\sqrt{2}}$ [Roorkee 1977] (d) None of these nt is [Roorkee 1980] (d) None of these [Rajasthan PET 1984]

27.	7. If a has magnitude 5 and points north-east and vector b has magnitude 5 and points north-west, then $ \mathbf{a} - \mathbf{b} = \mathbf{a} - \mathbf{b}$			ints north-west, then $ \mathbf{a} - \mathbf{b} = [\mathbf{MNR}]$
	(a) 25	(b) 5	(c) $7\sqrt{3}$	(d) $5\sqrt{2}$
28.	If $ \mathbf{a} = 3$, $ \mathbf{b} = 4$ and $ \mathbf{a} = 4$	$ \mathbf{a} + \mathbf{b} = 5$, then $ \mathbf{a} - \mathbf{b} = 5$		[EAMCET 1994]
	(a) 6	(b) 5	(c) 4	(d) 3
29.	If the sum of two unit w	vectors is a unit vector, the	n the angle between them is e	equal to
			[MP PET 1999; UPSEAT 2000; R	ajasthan PET 2002; Roorkee 1998]
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{2}$	(d) $\frac{2\pi}{3}$
30.	A, B, C, D, E are five co	planar points, then $\overrightarrow{DA} + \overrightarrow{DB}$	$\overrightarrow{B} + \overrightarrow{DC} + \overrightarrow{AE} + \overrightarrow{BE} + \overrightarrow{CE}$ is equal to	[Rajasthan PET 1999]
	(a) \overrightarrow{DE}	(b) $3\overrightarrow{DE}$	(c) $2\overrightarrow{DE}$	(d) $4\overrightarrow{ED}$
31.	If $\mathbf{a} \neq 0, \mathbf{b} \neq 0$ and $ \mathbf{a} + \mathbf{b} $	$ = \mathbf{a} - \mathbf{b} $, then the vectors	a and b are	
	[MNR 1988; IIT Screenin	ng 1989; MP PET 1990, 97; Ra	ajasthan PET 1984, 90, 96, 99; Ka	arnataka CET 1999; Roorkee 1986]
	(a) Parallel to each oth	er	(b) Perpendicular to ea	ach other
	(c) Inclined at an angle parallel	e of 60°	(d)	Neither perpendicular nor
32.	If ABCDEF is a regular	hexagon and $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} +$	$\overrightarrow{AE} + \overrightarrow{AF} = \lambda \overrightarrow{AD}$, then $\lambda =$	[Rajasthan PET 1985]
	(a) 2	(b) 3	(c) 4	(d) 6
33.	If O be the circumcentr	e and O' be the orthocentre	e of a triangle <i>ABC</i> , then $\overrightarrow{OA} + \overrightarrow{C}$	$\overrightarrow{OB} + \overrightarrow{OC} = $ [MNR 1987, EAMCET 1994]
	(a) $2\overrightarrow{OO'}$	(b) $2\overrightarrow{O'O}$	(c) $\overrightarrow{OO'}$	(d) $\overrightarrow{O'O}$
34.	Let $\mathbf{a} = \mathbf{i}$ be a vector where $\mathbf{a} = \mathbf{i}$	nich makes an angle of 120°	with a unit vector b . Then the	e unit vector (a + b) is [MP PET 1991]
	(a) $-\frac{1}{2}i + \frac{\sqrt{3}}{2}j$	(b) $-\frac{\sqrt{3}}{2}i + \frac{1}{2}j$	(c) $\frac{1}{2}i + \frac{\sqrt{3}}{2}j$	(d) $\frac{\sqrt{3}}{2}i - \frac{1}{2}j$
35.	If θ be the angle betwee	een the unit vectors a and b	b, then $\cos\frac{\theta}{2} =$	[MP PET 1998]
	(a) $\frac{1}{2} \mathbf{a}-\mathbf{b} $	(b) $\frac{1}{2} \mathbf{a} + \mathbf{b} $	(c) $\frac{ \mathbf{a}-\mathbf{b} }{ \mathbf{a}+\mathbf{b} }$	(d) $\frac{ \mathbf{a}+\mathbf{b} }{ \mathbf{a}-\mathbf{b} }$
36.	If $ \mathbf{a} = 3$, $ \mathbf{b} = 4$, $ \mathbf{c} = 3$	5 and $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$, then the	angle between a and b is	[MP PET 1989; Bihar CEE 1994]
	(a) 0	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{-}$
	(u) 0	6	3	
37.	If ABCD is a parallelogr	ram, $\overrightarrow{AB} = 2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$ and \overrightarrow{A}	$\vec{D} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, then the unit ve	ector in the direction of <i>BD</i> is [Roorked
	(a) $\frac{1}{\sqrt{69}}$ (i + 2j - 8k)	(b) $\frac{1}{69}$ (i +2 j -8 k)	(c) $\frac{1}{\sqrt{69}}(-i-2j+8k)$	(d) $\frac{1}{69}(-i-2j+8k)$
38.	If a and b are unit vector	ors making an angle $ heta$ with	n each other then $ \mathbf{a} - \mathbf{b} $ is [BI	T Ranchi 1991; Karnataka CET 2000, 01]
	(a) 1	(b) o	(c) $\cos \frac{\theta}{2}$	(d) $2\sin\frac{\theta}{2}$
39.	If the moduli of the vec perpendicular, then the	ctors a, b, c are 3, 4, 5 resp e modulus of a + b + c is	ectively and a and b + c , b and	d c + a, c and a + b are mutually [IIT 1981]
	(a) $\sqrt{12}$	(b) 12	(c) $5\sqrt{2}$	(d) 50
40.	If a and b are unit vector	ors and a - b is also a unit	vector, then the angle betweer	n a and b is [Rajasthan PET 1991; MP P
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{2}$	(d) $\frac{2\pi}{3}$
	If in a triangle \overrightarrow{AB}	\overrightarrow{AC} hand D. E and the matrix		\rightarrow

	(a) $\frac{\mathbf{a}}{4} - \frac{\mathbf{b}}{4}$	(b) $\frac{\mathbf{a}}{2} - \frac{\mathbf{b}}{2}$	(c) $\frac{\mathbf{b}}{4} - \frac{\mathbf{a}}{4}$	(d) $\frac{\mathbf{b}}{2} - \frac{\mathbf{a}}{2}$
42.	ABCDE is a pentagon. For	ces $\overrightarrow{AB}, \overrightarrow{AE}, \overrightarrow{DC}, \overrightarrow{ED}$ act at a point	int. Which force should be a	added to this system to make
	the resultant $2\overrightarrow{AC}$			[MNR 1984]
	(a) \overrightarrow{AC}	(b) \overrightarrow{AD}	(c) \overrightarrow{BC}	(d) \overrightarrow{BD}
43.	In a regular hexagon ABCL	DEF, $\overrightarrow{AE} =$		[MNR 1984]
	(a) $\overrightarrow{AC} + \overrightarrow{AF} + \overrightarrow{AB}$	(b) $\overrightarrow{AC} + \overrightarrow{AF} - \overrightarrow{AB}$	(c) $\overrightarrow{AC} + \overrightarrow{AB} - \overrightarrow{AF}$	(d) None of these
44.	$3\overrightarrow{OD} + \overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC} =$			[IIT 1988]
	(a) $\overrightarrow{OA} + \overrightarrow{OB} - \overrightarrow{OC}$	(b) $\overrightarrow{OA} + \overrightarrow{OB} - \overrightarrow{BD}$	(c) $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$	(d) None of these
45.	In a triangle <i>ABC</i> , if $2\overrightarrow{AC} =$	$3\overrightarrow{CB}$, then $2\overrightarrow{OA} + 3\overrightarrow{OB}$ equals		[IIT 1988]
	(a) $5\overrightarrow{OC}$	(b) $-\overrightarrow{OC}$	(c) \overrightarrow{OC}	(d) None of these
46.	If $ \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC} $, the second	hen A, B, C form		[IIT 1983]
	(a) Equilateral triangle	(b) Right angled triangle	(c) Isosceles triangle	(d) Line
47.	Three forces of magnitude cube. The resultant force i	es 1, 2, 3 dynes meet in a po s	int and act along diagonals	of three adjacent faces of a [MNR 1987]
	(a) 114 dynes	(b) 6 dynes	(c) 5 dynes	(d) None of these
48.	If $\mathbf{p} + \mathbf{q} + \mathbf{r} = 0, \mathbf{p} = 3, \mathbf{q} = 3$	5, $ \mathbf{r} = 7$. Then angle between	p and q is	
		[UPSE	AT 2001; Kurukshetra CEE 19	98; AIEEE 2002, MP PET 2002]
	(a) $\frac{\pi}{16}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{6}$	(d) $\frac{\pi}{3}$
49.	If A, B, C are the vertices	of a triangle whose position	vectors are a , b , c and G	is the centroid of the $\triangle ABC$,
	then $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$ is			
			[Karn	ataka CET 2000; MP PET 1997]
	(a) O	(b) $\vec{A} + \vec{B} + \vec{C}$	(c) $\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3}$	(d) $\frac{\mathbf{a}-\mathbf{b}-\mathbf{c}}{3}$
50.	If $a = 3i - 2j + k$, $b = 2i - 4j$	$-3\mathbf{k}$ and $\mathbf{c} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, then	$\mathbf{a} + \mathbf{b} + \mathbf{c}$ is	[MP PET 2001]
	(a) 3i-4j	(b) $3i + 4j$	(c) $4i - 4j$	(d) $4i + 4j$
51.	If x and y are two unit vec	tors and π is the angle betwee	een them, then $\frac{1}{2} \mathbf{x} - \mathbf{y} $ is e	equal to [UPSEAT 2001]
	(a) 0	(b) $\pi/2$	(c) 1	(d) $\pi/4$
52.	If <i>D</i> , <i>E</i> , <i>F</i> are respectively	the mid points of AB, AC and I	BC in $\triangle ABC$, then $\overrightarrow{BE} + \overrightarrow{AF} =$	[EAMCET 2003]
	(a) \overrightarrow{DC}	(b) $\frac{1}{2}\overrightarrow{BF}$	(c) $2\overrightarrow{BF}$	(d) $\frac{3}{2}\overrightarrow{BF}$
53.	If ABCD is a rhombus who	se diagonals cut at the origin	<i>O</i> , then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$ e	quals
	(a) $\overrightarrow{AB} + \overrightarrow{AC}$	(b) \vec{o}	(c) $2(\overrightarrow{AB} + \overrightarrow{BC})$	(d) $\overrightarrow{AC} + \overrightarrow{BD}$
54.	ABCD is a parallelogram w	ith AC and BD as diagonals. T	Then $\overrightarrow{AC} - \overrightarrow{BD} =$	[EAMCET 2001]
	(a) $4\overrightarrow{AB}$	(b) $3\overrightarrow{AB}$	(c) $2\overrightarrow{AB}$	(d) \overrightarrow{AB}
55.	The vectors \mathbf{b} and \mathbf{c} are	in the direction of north-e	ast and north-west respec	ctively and $ \mathbf{b} = \mathbf{c} = 4$. The
	magnitude and direction o	f the vector $\mathbf{d} = \mathbf{c} - \mathbf{b}$, are		[Roorkee 2000]
	(a) $4\sqrt{2}$, towards north	(b) $4\sqrt{2}$, towards west	(c) 4, towards east	(d) 4, towards south

	(a) $\frac{1}{2}$	(b) 1	(c) 2	(d) 4
68.	The horizontal force and direction of <i>P kg</i> , are	l the force inclined at an an	gle 60° with the vertical, v	vhose resultant is in vertical
	-			[IIT 1983]
	(a) <i>P</i> , 2 <i>P</i>	(b) <i>P</i> , $P\sqrt{3}$	(c) 2 <i>P</i> , $P\sqrt{3}$	(d) None of these
69.	If the resultant of two fo force is	rces is of magnitude <i>P</i> and eq	ual to one of them and perp	endicular to it, then the other [MNR 1986]
	(a) $P\sqrt{2}$	(b) <i>P</i>	(c) $P\sqrt{3}$	(d) None of these
7 0.	<i>ABC</i> is an isosceles trian respectively. The magnitude	ngle right angled at A. Force ude of their resultant force is	s of magnitude $2\sqrt{2}$, 5 and	6 act along \overrightarrow{BC} , \overrightarrow{CA} and \overrightarrow{AB} [Roorkee 1999]
	(a) 4	(b) 5	(c) $11 + 2\sqrt{2}$	(d) 30
71.	If the resultant of two fo is	rces of magnitudes <i>P</i> and <i>Q</i> a	cting at a point at an ang	le of 60° is $\sqrt{7}Q$, then P/Q [Roorkee 1999]
	(a) 1	(b) 3/2	(c) 2	(d) 4
72.	Five points given by A,	B, C, D, E are in a plane. T	Three forces $\overrightarrow{AC}, \overrightarrow{AD}$ and \overrightarrow{A}	\vec{E} act at A and three forces
	\overrightarrow{CB} , \overrightarrow{DB} , \overrightarrow{EB} act at <i>B</i> . Then	their resultant is		[AMU 2001]
	(a) $2\overrightarrow{AC}$	(b) $3\overrightarrow{AB}$	(c) $3\overrightarrow{DB}$	(d) $2\overrightarrow{BC}$
				Position Vectors
		Basic I	level	
73.	If a, b, c are the position	vectors of the vertices A, B, C	of the triangle <i>ABC,</i> then th	e centroid of <i>AABC</i> is [MP PET 1987
	(a) $\frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3}$	(b) $\frac{1}{2}\left(\mathbf{a}+\frac{\mathbf{b}+\mathbf{c}}{2}\right)$	(c) $\mathbf{a} + \frac{\mathbf{b} + \mathbf{c}}{2}$	(d) $\frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{2}$
74.	If in the given figure \overrightarrow{OA}	$=$ a , \overrightarrow{OB} = b and $AP : PB = m : n$, then $\overrightarrow{OP} =$ [Raj	asthan PET 1981; MP PET 1988]
			\nearrow^B	
	(a) $\frac{m\mathbf{a}+n\mathbf{b}}{m+n}$	(b) $\frac{n\mathbf{a}+m\mathbf{b}}{m+n}$	(c) $m\mathbf{a} - n\mathbf{b}$	(d) $\frac{m\mathbf{a}-n\mathbf{b}}{m-n}$

75. The position vectors of A and B are $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $3\mathbf{i} - \mathbf{j} + 3\mathbf{k}$. The position vector of the middle point of the line *AB* is

[MP PET 1988]

(a)
$$\frac{1}{2}\mathbf{i} - \frac{1}{2}\mathbf{j} + \mathbf{k}$$
 (b) $2\mathbf{i} - \mathbf{j} + \frac{5}{2}\mathbf{k}$ (c) $\frac{3}{2}\mathbf{i} - \frac{1}{2}\mathbf{j} + \frac{3}{2}\mathbf{k}$ (d) None of these

76. If the position vectors of the points A and B are $\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ and $3\mathbf{i} - \mathbf{j} - 3\mathbf{k}$, then what will be the position vector of the mid point of AB [MP PET 1992]

(a)
$$i + 2j - k$$
 (b) $2i + j - 2k$ (c) $2i + j - k$ (d) $i + j - 2k$

77.	The position vectors of tw	o points A and B are $\mathbf{i} + \mathbf{j} - \mathbf{k}$ a	and $2\mathbf{i} - \mathbf{j} + \mathbf{k}$ respectively. T	hen $ \overrightarrow{AB} = $ [Ranchi BIT 1992]
	(a) 2	(b) 3	(c) 4	(d) 5
78.	The position vector of the $3\mathbf{a} - 2\mathbf{b}$, is	points which divides intern	ally in the ratio 2 : 3 the jo	bin of the points $2\mathbf{a} - 3\mathbf{b}$ and
				[Al CBSE 1985]
	(a) $\frac{12}{5}a + \frac{13}{5}b$	(b) $\frac{12}{5} \mathbf{a} - \frac{13}{5} \mathbf{b}$	(c) $\frac{3}{5}a - \frac{2}{5}b$	(d) None of these
7 9 .	If a and b are P.V. of two p	points A, B, and C divides AB i	n ratio 2 : 1, then P.V. of <i>C</i> i	S [Rajasthan PET 1996]
	(a) $\frac{a+2b}{3}$	(b) $\frac{2\mathbf{a}+\mathbf{b}}{3}$	(c) $\frac{a+2}{3}$	(d) $\frac{\mathbf{a}+\mathbf{b}}{2}$
80.	If three points A, B, C wh	nose position vector are resp	ectively $\mathbf{i} - 2\mathbf{j} - 8\mathbf{k}$, $5\mathbf{i} - 2\mathbf{k}$ as	nd $11\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$ are collinear,
	then the ratio in which B d	livides AC is		[Rajasthan PET 1999]
	(a) 1:2	(b) 2:3	(c) 2:1	(d) 1:1
81.	If O is the origin and C is t	the mid point of A (2, -1) and	<i>B</i> (-4, 3). Then value of \overrightarrow{OC}	is [Rajasthan PET 2001]
	(a) i + j	(b) i-j	(c) $-\mathbf{i} + \mathbf{j}$	(d) -i - j
82.	If the position vectors of <i>F</i>	P and Q are $\mathbf{i} + 3\mathbf{j} - 7\mathbf{k}$ and $5\mathbf{i} - \mathbf{k}$	$2\mathbf{j} + 4\mathbf{k}$ respectively, then \overline{F}	\overrightarrow{Q} is equal to [MP PET 2003]
	(a) $-4i + 5j - 11k$	(b) $4i - 5j + 11k$	(c) $\mathbf{i} + \mathbf{j} + \mathbf{k}$	(d) None of these
83.	The position vectors of tw	wo vertices and the centroid	of a triangle are $i + j$, $2i - j$	$\mathbf{j} + \mathbf{k}$ and \mathbf{k} respectively. The
	position vector of the third	l vertex of the triangle is		
	(a) $-3i + 2k$	(b) $3i - 2k$	(c) $i + \frac{2}{3}k$	(d) None of these
84.	The position vector of the respectively. The position	ree consecutive vertices of a on vector of the fourth ver	parallelogram are $\mathbf{i} + \mathbf{j} + \mathbf{k}$ tex is	, $i + 3j + 5k$ and $7i + 9j + 11k$
	(a) $7(i + j + k)$	(b) $5(i + j + k)$	(c) $6i + 8j + 10k$	(d) None of these
		Advance	Level	
85.	If a and b are the position	vectors of A and B respective	ely, then the position vector	of a point <i>C</i> on <i>AB</i> produced
	such that $\overrightarrow{AC} = 3\overrightarrow{AB}$ is		[MNR 1980; MP PET 1995, 1999]
	(a) 3 a - b	(b) 3 b - a	(c) 3 a - 2 b	(d) 3 b - 2 a
86.	If the position vectors or respectively, then	of the points A, B, C, D b	e $2i + 3j + 5k$, $i + 2j + 3k$, -	$-5\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ and $\mathbf{i} + 10\mathbf{j} + 10\mathbf{k}$
				[MNR 1982]
	(a) $\overrightarrow{AB} = \overrightarrow{CD}$	(b) $\overrightarrow{AB} \parallel \overrightarrow{CD}$	(c) $\overrightarrow{AB} \perp \overrightarrow{CD}$	(d) None of these
87.	The position vector of a p vector of <i>C</i> with respect to	oint C with respect to B is i A is	$+\mathbf{j}$ and that of <i>B</i> with resp	ect to A is $i - j$. The position [MP PET 1989]
	(a) 2 i	(b) 2 j	(c) −2 j	(d) -2 i
88.	<i>A</i> and <i>B</i> are two points. The b is the position vector of	ne position vector of A is 6 b - P , then the position vector of	2 a. A point <i>P</i> divides the li <i>B</i> is given by	ne <i>AB</i> in the ratio 1 : 2. If a – [MP PET 1993]
	(a) 7 a - 15 b	(b) $7a + 15b$	(c) 15 a - 7 b	(d) $15a + 7b$
89.	The points <i>D</i> , <i>E</i> , <i>F</i> divide <i>E</i>	BC, CA and AB of the triangle A	<i>ABC</i> in the ratio 1 : 4, 3 : 2 a	and 3 : 7 respectively and the
	point K divides AB in the r	atio 1 : 3, then $(\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF})$:	\overrightarrow{CK} is equal to	[MNR 1987]
	(a) 1:1	(b) 2:5	(c) 5:2	(d) None of these

90.	The point B divides the a	rc AC of a quadrant of a circ	cle in the ratio 1 : 2. If O i	is the centre and $\overrightarrow{OA} = \mathbf{a}$ and	
	$\overrightarrow{OB} = \mathbf{b}$, then the vector \overrightarrow{O}	\overrightarrow{C} is		[MNR 1988]	
	(a) b – 2 a	(b) 2 a - b	(c) 3 b – 2 a	(d) None of these	
91.	The point having position	vectors $2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, $3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$	k , $4\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ are the vectic	es of [EAMCET 1988]	
	(a) Right angled triangle	(b) Isosceles triangle	(c) Equilateral triangle	(d) Collinear	
92.	Let p and q be the position	n vectors of <i>P</i> and <i>Q</i> respecti	vely with respect to O and	$ \mathbf{p} = p$, $ \mathbf{q} = q$. The points R	
	and S divide PQ internally	and externally in the ratio 2	: 3 respectively. If \overrightarrow{OR} and	\overrightarrow{OS} are perpendicular, then [IIT Sc	
	(a) $9p^2 = 4q^2$	(b) $4p^2 = 9q^2$	(c) $9p = 4q$	(d) $4p = 9q$	
93.	The position vectors of the	e points A, B, C are $(2\mathbf{i} + \mathbf{j} - \mathbf{k})$,	$(3\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ and $(\mathbf{i} + 4\mathbf{j} - 3\mathbf{k})$	respectively. These points	
				[Haryana CET 2002]	
	(a) Form an isosceles tria (d)	ngle (b) Form a scalene triangle	Form a right-angled trian	gle (c) Are collinear	
94.	ABCDEF is a regular hexa	gon where centre O is the or	igin. If the position vectors	s of A and B are $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and	
	$2\mathbf{i} + \mathbf{j} - \mathbf{k}$ respectively, then	n \overrightarrow{BC} is equal to			
	(a) $i - j + 2k$	(b) $-i + j - 2k$	(c) $3i + 3j - 4k$	(d) None of these	
95.	Let $\overrightarrow{AB} = 3\mathbf{i} + \mathbf{i} - \mathbf{k}$ and \overrightarrow{AC}	$= \mathbf{i} - \mathbf{i} + 3\mathbf{k}$. If the point P on t	the line segment BC is equi	distant from AB and AC, then	
550	\overrightarrow{AP} is	J J			
	(a) $2i - k$	(b) $i - 2k$	(c) $2i + k$	(d) None of these	
96.	If $4i + 7i + 8k$. $2i + 3i + 4k$.	and $2i+5j+7k$ are the posi	tion vectors of the vertice	s A, B and C respectively of	
9	triangle <i>ABC</i> . The position vector of the point where the bisector of angle <i>A</i> meets <i>BC</i> . is				
	(2) $\frac{2}{6}$ (6; 8; 6k)	(b) $\frac{2}{6i+8i+6k}$	(c) $\frac{1}{(6i+12i+18k)}$	$(d) = \frac{1}{(5i+12k)}$	
	(a) $\frac{1}{3}$ (-01 - 8 j - 0 k)	$(0) \frac{1}{3}(01+8) + 0K$	$\frac{1}{3}$ (01 + 13 J + 18 K)	$(\mathbf{u}) = \frac{1}{3} (3\mathbf{j} + 12\mathbf{k})$	
			Collir	pear and Parallel Vectors	
<u> </u>					
		Basic Le	evel		
97.	If $\mathbf{a} = \mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} + \lambda\mathbf{j}$	are parallel, then λ is		[Rajasthan PET 1996]	
_	(a) 4	(b) 2	(c) -2	(d) - 4	
98.	The vectors $3\mathbf{i} + \mathbf{j} - 5\mathbf{k}$ and	$a\mathbf{i} + b\mathbf{j} - 15\mathbf{k}$ are collinear, if	[Raja	asthan PET 1986; MP PET 1988]	
	(a) $a = 3, b = 1$	(b) $a = 9, b = 1$	(c) $a = 3, b = 3$	(d) $a = 9, b = 3$	
99.	If $a = (1, -1)$ and $b = (-2, n)$	m) are two collinear vectors,	then $m =$	[MP PET 1998]	
	(a) 4	(b) 3	(c) 2	(d) o	
100.	If a , b , c are the position v	vectors of three collinear poin	ts, then the existence of x , y	<i>y, z</i> is such that	
	(a) $xa + yb + zc = 0$, $x + y + z$	$z \neq 0$	(b) $xa + yb + zc \neq 0, x + y + z$	z = 0	
	(c) $xa + yb + zc \neq 0, x + y + z$	$z \neq 0$	(d) $xa + yb + zc = 0$, $x + y + z$	z = 0	
101.	If a and b are two non-col	linear vectors, then $x\mathbf{a} + y\mathbf{b} =$	0	[Rajasthan PET 2001]	
	(a) $x = 0$, but y is not nec	essarily zero	(b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$, but x is not necessary (b) $y = 0$.	essarily zero	
	(c) $x = 0, y = 0$		(d) None of these		
102.	If a and b are two non-col	linear vectors, then $x\mathbf{a} + y\mathbf{b}$ (v	where x and y are scalars) re	epresents a vector which is [MP PET	
	(a) Parallel to b	(b) Parallel to a	(c) Coplanar with a and b	(d) None of these	
103.	If a, b, c are non-collinear	vectors such that for some so	calars <i>x</i> , <i>y</i> , <i>z</i> , $x\mathbf{a} + y\mathbf{b} + z\mathbf{c} = 0$, then [Rajasthan PET 2002]	

	(a) $x = 0, y = 0, z = 0$	(b) $x \neq 0, y \neq 0, z = 0$	(c) $x = 0, y \neq 0, z \neq 0$	(d) $x \neq 0, y \neq 0, z \neq 0$
104.	If the position vectors of the collinear	he points <i>A, B, C</i> be a, b , 3 a –	2b respectively, then the po(b) Non-collinear	pints A, B, C are [MP PET 1989]
	(c) Form a right angled tr	iangle	(d)	None of these
105.	If two vertices of a triangle	e are $\mathbf{i} - \mathbf{j}$ and $\mathbf{j} + \mathbf{k}$, then the	third vertex can be	[Roorkee 1995]
	(a) $i + k$	(b) $i - 2j - k$	(c) $\mathbf{i} - \mathbf{k}$	(d) 2i – j
106.	If the vectors $3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and	nd $6\mathbf{i} - 4x\mathbf{j} + y\mathbf{k}$ are parallel, th	en the value of x and y will	be [Rajasthan PET 1985, 1986]
	(a) -1, -2	(b) 1, -2	(c) -1, 2	(d) 1, 2
107.	The position vectors of fou	Ir points <i>P</i> , <i>Q</i> , <i>R</i> , <i>S</i> are $2\mathbf{a} + 4\mathbf{c}$,	$5\mathbf{a} + 3\sqrt{3}\mathbf{b} + 4\mathbf{c}, -2\sqrt{3}\mathbf{b} + \mathbf{c}$ a	nd $2\mathbf{a} + c$ respectively, then
				[MP PET 1997]
	(a) \overrightarrow{PO} is parallel to \overrightarrow{RS}		(b) \overrightarrow{PO} is not parallel to \overrightarrow{PO}	RS
	(c) \overrightarrow{PQ} is equal to \overrightarrow{PS}		(d) \overrightarrow{PQ} is parallel and our	\overrightarrow{P}
400	(c) PQ is equal to RS	and or their initi	(u) PQ is parallel and equ	all to KS
108.	The vectors $2\mathbf{l} + 3\mathbf{j}$, $5\mathbf{l} + 6\mathbf{j}$ terminate on one straight	and $81 + \lambda j$ have their initiality line is	al points at (1, 1). The var	ue of λ so that the vectors
	(a) 0	(b) 3	(c) 6	(d) 9
109.	The points with position v	ectors $20\mathbf{i} + p\mathbf{j}$. $5\mathbf{i} - \mathbf{j}$ and $10\mathbf{i} - \mathbf{j}$	13 i are collinear. The value	e of <i>p</i> is [Pb. CET 1999]
0	(a) 7	(b) - 37	(c) - 7	(d) 37
				(4) 37
		Advance	e Level	
110.	Three points whose positio	on vectors are $\mathbf{a} + \mathbf{b}$, $\mathbf{a} - \mathbf{b}$ and	$\mathbf{a} + k\mathbf{b}$ will be collinear, if	the value of <i>k</i> is [IIT 1984]
	(a) Zero (d)	(b) Only negative real numb Every real number	er (c)	Only positive real number
111.	The points with position v	ectors $10\mathbf{i} + 3\mathbf{j}$, $12\mathbf{i} - 5\mathbf{j}$ and $a\mathbf{i}$	+11j are collinear, If a = [M	INR 1992; Kurukshetra CEE 2002]
	(a) - 8	(b) 4	(c) 8	(d) 12
112.	Let the value of $\mathbf{p} = (x + 4)$	y) a + (2x + y + 1) b and q = (y - 2)	$(2x+2)\mathbf{a} + (2x-3y-1)\mathbf{b}$, wher	e a and b are non-collinear
	vectors. If $3\mathbf{p} = 2\mathbf{q}$, then the	The value of x and y will be		ajasthan PET 1984; MNR 1984]
112	(a) - 1, 2 If $(x, y, z) \neq (0, 0, 0)$ and $(i + 1)$	(b) 2, -1 i + 3k)r + (3i - 3i + k)v + (-4i + 5i)	(c) 1, 2 $z = \lambda(x\mathbf{i} + y\mathbf{i} + z\mathbf{k})$ then the year	(d) 2, 1
113.	If $(x, y, z) \neq (0, 0, 0)$ and $(1 + z)$	$\mathbf{j} + \mathbf{j}\mathbf{k}/\mathbf{\lambda} + (\mathbf{j}\mathbf{i} - \mathbf{j}\mathbf{j} + \mathbf{k})\mathbf{j} + (\mathbf{j}\mathbf{i} + \mathbf{j}\mathbf{j})$	$z = \pi(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$, then the value of $z = \pi(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$	[11T 1082: Raissthan PET 1084]
	(a) - 2, 0	(b) 0, - 2	(c) - 1, 0	(d) 0, - 1
114.	The vectors $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\lambda \mathbf{i} + \mathbf{k}$	$4\mathbf{j}+7\mathbf{k}$, $-3\mathbf{i}-2\mathbf{j}-5\mathbf{k}$ are collined	near, if λ equals	[Kurukshetra CEE 1996]
	(a) 3	(b) 4	(c) 5	(d) 6
115.	If three points A , B and C collinear, then $(x, y) =$	have position vectors (1, x , 3)), (3, 4, 7) and (y, - 2, - 5)	respectively and if they are
				[EAMCET 2002]
116	(a) $(2, -3)$ The position vectors of the	(b) $(-2, 3)$	(c) $(2, 3)$	(d) $(-2, -3)$
110.	vectors. The points are col	linear when	$-2\mathbf{D} + \lambda \mathbf{c}$ and $\mu \mathbf{a} - 5\mathbf{D}$ Whe	ere a , u , c are non-copianar
	(a) $\lambda = -2, \ \mu = \frac{9}{4}$	(b) $\lambda = -\frac{9}{4}, \ \mu = 2$	(c) $\lambda = \frac{9}{4}, \ \mu = -2$	(d) None of these

117.	Three points whose position	on vectors are a , b , c will be c	collinear if	(d) None of these
	(a) $\lambda \mathbf{a} + \mu \mathbf{b} = (\lambda + \mu)\mathbf{c}$	(b) $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} = 0$	(c) $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 0$	(d) None of these
118.	If $\mathbf{p} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{q} = 3$ perpendicular to \mathbf{q} is	(1 + j + 2k), then a vector alon	ig r which is linear combi	nation of p and q and also
	perpendicular to q 13			[MNR 1986]
	(a) $i + 5j - 4k$	(b) $i - 5j + 4k$	(c) $-\frac{1}{2}(i+5j-4k)$	(d) None of these
119.	If a and b are two non zer	o and non-collinear vectors, t	hen a + b and a – b are	[MP PET 1997]
	(a) Linearly dependent ve vectors	ctors		(b) Linearly independent
	(c) Linearly dependent an	d independent vectors	(d) None of these	
120.	If p , q are two non-collin	ear and non-zero vectors such	h that $(\mathbf{b} - \mathbf{c})\mathbf{p} \times \mathbf{q} + (\mathbf{c} - \mathbf{a})\mathbf{p} + \mathbf{c}$	$(\mathbf{a} - \mathbf{b})\mathbf{q} = 0$, where a , b , c are
	the lengths of the sides of	a triangle, then the triangle i	S	
	(a) Right angled	(b) Obtuse angled	(c) Equilateral	(d) Isosceles
121.	If $r = 3i + 2j - 5k$, $a = 2i - j - 3k$	+ k , b = $1 + 3\mathbf{j} - 2\mathbf{k}$ and c = $-2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$	+ J – 3K such that $r = \lambda \mathbf{a} + \mu \mathbf{k}$	$\mathbf{p} + \mathbf{v} \mathbf{c}$ then
	(a) μ , $\frac{\lambda}{2}$, ν are in A.P.	(b) λ , μ , ν are in A.P.	(c) λ , μ , ν are in H.P.	(d) μ , λ , ν are in G.P.
122.	Let a , b , c are three non-	coplanar vectors such that \mathbf{r}_1	$= \mathbf{a} - \mathbf{b} + \mathbf{c}, \ \mathbf{r}_2 = \mathbf{b} + \mathbf{c} - \mathbf{a}, \ \mathbf{r}_3$	= c + a + b, $r = 2a - 3b + 4c$. If
	$\mathbf{r} = \lambda_1 \mathbf{r_1} + \lambda_2 \mathbf{r_2} + \lambda_3 \mathbf{r_3}$, then			
	(a) $\lambda_1 = 7$	(b) $\lambda_1 + \lambda_3 = 3$	(c) $\lambda_1 + \lambda_2 + \lambda_3 = 4$	(d) $\lambda_3 + \lambda_2 = 2$
123.	If $\mathbf{c} = 2\mathbf{a} - 3\mathbf{b}$ and $2\mathbf{c} = 3\mathbf{a} - 3\mathbf{b}$	$+4\mathbf{b}$ then c and a are		
	(a) Like parallel vectors	(b) Unlike parallel vectors	(c) Are at right angles	(d) None of these
124.	The sides of a triangle are	in A.P., then the line joining	the centroid to the incentre	is parallel to
	(a) The largest side	(b) The smaller side	(c) The middle side	(d) None of the sides
125.	In a trapezoid the vector \vec{h}	$\overrightarrow{BC} = \lambda \overrightarrow{AD}$. We will then find t	hat $\mathbf{p} = \overrightarrow{AC} + \overrightarrow{BD}$ is collinear	with <i>AD</i> . If $\mathbf{p} = \mu \overrightarrow{AD}$, then
	(a) $\mu = \lambda + 1$	(b) $\lambda = \mu + 1$	(c) $\lambda + \mu = 1$	(d) $\mu = 2 + \lambda$
			Scalar or Dot	Product of Two Vectors
		Basic Le	evel	
126.	The angle between the vec	etors $2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and $2\mathbf{i} - \mathbf{j} - \mathbf{k}$ is	3	[MNR 1990]
	(a) 0	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{6}$	(d) $\frac{\pi}{2}$
127.	If $a = 2i + 2j + 3k$, $b = -i + 2$	$\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = 3\mathbf{i} + \mathbf{j}$, then $\mathbf{a} + t\mathbf{k}$	is perpendicular to \mathbf{c} if $t =$	[MNR 1979; MP PET 2002]
	(a) 2	(b) 4	(c) 6	(d) 8
128.	The angle between the vec	etors $3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$	is	[MP PET 1990]
	(a) $\cos^{-1}\frac{2}{\sqrt{7}}$	(b) $\sin^{-1}\frac{2}{\sqrt{7}}$	(c) $\cos^{-1}\frac{2}{\sqrt{5}}$	(d) $\sin^{-1}\frac{2}{\sqrt{5}}$
129.	If a , b , c are non zero-vect	cors such that a . b = a . c , the	n which statement is true	[Rajasthan PET 2001]
	(a) $\mathbf{b} = \mathbf{c}$	(b) $\mathbf{a} \perp (\mathbf{b} - \mathbf{c})$	(c) $\mathbf{b} = \mathbf{c}$ or $\mathbf{a} \perp (\mathbf{b} - \mathbf{c})$	(d) None of these
130.	The vector $2\mathbf{i} + a\mathbf{j} + \mathbf{k}$ is per	rpendicular to the vector 2i –	$\mathbf{j} - \mathbf{k}$, if $\mathbf{a} =$	[MP PET 1987]
	(a) 5	(b) – 5	(c) - 3	(d) 3

131. The vector $2\mathbf{i} + \mathbf{j} - \mathbf{k}$ is perpendicular to the vector $\mathbf{i} - 4\mathbf{j} + \lambda \mathbf{k}$, if $\lambda =$ [MNR 1983; MP PET 1988] (a) 0 (b) - 1 (c) - 2 (d) - 3 **132.** If the vectors $a\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and $3\mathbf{i} + 6\mathbf{j} - 5\mathbf{k}$ are perpendicular to each other, then a is given by [MP PET 1993] (b) 16 (d) 36 (a) 9 (c) 25 **133.** The value of λ for which the vectors $2\lambda \mathbf{i} + \mathbf{j} - \mathbf{k}$ and $2\mathbf{j} + \mathbf{k}$ are perpendicular, is [MP PET 1992] (b) -1(a) None (c) 1 (d) Any **134.** The angle between the vectors $\mathbf{i} - \mathbf{j} + \mathbf{k}$ and $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ is [Ranchi BIT 1991] (a) $\cos^{-1}\left(\frac{1}{\sqrt{15}}\right)$ (b) $\cos^{-1}\left(\frac{4}{\sqrt{15}}\right)$ (c) $\cos^{-1}\left(\frac{4}{15}\right)$ (d) $\frac{\pi}{2}$ **135.** If λ is a unit vector perpendicular to plane of vector **a** and **b** and angle between them is θ , then **a** · **b** will be [Rajastha (a) $|\mathbf{a}| |\mathbf{b}| \sin\theta \vec{\lambda}$ (b) $|\mathbf{a}| |\mathbf{b}| \cos \theta \lambda$ (c) $|\mathbf{a}| |\mathbf{b}| \cos \theta$ (d) $|\mathbf{a}| |\mathbf{b}| \sin \theta$ **136.** If the vectors $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ and $p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$ are perpendicular, then [Rajasthan PET 1989] (a) (a+b+c)(p+q+r) = 0 (b) (a+b+c)(p+q+r) = 1 (c) ap+bq+cr = 0(d) ap + bq + cr = 1**137.** If θ be the angle between two vectors **a** and **b**, then **a** \cdot **b** \geq 0 if [MP PET 1995] (b) $\frac{\pi}{2} \le \theta \le \pi$ (c) $0 \le \theta \le \frac{\pi}{2}$ (a) $0 \le \theta \le \pi$ (d) None of these **138.** If $\mathbf{a} = 2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 8\mathbf{i} - 3\mathbf{j} + \lambda\mathbf{k}$ and $\mathbf{a} \perp \mathbf{b}$, then value of λ will be [Rajasthan PET 1995] (a) 2 (b) - 1 (c) - 2 (d) 1 **139.** If **a** and **b** are mutually perpendicular vectors, then $(\mathbf{a} + \mathbf{b})^2 =$ [MP PET 1994] (c) $a^2 - b^2$ (b) **a**-**b** (d) $(a - b)^2$ (a) $\mathbf{a} + \mathbf{b}$ **140.** If $\mathbf{a} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$, then the angle between the vectors $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$ is [Karnataka CET 1994] (a) 30° (b) 60° (c) 90° (d) 0° **141. a** \cdot **b** = 0, then [Rajasthan PET 1995] (a) $\mathbf{a} \perp \mathbf{b}$ (b) **a** ∥ **b** (c) Angle between **a** and **b** is 60° (d) None of these **142.** The angle between the vectors $(2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k})$ and $(12\mathbf{i} - 4\mathbf{j} + 3\mathbf{k})$ is [MP PET 1996] (a) $\cos^{-1}\left(\frac{1}{10}\right)$ (b) $\cos^{-1}\left(\frac{9}{11}\right)$ (c) $\cos^{-1}\left(\frac{9}{91}\right)$ (d) $\cos^{-1}\left(\frac{1}{9}\right)$ **143.** If the vectors $a\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $-\mathbf{i} + 5\mathbf{j} + a\mathbf{k}$ are perpendicular to each other, then $\mathbf{a} =$ [MP PET 1996] (a) 6 (b) - 6 (d) - 5 (c) 5 **144.** If the angle between two vectors $\mathbf{i} + \mathbf{k}$ and $\mathbf{i} - \mathbf{j} + a\mathbf{k}$ is $\pi/3$, then the value of $\mathbf{a} =$ [MP PET 1997] (a) 2 (b) 4 (c) -2 (d) 0 [Rajasthan PET 2000] **145.** (**a** . **b**) **c** and (**a** . **c**) **b** are (a) Two like vectors (b) Two equal vectors (c) Two vectors in direction of **a** None of these (d) **146.** The angle between the vector $2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and $2\mathbf{i} - \mathbf{j} - \mathbf{k}$ is [UPSEAT 2000] (c) $\frac{\pi}{3}$ (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (d) 0 [Karnataka CET 2001] (c) 18 (d) 36 (a) 11 (b) 15

148.	If $a\mathbf{i} + 6\mathbf{j} - \mathbf{k}$ and $7\mathbf{i} - 3\mathbf{j} + 17$	k are perpendicular vectors, t	hen the value of a is	[Karnataka CET 2001]
	(a) 5	(b) – 5	(c) 7	(d) $\frac{1}{7}$
149.	If $\mathbf{a} + \mathbf{b} \perp \mathbf{a}$ and $ \mathbf{b} = \sqrt{2} \mathbf{a} $	then		
	(a) $(2a+b)\ b$	(b) $(2a+b) \perp b$	(c) $(2a - b) \perp b$	(d) $(2a+b) \perp a$
150.	If a and b are adjacent side	es of a rhombus, then		[Rajasthan PET 2001]
	(a) a . b = o	(b) $\mathbf{a} \times \mathbf{b} = 0$	(c) $a \cdot a = b \cdot b$	(d) None of these
151.	If $ \mathbf{a} = \mathbf{b} $, then $(\mathbf{a} + \mathbf{b}).(\mathbf{a} + \mathbf{b})$	-b) is		[MP PET 2002]
	(a) Positive	(b) Negative	(c) Zero	(d) None of these
152.	If $4\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $3\mathbf{i} + m\mathbf{j} + 2\mathbf{k}$	are at right angle, then $m =$		[Karnataka CET 2002]
	(a) - 6	(b) - 8	(c) - 10	(d) – 12
153.	If the vectors $3\mathbf{i} + \lambda \mathbf{j} + \mathbf{k}$ and	d $2\mathbf{i} - \mathbf{j} + 8\mathbf{k}$ are perpendicular	, then λ is	[Kerala (Engg.) 2002]
	(a) - 14	(b) 7	(c) 14	(d) $\frac{1}{7}$
154.	$(\mathbf{a} \cdot \mathbf{i})^2 + (\mathbf{a} \cdot \mathbf{j})^2 + (\mathbf{a} \cdot \mathbf{k})^2$ is equivalent.	qual to		
	(a) a ²	(b) 3	(c) $ \mathbf{a}.(\mathbf{i} + \mathbf{j} + \mathbf{k}) ^2$	(d) None of these
155.	If the vectors $\mathbf{i} - 2x\mathbf{j} - 3y\mathbf{k}$	and $\mathbf{i} + 3x\mathbf{j} + 2y\mathbf{k}$ are orthogona	al to each other, then the lo	cus of the point (x, y) is
	(a) A circle	(b) An ellipse	(c) A parabola	(d) A straight line
156.	If $\vec{A} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\vec{B} = -\mathbf{i} + 2\mathbf{j}$	$\mathbf{i} + \mathbf{k}$ and $\vec{C} = 3\mathbf{i} + \mathbf{j}$, then the value	alue of t such that $\vec{A} + t\vec{B}$ is	at right angle to vector $ec{C}$, is
				[Pajasthan DET 2002]
	(a) 3	(b) 4	(c) 5	(d) 6
157.	If a and b are two perpend	icular vectors, then out of the	following four statements	
	(i) $(\mathbf{a} + \mathbf{b})^2 = (\mathbf{a})^2 + (\mathbf{b})^2$	(ii) $(\mathbf{a} - \mathbf{b})^2 = (\mathbf{a})^2 + (\mathbf{b})^2$	(iii)	$ \mathbf{a} + \mathbf{b} ^2 \neq \mathbf{a} ^2 + \mathbf{b} ^2$
	(iv)	$(\mathbf{a} + \mathbf{b})^2 = (\mathbf{a} - \mathbf{b})^2$		
	(a) Only one is correct	(b) Only two are correct	(c) Only three are correct	(d) All the four are correct
		Advance	Level	
158.	If a, b, c are unit vectors s	uch that $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$, then \mathbf{a} .	b + b . c + c . a = [MP PET 1988;	Karnataka CET 2000; UPSEAT 2003]
			3	3
	(a) 1	(b) 3	(c) $-\frac{1}{2}$	(d) $\frac{1}{2}$
159.	A unit vector in the <i>xy</i> -plan	ne which is perpendicular to 4	$4\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ is	[Rajasthan PET 1991]
	(a) $\frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}}$	(b) $\frac{1}{5}(3i+4j)$	(c) $\frac{1}{5}(3i-4j)$	(d) None of these
160.	The vectors $2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ and	d $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ are perpendicular	r, when [N	ANR 1982; MP PET 1988, 2002]
	(a) $a = 2, b = 3, c = -4$	(b) $a = 4, b = 4, c = 5$	(c) $a = 4, b = 4, c = -5$	(d) None of these
161.	The unit normal vector to	the line joining $\mathbf{i} - \mathbf{j}$ and $2\mathbf{i} + 3$	j and pointing towards the	origin is [MP PET 1989]
-	(a) $\frac{4i - j}{\sqrt{2}}$	(b) $\frac{-4\mathbf{i}+\mathbf{j}}{\sqrt{\mathbf{j}}}$	(c) $\frac{2\mathbf{i}-3\mathbf{j}}{\sqrt{\mathbf{i}^2}}$	(d) $\frac{-2\mathbf{i}+3\mathbf{j}}{\sqrt{2}}$
	√ 17	$\sqrt{17}$	√ 13	√ 13

162.	The position vector of cop $(\mathbf{b}-\mathbf{d}) \cdot (\mathbf{c}-\mathbf{a}) = 0$, then the	planar points <i>A, B, C, D</i> are a point <i>D</i> of the triangle <i>ABC</i> i	a , b, c and d respectively, i is	in such a way that $(a-d) \cdot (b-c) =$ [IIT 1984]
	(a) Incentre	(b) Circumcentre	(c) Orthocentre	(d) None of these
163.	If $\vec{F}_1 = \mathbf{i} - \mathbf{j} + \mathbf{k}$, $\vec{F}_2 = -\mathbf{i} + 2\mathbf{j} - \mathbf{k}$	$-\mathbf{k}, \vec{F}_3 = \mathbf{j} - \mathbf{k}, \vec{A} = 4\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$	and $\vec{B} = 6\mathbf{i} + \mathbf{j} - 3\mathbf{k}$, then t	the scalar product of $\vec{F}_1 + \vec{F}_2 + \vec{F}_3$
	and \overrightarrow{AB} will be			[Roorkee 1980]
	(a) 3	(b) 6	(c) 9	(d) 12
164.	If the moduli of a and b a	re equal and angle between t	them is 120° and $\mathbf{a} \cdot \mathbf{b} = -$	8, then $ \mathbf{a} $ is equal to [Rajasthan PET 1
	(a) – 5	(b) - 4	(c) 4	(d) 5
165.	The position vector of ver	rtices of a triangle <i>ABC</i> are 4	$\mathbf{i} - 2\mathbf{j}, \mathbf{i} + 4\mathbf{j} - 3\mathbf{k} \text{ and } -\mathbf{i} + 5\mathbf{j}$	+ k respectively, then $\angle ABC =$
				[Rajasthan PET 1988, 1997]
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$
166.	A, B, C, D are any four po	ints, then $\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{BC} \cdot \overrightarrow{AD} + \overrightarrow{C}$	\overrightarrow{CA} . \overrightarrow{BD} =	[MNR 1986]
	(a) $2\overrightarrow{AB} \cdot \overrightarrow{BC} \cdot \overrightarrow{CD}$	(b) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$	(c) $5\sqrt{3}$	(d) o
167.	If $ \mathbf{a} = 3, \mathbf{b} = 1, \mathbf{c} = 4$ a	and $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$, then $\mathbf{a} \cdot \mathbf{b} + \mathbf{b}$	$\mathbf{c} + \mathbf{c} \cdot \mathbf{a} = $	MP PET 1995; Rajasthan PET 2000]
	(a) - 13	(b) - 10	(c) 13	(d) 10
168.	The value of <i>c</i> so that for	all real x, the vectors $cxi - 6j$	$\mathbf{j} + 3\mathbf{k}, x\mathbf{i} + 2\mathbf{j} + 2cx\mathbf{k}$ make as	n obtuse angle are [EAMCET 1994]
	(a) c < 0	(b) $0 < c < \frac{4}{3}$	(c) $-\frac{4}{3} < c < 0$	(d) $c > 0$
169.	The vector $\frac{1}{3}(2\mathbf{i}-2\mathbf{j}+\mathbf{k})$ i	s		[IIT Screening 1994]
	(a) A unit vector		(b) Makes an angle $\frac{\pi}{3}$	with the vector $2\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}$
	(c) Parallel to the vector	$-\mathbf{i}+\mathbf{j}-\frac{1}{2}\mathbf{k}$	(d) Perpendicular to th	ne vector $3\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$
170.	The value of x for which	the angle between the vector	rs $\mathbf{a} = -3\mathbf{i} + x\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = x$	$x\mathbf{i} + 2x\mathbf{j} + \mathbf{k}$ is acute and the angle
	between b and <i>x</i> -axis lies	between $\frac{\pi}{2}$ and π satisfy		[Kurukshetra CEE 1996]
	(a) $x > 0$	(b) $x < 0$	(c) $x > 1$ only	(d) $x < -1$ only
171.	If the scalar product of t $\lambda \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ be 1, then $\lambda =$	he vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$ with a uni	t vector parallel to the su Roorkee 1985, 95; Kurukshe	m of the vectors 2i + 4j – 5k and etra CEE 1998; UPSEAT 1992, 2000]
	(a) 1	(b) – 1	(c) 2	(d) – 2
172.	If a is any vector in spac	e, then		[MP PET 1997]
	(a) $a = (a.i)i + (a.j)j + (a.k)$	k	(b) $\mathbf{a} = (\mathbf{a} \times \mathbf{i}) + (\mathbf{a} \times \mathbf{j}) + (\mathbf{a} \times \mathbf{j})$	× k)
	(c) $a = j(a.i) + k(a.j) + i(a.k)$	x)	(d) $\mathbf{a} = (\mathbf{a} \times \mathbf{i}) \times \mathbf{i} + (\mathbf{a} \times \mathbf{j})$	$\langle \mathbf{j} + (\mathbf{a} \times \mathbf{k}) \times \mathbf{k} \rangle$
173.	If a, b and c are unit vect	ors, then $ a - b ^2 + b - c ^2 +$	$ \mathbf{c}-\mathbf{a} ^2$ does not exceed	[IIT 1995, 2001]
	(a) 4	(b) 9	(c) 8	(d) 6
174.	If a and b are two unit	vectors, such that $\mathbf{a} + 2\mathbf{b}$ and	d 5 \mathbf{a} – 4 \mathbf{b} are perpendicul	lar to each other then the angle

between **a** and **b** is

[IIT Screening 2002]

(a)
$$45^\circ$$
 (b) 60° (c) $\cos^{-1}\left(\frac{1}{3}\right)$ (d) $\cos^{-1}\left(\frac{2}{3}\right)$
175. **a**, **b**, **c** are three vectors, such that $\mathbf{a} + \mathbf{b} - \mathbf{c} = 0$, $|\mathbf{a}| = |\mathbf{l}|$, $|\mathbf{b}| = 2|$, $|\mathbf{c}| = 3$, then $\mathbf{a}, \mathbf{b}, \mathbf{c} - \mathbf{c}, \mathbf{a}$ is equal to [AIEEE 2003]
(a) \circ (b) -7 (c) 7 (d) 1
176. A unit vector in xy -plane that makes an angle 45° with the vectors $\mathbf{i} + \mathbf{j}$ and an angle of 60° with the vector
(3) $-4\mathbf{j}$ is
[Kurukabetra CEE 2003]
(a) \mathbf{i} (b) $\frac{1}{\sqrt{2}}(\mathbf{d} - \mathbf{j})$ (c) $\frac{1}{\sqrt{2}}d + \mathbf{j}$ (d) None of these
177. The angle between the vectors $\mathbf{a} + \mathbf{b}$ and \mathbf{a} \mathbf{b} , when $\mathbf{a} = (1, 1, 4)$ and $\mathbf{b} = (1, -1, 4)$ is **[Karnataka CET 2003]**
(a) 90° (b) 45° (c) 30° (d) 15°
178. Let $\mathbf{u} = \mathbf{i} + \mathbf{j} \cdot \mathbf{v} = \mathbf{i} - \mathbf{j}$ and $\mathbf{w} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$. If \mathbf{n} is a unit vector such that $\mathbf{u} \cdot \mathbf{n} = 0$ and $\mathbf{v} \cdot \mathbf{n} = 0$, then $|\mathbf{w}, \mathbf{n}|$ is equal to
[AIEEE 2003]
(a) \circ (b) 1 (c) 2 (d) 3
179. If a, b, c are the p^0, q^0, r^0 the terms of an H^p and $\mathbf{u} = (q - r)\mathbf{k} + (r - p)\mathbf{k}$, $\mathbf{v} = \frac{1}{a} + \frac{1}{b} + \frac{k}{c}$, then
(a) \mathbf{u}, \mathbf{v} are parallel vectors (b) \mathbf{u}, \mathbf{v} are orthogonal vectors (c) $\mathbf{u} \cdot \mathbf{v} = 1$ (d)
 $\mathbf{u} \cdot \mathbf{v} = \mathbf{i} + \mathbf{j} + \mathbf{i} + \mathbf{j}$
180. ABC is an equilateral triangle of side a. The value of $A\overline{B}$, $B\overline{C} + B\overline{C}$, $A\overline{C} + \overline{CA}$, $A\overline{B}$ is equal to
(a) $\frac{3a^2}{2}$ (b) $3a^2$ (c) $-\frac{3a^2}{2}$ (d) None of these
181. If $\mathbf{e}_1 = (0,1,1)$ and $\mathbf{e}_2 = (1,1,-1)$ and \mathbf{a} and \mathbf{b} are two vectors such that $\mathbf{e}_1 = 2a + b$ and $\mathbf{e}_2 = a + 2b$ then angle
between \mathbf{a} and \mathbf{b} is (b) ces $-1\left(\frac{7}{11}\right)$ (c) $\cos^{-1}\left(\frac{-7}{11}\right)$ (d) $\cos^{-1}\left(\frac{6\sqrt{2}}{11}\right\right)$
182. A vector whose modulus is $\sqrt{51}$ i and makes the same angle with $\mathbf{a} - \frac{1-2\mathbf{j} + 2\mathbf{k}}{5}$, $\mathbf{b} - \frac{-41 - 3\mathbf{k}}{5}$ and $\mathbf{c} = \mathbf{j}$, will be [Roorkeed
(a) $5i + 5j + \mathbf{k}$ (b) $5i + j - 5\mathbf{k}$ (c) $5i + j + 5\mathbf{k}$ (d) $126i - j - 5\mathbf{k}$)
183. In a right angled triangle ABC, the hypotenues $AB = p$, the

186. The value of x for which the angle between the vectors $\mathbf{a} = x\mathbf{i} - 3\mathbf{j} - \mathbf{k}$ and $\mathbf{b} = 2x\mathbf{i} + x\mathbf{j} - \mathbf{k}$ is acute and the angle between the vector **b** and *y*-axis lies between $\frac{\pi}{2}$ and π are [DCE 2001] (c) -2, -3 **187.** If **a**, **b**, **c** are linearly independent vectors and $\Delta = \begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{a} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{c} & \mathbf{c} \cdot \mathbf{c} \end{vmatrix}$, then (a) $\Delta = 0$ (b) ... (d) 1, 2 (c) $\Delta = any non-zero value$ (d) None of these **188.** The position vectors of the points A, B and C are i+j+k, i+5j-k and 2i+3j+5k respectively. The greatest angle of the triangle ABC is (c) $\cos^{-1}\left(\frac{2}{3}\right)$ (d) $\cos^{-1}\left(\frac{5}{7}\right)$ (a) 135° (b) 90° **Component of Vector Basic Level** 189. If a and b are two non-zero vectors, then the component of b along a is [MP PET 1991] (b) $\frac{(\mathbf{a} \cdot \mathbf{b})\mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}$ (a) $\frac{(a \cdot b)a}{b \cdot b}$ (c) $\frac{(a \cdot b)b}{a \cdot b}$ (d) $\frac{(\mathbf{a} \cdot \mathbf{b})\mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}$ **190.** Projection of the vector $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ in the direction of the vector $4\mathbf{i} - 4\mathbf{j} + 7\mathbf{k}$ will be [Rajasthan PET 1990; MNR 1980; MP PET 2002; UPSEAT 2002] (a) $\frac{5\sqrt{6}}{10}$ (d) $\frac{\sqrt{6}}{19}$ (b) $\frac{9}{19}$ (c) $\frac{19}{9}$ **191.** If $\mathbf{a} = 4\mathbf{i} + 6\mathbf{j}$ and $b = 3\mathbf{j} + 4\mathbf{k}$, then the component of **a** along **b** is [IIT Screening 1989; MNR 1983, 87; UPSEAT 2000] (a) $\frac{18}{10\sqrt{3}}(3\mathbf{j}+4\mathbf{k})$ (b) $\frac{18}{25}(3\mathbf{j}+4\mathbf{k})$ (c) $\frac{18}{\sqrt{3}}(3\mathbf{j}+4\mathbf{k})$ (d) (3j+4k)**192.** The projection of vector $2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$ on the vector $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ will be [Rajasthan PET 1984, 90, 97, 99] (a) $\frac{1}{\sqrt{14}}$ (b) $\frac{2}{\sqrt{14}}$ (c) $\frac{3}{\sqrt{14}}$ (d) $\sqrt{14}$ **193.** If vector $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$ and vector $\mathbf{b} = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$, then $\frac{\text{Projection of vector } \mathbf{a} \text{ on vector } \mathbf{b}}{\text{Projection of vector } \mathbf{b} \text{ on vector } \mathbf{a}} = \frac{1}{2} \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ [MP PET 1994, 1999] (a) $\frac{3}{7}$ (b) $\frac{1}{2}$ (c) 3 (d) 7 **194.** The projection of **a** along **b** is [Rajasthan PET 1995] (a) $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$ (b) $\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a}|}$ (c) $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}$ (d) $\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{b}|}$ **195.** If $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 5\mathbf{i} - 3\mathbf{j} + \mathbf{k}$, then the projection of **b** on **a** is [Karnataka CET 2002] (c) 5 (d) 6 **196.** The projection of the vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$ along the vector \mathbf{j} is [Kerala (Engg.) 2002] (d) - 1 (b) 0 (c) 2 **197.** If \hat{a} is a unit vector and **b**, a non-zero vector not parallel to \hat{a} , then the vector $\mathbf{b} - (\hat{a} \cdot \mathbf{b})\hat{a}$ is (b) At right angles to \hat{a} (a) Parallel to b (c) Parallel to \hat{a} (d) At right angles to b Advance Level

198. If $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$, then a vector in the direction of \mathbf{a} and having magnitude as $|\mathbf{b}|$ is [IIT 1983] (b) $\frac{7}{3}(\mathbf{i}+2\mathbf{j}+2\mathbf{k})$ (c) $\frac{7}{9}(\mathbf{i}+2\mathbf{j}+2\mathbf{k})$ (d) None of these (a) 7(i + j + k)**199.** The vector $\mathbf{b} = 3\mathbf{j} + 4\mathbf{k}$ is to be written as the sum of a vector \mathbf{b}_1 parallel to $\mathbf{a} = \mathbf{i} + \mathbf{j}$ and a vector \mathbf{b}_2 perpendicular to **a**. Then $\mathbf{b}_1 =$ [MNR 1993; UPSEAT 2000] (c) $\frac{1}{2}(i+j)$ (a) $\frac{3}{2}(i+j)$ (b) $\frac{2}{3}(i+j)$ (d) $\frac{1}{3}(i+j)$ **200.** The components of a vector **a** along and perpendicular to the non-zero vector **b** are respectively [IIT 1988] (a) $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}, \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}$ (b) $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}, \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{b}|}$ (c) $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}, \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$ (d) $\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}, \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{b}|}$ **201.** Let $\mathbf{b} = 4\mathbf{i} + 3\mathbf{j}$ and \mathbf{c} be two vectors perpendicular to each other in the *xy*-plane. All vectors in the same plane having projections 1 and 2 along **b** and **c** respectively, are given by [IIT 1987] (c) $2\mathbf{i} + \mathbf{j}, -\frac{2}{5}\mathbf{i} - \frac{11}{5}\mathbf{j}$ (d) $2\mathbf{i} - \mathbf{j}, -\frac{2}{5}\mathbf{i} + \frac{11}{5}\mathbf{j}$ (a) $2i - j, \frac{2}{5}i + \frac{11}{5}j$ (b) $2i + j, -\frac{2}{5}i + \frac{11}{5}j$ **202.** Let $\mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{c} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$ be three vectors. A vector in the plane of **b** and **c** whose projection on **a** is of magnitude $\sqrt{2/3}$ is [IIT 1993] (a) 2i + 3j - 3k(b) 2i + 3j + 3k(c) -2i - j + 5k(d) 2i + j + 5kWork done by a Force **Basic Level 203.** If the position vectors of *A* and *B* be $6\mathbf{i} + \mathbf{j} - 3\mathbf{k}$ and $4\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$, then the work done by the force $\vec{F} = \mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$ in displacing a particle from A to B is [MP PET 1987] (c) – 15 units (a) 15 units (b) 17 units (d) None of these **204.** If the force $\vec{F} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ moves from $\mathbf{i} + \mathbf{j} - \mathbf{k}$ to $2\mathbf{i} - \mathbf{j} + \mathbf{k}$, then work done will be represented by [Ranchi BIT 1992] (a) 3 (c) 5 (d) 6 (b) 4 **205.** The work done by the force $\vec{F} = 2i - 3j + 2k$ in displacing a particle from the point (3, 4, 5) to the point (1, 2, 3) is [MP PET 1994; Kurukshetra CEE 2002] (a) 2 units (b) 3 units (c) 4 units (d) 5 units **206.** The work done in moving an object along the vector $3\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}$, if the applied force is $\vec{F} = 2\mathbf{i} - \mathbf{j} - \mathbf{k}$, is [MP PET 1997, 2 (a) 7 (b) 8 (c) 9 (d) 10 **207.** A force $\vec{F} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$ acts at a point *A* whose position vector is $2\mathbf{i} - \mathbf{j}$. If point of application of \vec{F} moves from *A* to the point B with position vector $2\mathbf{i} + \mathbf{j}$, then work done by \vec{F} is [Pb. CET 2000] (d) None of these (a) 4 (b) 20 (c) 2 Advance Level **208.** Force 3i + 2j + 5k and 2i + j - 3k are acting on a particle and displace it from the point 2i - j - 3k to the point $4\mathbf{i} - 3\mathbf{j} + 7\mathbf{k}$, then work done by the force is [MP PET 1995]

(a) 30 units (b) 36 units (c) 24 units (d) 18 units

209.	A force of magnitude 5 un	its acting along the vector 2	$\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ displaces the point	of application from (1, 2, 3)
	to (5, 3, 7), then the work	done is		[Kerala (Engg.) 2002]
	(a) 50/7	(b) 50/3	(c) 25/3	(d) 25/4
210.	If forces of magnitudes 6	and 7 units acting in the dir	rections $\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and $2\mathbf{i} - \mathbf{k}$	$3\mathbf{j} - 6\mathbf{k}$ respectively act on a
	particle which is displaced	from the point $P(2, -1, -3)$ to	Q(5, -1, 1), then the work of	done by the forces is
	(a) 4 units	(b) – 4 units	(c) 7 units	(d) – 7 units
			Vector or Cross	Product of Two Vectors
<u> </u>				Troudet of Two vectors
		Basic Le	evel	
211.	If $\mathbf{u} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{v} = 6\mathbf{i}$	$-3\mathbf{j}+2\mathbf{k}$, then a unit vector po	erpendicular to both ${f u}$ and ${f v}$	v is [MP PET 1987]
	(a) $i - 10j - 18k$	(b) $\frac{1}{\sqrt{17}} \left(\frac{1}{5} \mathbf{i} - 2\mathbf{j} - \frac{18}{5} \mathbf{k} \right)$	(c) $\frac{1}{\sqrt{473}}$ (7 i - 10 j - 18 k)	(d) None of these
212.	$(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) =$			[MP PET 1987]
	(a) $2\mathbf{a} \times \mathbf{b}$	(b) $\mathbf{a} \times \mathbf{b}$	(c) $a^2 - b^2$	(d) None of these
213.	If $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$, then which	relation is correct	[Rajasthan PET 19	85; Roorkee 1981; AIEEE 2002]
	(a) $a = b = c = 0$	(b) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{c} = \mathbf{c} \cdot \mathbf{a}$	(c) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$	(d) None of these
214.	If θ be the angle between	the vectors a and b and $ \mathbf{a} \times \mathbf{b}$	$ \mathbf{a} = \mathbf{a} \cdot \mathbf{b}$, then $\theta = $ [Rajasthan	PET 1990; MP PET 1990; UPSEAT 200
	(a) <i>π</i>	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{4}$	(d) o
215.	If a and b are two vectors	such that $\mathbf{a} \cdot \mathbf{b} = 0$ and $\mathbf{a} \times \mathbf{b} =$	0,then [MNR 198	38; IIT 1989; UPSEAT 2000, 01]
	(a) a is parallel to b		(b) a is perpendicular to b)
	(c) Either a or b is a null v	vector	(d)	None of these
216.	$(2\hat{\mathbf{a}} + 3\hat{\mathbf{b}}) \times (5\hat{\mathbf{a}} + 7\hat{\mathbf{b}}) =$			[MP PET 1988]
	(a) $\hat{\mathbf{a}} \times \hat{\mathbf{b}}$	(b) $\hat{\mathbf{b}} \times \hat{\mathbf{a}}$	(c) $\hat{\mathbf{a}} + \hat{\mathbf{b}}$	(d) $7\hat{a} + 10\hat{b}$
217.	Which of the following is r	not a property of vectors		[MP PET 1987]
	(a) $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$	(b) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$	(c) $(\mathbf{u} \times \mathbf{v})^2 = \mathbf{u}^2 \cdot \mathbf{v}^2 - (\mathbf{u} \cdot \mathbf{v})^2$	(d) $\mathbf{u}^2 = \mathbf{u} ^2$
218.	The number of vectors of u	init length perpendicular to v	ectors a = $(1, 1, 0)$ and b = $($	(0, 1, 1) is
		[Ranchi BIT 1991	I; IIT 1987; Kurukshetra CEE 1	1998; DCE 2000; MP PET 2002]
	(a) Three	(b) One	(c) Two	(d) Infinite
219.	If $\mathbf{a} \neq 0$, $\mathbf{b} \neq 0$, $\mathbf{c} \neq 0$, then the	rue statement is		[MP PET 1991]
	(a) $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{c} + \mathbf{b}) \times \mathbf{a}$	(b) $a.(b+c) = -(b+c).a$	(c) $\mathbf{a} \times (\mathbf{b} - \mathbf{c}) = (\mathbf{c} - \mathbf{b}) \times \mathbf{a}$	(d) $a.(b-c) = (c-b).a$
220.	A unit vector which is perp	pendicular to $\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ and to	$\mathbf{i} - \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ is	[MP PET 1992]
	(a) $\frac{1}{\sqrt{5}}(2i-k)$	(b) $\frac{1}{\sqrt{5}}(-2i+k)$	(c) $\frac{1}{\sqrt{5}}(2i+j+k)$	(d) $\frac{1}{\sqrt{5}}(2i+k)$
221.	The unit vector perpendicu	lar to the $3i + 2j - k$ and $12i + 3i + 2j - k$	5j – 5k , is [Roorkee 19	979; Rajasthan PET 1989, 1991]
	(a) $\frac{5i - 3j + 9k}{\sqrt{115}}$	(b) $\frac{5\mathbf{i}+3\mathbf{j}-9\mathbf{k}}{\sqrt{115}}$	(c) $\frac{-5\mathbf{i}+3\mathbf{j}-9\mathbf{k}}{\sqrt{115}}$	(d) $\frac{5\mathbf{i}+3\mathbf{j}+9\mathbf{k}}{\sqrt{115}}$
222.	The sine of the angle betw	een the two vectors $3i + 2j - k$	and $12\mathbf{i} + 5\mathbf{j} - 5\mathbf{k}$ will be	[Roorkee 1978]
		51	-64	-
	(a) $\frac{\sqrt{115}}{\sqrt{14}\sqrt{194}}$	(b) $\frac{31}{\sqrt{14}\sqrt{144}}$	(c) $\frac{\sqrt{64}}{\sqrt{14}\sqrt{194}}$	(d) None of these
223.	For any two vectors a and	b , if $\mathbf{a} \times \mathbf{b} = 0$, then		[Roorkee 1984]
	(a) a = o	(b) b = o	(c) Not parallel	(d) None of these

224.	For any vectors a , b , c . a ×	$(\mathbf{b} + \mathbf{c}) + \mathbf{b} \times (\mathbf{c} + \mathbf{a}) + \mathbf{c} \times (\mathbf{a} + \mathbf{b}) =$		[Roorkee 1981; Kerala (Engg.) 2002]
	(a) o	(b) $\mathbf{a} + \mathbf{b} + \mathbf{c}$	(c) [a b c]	(d) $\mathbf{a} \times \mathbf{b} \times \mathbf{c}$
225.	If $ \mathbf{a} = 2$, $ \mathbf{b} = 5$ and $ \mathbf{a} \times \mathbf{b} $	=8, then a . b is equal to		[Rajasthan PET 1991; AI CBSE 1984]
	(a) 0	(b) 2	(c) 4	(d) 6
226.	If $\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{b} = 6\mathbf{i}$	$-3\mathbf{j}+2\mathbf{k}$,then the value of $\mathbf{a} \times$	b is	[MNR 1978; Rajasthan PET 2001]
	(a) $2i + 2j - k$	(b) $6i - 3j + 2k$	(c) i - 10j - 18k	(d) $\mathbf{i} + \mathbf{j} + \mathbf{k}$
227.	A unit vector perpendicula	ar to the vector $4\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and	$-2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ is	[MNR 1995]
	(a) $\frac{1}{3}(i-2j+2k)$	(b) $\frac{1}{3}(-\mathbf{i}+2\mathbf{j}+2\mathbf{k})$	(c) $\frac{1}{3}(2i + j + 2k)$	(d) $\frac{1}{3}(2i-2j+2k)$
228.	A unit vector perpendicula	ar to each of the vector $2\mathbf{i} - \mathbf{j} + \mathbf{j}$	k and $3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$ is equivalent to the second secon	qual to [MP PET 2003]
	(a) $\frac{(-3i+5j+11k)}{\sqrt{155}}$	(b) $\frac{(3\mathbf{i} - 5\mathbf{j} + 11\mathbf{k})}{\sqrt{155}}$	(c) $\frac{(6\mathbf{i}-4\mathbf{j}-\mathbf{k})}{\sqrt{53}}$	(d) $\frac{(5i+3j)}{\sqrt{34}}$
229.	If $\mathbf{a} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = 3\mathbf{i}$	+ j + 2 k , then the unit vector j	perpendicular to a and	d b is [MP PET 1996]
	(a) $\frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}$	(b) $\frac{\mathbf{i}-\mathbf{j}+\mathbf{k}}{\sqrt{3}}$	(c) $\frac{-\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}$	(d) $\frac{\mathbf{i}-\mathbf{j}-\mathbf{k}}{\sqrt{3}}$
230.	If θ is the angle between τ	the vectors a and b , then $\frac{ \mathbf{a} \times \mathbf{a} }{ \mathbf{a} }$	$\frac{\mathbf{b} }{\mathbf{b} }$ equal to	[Karnataka CET 1999]
	(a) $\tan \theta$	(b) $-\tan\theta$	(c) $\cot \theta$	(d) $-\cot \theta$
231.	A vector perpendicular to	both of the vectors $\mathbf{i} + \mathbf{j} + \mathbf{k}$ as	nd i+j is	[Rajasthan PET 2000]
	(a) i+j	(b) i-j	(c) $c(\mathbf{i}-\mathbf{j}), c$ is a scal	ar (d) None of these
232.	A unit vector perpendicula	ar to the plane of $\mathbf{a} = 2\mathbf{i} - 6\mathbf{j} - 3$	$\mathbf{k}, \mathbf{b} = 4\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ is	[MP PET 2000]
	(a) $\frac{4\mathbf{i}+3\mathbf{j}-\mathbf{k}}{\sqrt{26}}$	(b) $\frac{2\mathbf{i}-6\mathbf{j}-3\mathbf{k}}{7}$	(c) $\frac{3\mathbf{i}-2\mathbf{j}+6\mathbf{k}}{7}$	$(d) \frac{2\mathbf{i}-3\mathbf{j}-6\mathbf{k}}{7}$
233.	The unit vector perpendice	ular to the both the vectors \mathbf{i} -	$-2\mathbf{j}+3\mathbf{k}$ and $\mathbf{i}+2\mathbf{j}-\mathbf{k}$	is [DCE 2001]
	(a) $\frac{1}{\sqrt{3}}(-i+j+k)$	(b) $(-i + j + k)$	(c) $\frac{(\mathbf{i}+\mathbf{j}-\mathbf{k})}{\sqrt{3}}$	(d) None of these
234.	The unit vector perpendice	ular to the vectors $\mathbf{i} - \mathbf{j} + \mathbf{k}$ and	d $2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ is	[Karnataka CET 2001]
	(a) $\frac{-2\mathbf{i}+3\mathbf{j}+5\mathbf{k}}{\sqrt{30}}$	(b) $\frac{-2\mathbf{i}+5\mathbf{j}+6\mathbf{k}}{\sqrt{38}}$	(c) $\frac{-2\mathbf{i}+3\mathbf{j}+5\mathbf{k}}{\sqrt{38}}$	(d) $\frac{-2\mathbf{i}+4\mathbf{j}+5\mathbf{k}}{\sqrt{38}}$
235.	If $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} - \mathbf{k}$ and $\mathbf{b} = \mathbf{i} + \mathbf{k}$	$4\mathbf{j} - 2\mathbf{k}$, then $\mathbf{a} \times \mathbf{b}$ is		[MP PET 2001]
	(a) $10i + 2j + 11k$	(b) $10i + 3j + 11k$	(c) $10i - 3j + 11k$	(d) $10i - 3j - 10k$
236.	If $ \mathbf{a} = 4$, $ \mathbf{b} = 2$ and the an	gle between a and b is $\frac{\pi}{6}$, the	en $(\mathbf{a} \times \mathbf{b})^2$ is equal to	[AIEEE 2002]
	(a) 48	(b) 16	(c) a	(d) None of these
237.	$\mathbf{a} = 3\mathbf{i} - 5\mathbf{j}$ and $\mathbf{b} = 6\mathbf{i} + 3\mathbf{j}$ a	are two vectors and c is a vect	for such that $\mathbf{c} = \mathbf{a} \times \mathbf{b}$,	then $ a : b : c $ is [AIEEE 2002]
	(a) $\sqrt{34} : \sqrt{45} : \sqrt{39}$	(b) $\sqrt{34}$: $\sqrt{45}$: 39	(c) 34:39:45	(d) 39:35:34
238.	$3\lambda \mathbf{c} + 2\mu(\mathbf{a} \times \mathbf{b}) = 0$, then			[AIEEE 2002]
	(a) $3\lambda + 2\mu = 0$	(b) $3\lambda = 2\mu$	(c) $\lambda = \mu$	(d) $\lambda + \mu = 0$
239.	If $\mathbf{a} = 2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$ and $\mathbf{b} = \mathbf{i}$	$+2\mathbf{j}+3\mathbf{k}$, then $ \mathbf{a} \times \mathbf{b} $ is		[UPSEAT 2002]
	(a) $11\sqrt{5}$	(b) $11\sqrt{3}$	(c) $11\sqrt{7}$	(d) $11\sqrt{2}$
240.	The unit vector perpendicu	ular to both $\mathbf{i} + \mathbf{j}$ and $\mathbf{j} + \mathbf{k}$ is		[Kerala (Engg.) 2002]

Vector Algebra 303 (c) $\frac{\mathbf{i}+\mathbf{j}-\mathbf{k}}{\sqrt{3}}$ (d) $\frac{\mathbf{i}-\mathbf{j}+\mathbf{k}}{\sqrt{3}}$ (b) i + j + k(a) $\mathbf{i} - \mathbf{j} + \mathbf{k}$ **241.** If $|\mathbf{a} \times \mathbf{b}| = 4$ and $|\mathbf{a} \cdot \mathbf{b}| = 2$, then $|\mathbf{a}|^2 |\mathbf{b}|^2 =$ [Karnataka CET 2003] (a) 2 (b) 6 (c) 8 (d) 20 **242.** If $(\mathbf{a} \times \mathbf{b})^2 + (\mathbf{a} \cdot \mathbf{b})^2 = 144$ and $|\mathbf{a}| = 4$, then $|\mathbf{b}| = 144$ [EAMCET 1994] (a) 16 (b) 8 (c) 3 (d) 12 **243.** The unit vector perpendicular to both the vectors $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and making an acute angle with the vector k is (a) $-\frac{1}{\sqrt{26}}(4i-j-3k)$ (b) $\frac{1}{\sqrt{26}}(4i-j-3k)$ (c) $\frac{1}{\sqrt{26}}(4i-j+3k)$ (d) None of these **244.** The angle between $3(\mathbf{a} \times \mathbf{b})$ and $\frac{1}{2}(\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\hat{\mathbf{a}})$ is [Pb. CET 1996] (d) $\cos^{-1}\left(\frac{3}{4}\right)$ (a) 30° (b) 60° (c) 90° Advance Level **245.** If the vectors **a**, **b** and **c** are represented by, the sides BC, CA and AB respectively of the $\triangle ABC$, then [IIT Screening 2000] (a) a.b+b.c+c.a=0(b) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$ (c) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{c} = \mathbf{c} \cdot \mathbf{a}$ (d) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a} = 0$ **246.** $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} \neq 0$, where **a**, **b** and **c** are coplanar vectors, then for some scalar **k** [Roorkee 1985; Rajasthan PET 1997] (a) $\mathbf{a} + \mathbf{c} = k\mathbf{b}$ (b) a + b = kc(c) $\mathbf{b} + \mathbf{c} = k\mathbf{a}$ (d) None of these **247.** If $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} \neq \mathbf{0}$ and $\mathbf{a} + \mathbf{c} \neq \mathbf{0}$, then [Rajasthan PET 1999] (a) $(\mathbf{a} + \mathbf{c}) \perp \mathbf{b}$ (b) $(a + c) \| b$ (c) (a + c) = b(d) None of these **248.** If **a** and **b** are two vectors, then $(\mathbf{a} \times \mathbf{b})^2$ equals [Roorkee 1975, 1979, 1981, 1985] (a) $\begin{vmatrix} a.b & a.a \\ b.b & b.a \end{vmatrix}$ (b) $\begin{vmatrix} a.a & a.b \\ b.a & b.b \end{vmatrix}$ (c) $\begin{vmatrix} a \cdot b \\ b \cdot a \end{vmatrix}$ (d) None of these **249.** Given $\mathbf{a} = \mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{b} = -\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = -\mathbf{i} + 2\mathbf{j} - \mathbf{k}$. A unit vector perpendicular to both $\mathbf{a} + \mathbf{b}$ and $\mathbf{b} + \mathbf{c}$ is [Karnataka CET 1993] (d) $\frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}$ (a) **i** (b) **j** (c) **k 250.** For any two vectors **a** and **b**, $(\mathbf{a} \times \mathbf{b})^2$ is equal to [Roorkee 1975, 1979, 1981, 1985] (b) $a^2 + b^2$ (a) $a^2 - b^2$ (c) $a^2b^2 - (\mathbf{a} \cdot \mathbf{b})^2$ (d) None of these **251.** If vectors $\vec{A} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, $\vec{B} = \mathbf{i} + \mathbf{j} + 5\mathbf{k}$ and \vec{C} form a left handed system, then \vec{C} is [Roorkee 1999] (a) 11i - 6j - k(b) -11i + 6j + k(c) 11i - 6j + k(d) -11i + 6j - k**252.** $(r.i)(r \times i) + (r.j)(r \times j) + (r.k)(r \times k)$ is equal to (a) 3r (b) **r** (c) **0** (d) None of these **253.** If **a**, **b**, **c** are noncoplanar vectors such that $\mathbf{b} \times \mathbf{c} = \mathbf{a}$, $\mathbf{a} \times \mathbf{b} = \mathbf{c}$ and $\mathbf{c} \times \mathbf{a} = \mathbf{b}$, then (d) None of these (a) |a| = 1(b) $|\mathbf{b}| = 1$ (c) $|\mathbf{a}| + |\mathbf{b}| + |\mathbf{c}| = 3$

254. If $\overrightarrow{AB} = \mathbf{b}$ and $\overrightarrow{AC} = \mathbf{c}$, then the length of the perpendicular from A to the line BC is

304	Vector Algebra			
	(a) $\frac{ \mathbf{b} \times \mathbf{c} }{ \mathbf{b} + \mathbf{c} }$	(b) $\frac{ \mathbf{b} \times \mathbf{c} }{ \mathbf{b} - \mathbf{c} }$	(c) $\frac{1}{2} \frac{ \mathbf{b} \times \mathbf{c} }{ \mathbf{b} - \mathbf{c} }$	(d) None of these
			Area of pai	rallelogram and Triangle
		Basic L	evel	
255.	The area of a parallelogra	um whose two adjacent sides a	are represented by the vecto	or 3 i – k and i + 2 j is [MNR 198
	(a) $\frac{1}{2}\sqrt{17}$	(b) $\frac{1}{2}\sqrt{14}$	(c) $\sqrt{41}$	(d) $\frac{1}{2}\sqrt{7}$
256.	The area of the parallelog	ram whose diagonals are $\mathbf{a} =$	$3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$	is
			[MNR 1985; MP PET 1	988,93; Tamilnadu Engg. 2002]
	(a) $10\sqrt{3}$	(b) $5\sqrt{3}$	(c) 8	(d) 4
²57·	The area of a parallelogra	um whose diagonals coincide v	with the following pair of ve	ectors is $5\sqrt{3}$. The vectors are [Kurukshetra CEE 1993]
	(a) $3i + 2j - k$, $3i - j + 4k$	(b) $\frac{3}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} - \mathbf{k}, \ 2\mathbf{i} - 6\mathbf{j} + 8\mathbf{k}$	(c) $3i + j - 2k$, $i - 3j + 8k$	(d) None of these
258.	If $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$	represents the adjacent side	es of a parallelogram, then t	the area of this parallelogram
	is			
			ee 1978, 1979; MP PET 1990; R	[ajasthan PET 1988, 1989, 1991]
	(a) $4\sqrt{3}$	(D) $6\sqrt{3}$	(c) $8\sqrt{3}$	(d) $16\sqrt{3}$
²59·	If the vectors $\mathbf{I} = 3\mathbf{J} + 2\mathbf{K}$, -		us of a parallelografii, then i	
	(a) $\sqrt{21}$	(b) $\frac{\sqrt{21}}{2}$	(c) $2\sqrt{21}$	(d) $\frac{\sqrt{21}}{4}$
260.	The area of a parallelogra	ım whose adjacent sides are i	$\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and $2\mathbf{i} + \mathbf{j} - 4\mathbf{k}$, is	[MP PET 1996, 2000]
	(a) $5\sqrt{3}$	(b) $10\sqrt{3}$	(c) $5\sqrt{6}$	(d) $10\sqrt{6}$
261.	If the diagonals of a par	allelogram are represented t	by the vectors $3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and	d $\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$, then its area in
	square units is			
				[MP PET 1998]
162	(a) $5\sqrt{3}$	(b) $6\sqrt{3}$	(c) $\sqrt{26}$	(d) $\sqrt{42}$
202.	units) is	ani whose aujacent sides are	given by the vectors $\mathbf{I} + 2\mathbf{j} +$	$3\mathbf{k}$ and $-3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ (in square
	·			[Karnataka CET 2001]
	(a) $\sqrt{180}$	(b) $\sqrt{140}$	(c) $\sqrt{80}$	(d) $\sqrt{40}$
263.	The area of the parallelog	fram whose diagonals are $\frac{3}{2}$ i	$+\frac{1}{2}\mathbf{j}-\mathbf{k}$ and $2\mathbf{i}-6\mathbf{j}+8\mathbf{k}$ is	[UPSEAT 2002]
	(a) $5\sqrt{3}$	(b) $5\sqrt{2}$	(c) $25\sqrt{3}$	(d) $25\sqrt{2}$
64.	The area of the triangle w	hose two sides are given by 2	$2\mathbf{i} - 7\mathbf{j} + \mathbf{k}$ and $4\mathbf{j} - 3\mathbf{k}$ is	[EAMCET 1990]
	(a) 17	(b) $\frac{17}{2}$	(c) $\frac{17}{4}$	(d) $\frac{1}{2}\sqrt{389}$
265.	If $3i + 4j$ and $-5i + 7j$ are	- the vector sides of any triang	le, then its area is given by	- [Rajasthan PET 1987, 1990]
	(a) 41	(b) 47	(c) $\frac{41}{2}$	(d) $\frac{47}{1}$
			2	2

Advance Level

266. Let **a**, **b**, **c** be the position vectors of the vertices of a triangle *ABC*. The vector area of triangle *ABC* is

[MP PET 1990; EAMCET 2003]

[MP PET 1989]

(a)
$$\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}$$
 (b) $\frac{1}{4} (\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a})$ (c) $\frac{1}{2} (\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a})$ (d) $\mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$

267. Consider a tetrahedron with faces F_1, F_2, F_3, F_4 . Let $\overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{V_3}, \overrightarrow{V_4}$ be the vectors whose magnitudes are respectively equal to areas of F_1, F_2, F_3, F_4 and whose directions are perpendicular to these faces in outward direction. Then $|\overrightarrow{V_1} + \overrightarrow{V_2} + \overrightarrow{V_3} + \overrightarrow{V_4}|$ equals

(a) 1 (b) 4 (c) 0 (d) None of these

268. A unit vector perpendicular to the plane determined by the points (1, -1, 2), (2, 0, -1) and (0, 2, 1) is [IIT 1983; MNR 19

(a)
$$\pm \frac{1}{\sqrt{6}}(2i + j + k)$$
 (b) $\frac{1}{\sqrt{6}}(i + 2j + k)$ (c) $\frac{1}{\sqrt{6}}(i + j + k)$ (d) $\frac{1}{\sqrt{6}}(2i - j - k)$

269. The position vectors of the points *A*, *B* and *C* are $\mathbf{i} + \mathbf{j}$, $\mathbf{j} + \mathbf{k}$ and $\mathbf{k} + \mathbf{i}$ respectively. The vector area of the $\triangle ABC = \pm \frac{1}{2}\alpha$, where $\vec{\alpha} =$

(a) $-\mathbf{i} + \mathbf{j} + \mathbf{k}$ (b) $\mathbf{i} - \mathbf{j} + \mathbf{k}$ (c) $\mathbf{i} + \mathbf{j} - \mathbf{k}$ (d) $\mathbf{i} + \mathbf{j} + \mathbf{k}$ **270.** The area of the triangle having vertices as $\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$, $-2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$, $4\mathbf{i} - 7\mathbf{j} + 5\mathbf{k}$ is [MP PET 2004] (a) 26 (b) 11 (c) 36 (d) 0

271. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = 10\mathbf{a} + 2\mathbf{b}$ and $\overrightarrow{OC} = \mathbf{b}$, where *O*, *A* and *C* are noncollinear points. Let *p* denote the area of the quadrilateral *OABC*, and *q* denote the area of the parallelogram with *OA* and *OC* as adjacent sides. Then $\frac{p}{q}$ is equal to

(a) 4 (b) 6 (c) $\frac{1}{2} \frac{|\mathbf{a} - \mathbf{b}|}{|\mathbf{a}|}$ (d) None of these

272. The adjacent sides of a parallelogram are along $\mathbf{a} = \mathbf{i} + 2\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} + \mathbf{j}$. The angles between the diagonals are (a) 30° and 150° (b) 45° and 135° (c) 90° and 90° (d) None of these

273. Four points with position vectors 7i-4j+7k, i-6j+10k, -i-3j+4k and 5i-j+k form a
(a) Rhombus
(b) Parallelogram but not rhombus

(c) Rectangle

274. In a $\triangle ABC$, $\overrightarrow{AB} = r\mathbf{i} + \mathbf{j}$, $\overrightarrow{AC} = s\mathbf{i} - \mathbf{j}$. If the area of triangle is of unit magnitude, then [DCE 1996] (a) |r-s| = 2 (b) |r+s| = 1 (c) |r+s| = 2 (d) |r-s| = 1

(d) Square

306	Vector	Algebra
-----	--------	---------

		\rightarrow	(d) \overrightarrow{CD}	
	(c) A vectors having	the same direction as F	(u) $CP \times F$	
76.	A force $\vec{F} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$ a	acts at a point A, whose position	on vector is 2i – j. The mome	ent of \vec{F} about the origin is [Karna
	(a) $i + 2j - 4k$	(b) $i - 2j - 4k$	(c) $i + 2j + 4k$	(d) $i - 2j + 4k$
		Adv	vance Level	
77.	Let the point <i>A</i> , <i>B</i> , a	nd P be (-2, 2, 4), (2, 6, 3) ar	nd (1, 2, 1) respectively. The	magnitude of the moment of the
	force represented by	\overrightarrow{AB} and acting at A about P is	3	[MP PET 1987]
	(a) 15	(b) $3\sqrt{41}$	(c) $3\sqrt{57}$	(d) None of these
8.	The moment about the points <i>A</i> and <i>B</i> have t	he point $M(-2, 4, -6)$ of the for the coordinates (1, 2, -3) and	orce represented in magnitue (3, -4, 2) respectively, is	de and position by \overrightarrow{AB} where the [MP PET 2000]
	(a) $8i - 9j - 14k$	(b) $2i - 6j + 5k$	(c) $-3i + 2j - 3k$	(d) $-5i + 8j - 8k$
9.	A force of 39 <i>kg</i> . <i>wt</i> about a line through	is acting at a point P (-4, 2, the origin having the direction	5) in the direction of $12\mathbf{i} - 4$ n of $2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ is	$\mathbf{j}-3\mathbf{k}$. The moment of this force
	(a) 76 units	(b) –76 units	(c) $42i + 144j - 24k$	(d) None of these
30.	If the magnitude of r	moment about the point $\mathbf{j} + \mathbf{k}$	of a force $\mathbf{i} + \alpha \mathbf{j} - \mathbf{k}$ acting the	brough the point $\mathbf{i} + \mathbf{j}$ is $\sqrt{8}$, then
	the value of α is			
				[Tamilnadu (Engg.) 2002]
				(d) 4
	(a) 1	(b) 2	(c) 3	(u) 4
	(a) 1	(b) 2	(0) 3	Scalar Triple Product
	(a) 1	(b) 2 Bas	sic Level	Scalar Triple Product
	(a) 1	(b) 2 Bas	sic Level	Scalar Triple Product
31.	(a) 1 a.[(b+c)×(a+b+c)] $\frac{1}{2}$	(b) 2 Bas	(C) 3 sic Level	Scalar Triple Product
31.	(a) 1 a .[(b + c)×(a + b + c)] $\frac{1}{2}$ (a) [a b c]	(b) 2 Bas is equal to [(b) 2[a b c]	(c) 3 sic Level [Rajasthan PET 1988, 2002; IIT (c) 3[a b c]	(d) 4 Scalar Triple Product (1981; UPSEAT 2003; MP PET 2004] (d) 0
31.	 (a) 1 a.[(b+c)×(a+b+c)] ^{1/2} (a) [a b c] If a, b, c are three not 	(b) 2 Bas is equal to (b) 2[a b c] on-coplanar vector, then $\frac{a \cdot b \times}{c \times a \cdot}$	(c) 3 sic Level [Rajasthan PET 1988, 2002; IIT (c) 3[a b c] $\frac{cc}{c.b} + \frac{b.a \times c}{c.a \times b} =$	(d) 4 Scalar Triple Product * 1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003]
31.	 (a) 1 a.[(b+c)×(a+b+c)] ¹/₂ (a) [a b c] If a, b, c are three not (a) 0 	(b) 2 Basis equal to (b) 2[a b c] on-coplanar vector, then $\frac{a \cdot b \times c}{c \times a}$. (b) 2	(c) 3 sic Level (Rajasthan PET 1988, 2002; IIT (c) 3[a b c] $\frac{c}{c} + \frac{b \cdot a \times c}{c \cdot a \times b} =$ (c) -2	(d) 4 Scalar Triple Product (1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these
31. 32.	 (a) 1 a.[(b+c)×(a+b+c)] i (a) [a b c] If a, b, c are three not (a) 0 If i, j, k are the unit for a set the unit	(b) 2 Bas is equal to [(b) 2[a b c] on-coplanar vector, then $\frac{a \cdot b \times c}{c \times a \cdot c}$ (b) 2 vectors and mutually perpend	(c) 3 sic Level (c) 3[a b c] $\frac{c}{c} + \frac{b \cdot a \times c}{c \cdot a \times b} =$ (c) -2 icular, then [i k j] is equal to	(d) 4 Scalar Triple Product (1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these [Rajasthan PET 1986]
31. 32. 33.	 (a) 1 a.[(b+c)×(a+b+c)] i (a) [a b c] If a, b, c are three not (a) 0 If i, j, k are the unit √ (a) 0 	(b) 2 Bas is equal to [(b) 2[a b c] on-coplanar vector, then $\frac{a \cdot b \times c}{c \times a \cdot c}$ (b) 2 vectors and mutually perpend (b) -1	(c) 3 sic Level (a) 3[a b c] (c) 3[a b c] (c) -2 icular, then [i k j] is equal to (c) 1	Scalar Triple Product Scalar Triple Product '1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these [Rajasthan PET 1986] (d) None of these
31. 32. 33.	 (a) 1 a.[(b+c)×(a+b+c)] i (a) [a b c] If a, b, c are three not (a) 0 If i, j, k are the unit i (a) 0 If a = 2i + j - k, b = i + 	(b) 2 Bas is equal to (b) $2[\mathbf{a} \mathbf{b} \mathbf{c}]$ on-coplanar vector, then $\frac{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}{\mathbf{c} \times \mathbf{a}}$. (b) 2 vectors and mutually perpend (b) -1 $2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$, then	(c) 3 sic Level (c) 3[a b c] (c) 3[a b c] (c) 3[a b c] (c) -2 icular, then [i k j] is equal to (c) 1 a.(b×c) =	Scalar Triple Product Scalar Triple Product 1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these [Rajasthan PET 1986] (d) None of these [Rajasthan PET 1989, 2001]
31. 32. 33.	 (a) 1 a.[(b+c)×(a+b+c)] i (a) [a b c] If a, b, c are three not (a) 0 If i, j, k are the unit v (a) 0 If a = 2i + j - k, b = i + (a) 6 	(b) 2 Bas is equal to [(b) 2[a b c] on-coplanar vector, then $\frac{a \cdot b \times c}{c \times a \cdot c}$ (b) 2 vectors and mutually perpend (b) -1 (b) -1 (c) 2 Bas	(c) 3 sic Level [Rajasthan PET 1988, 2002; IIT (c) 3[a b c] (c) 3[b c] (c) -2 icular, then [i k j] is equal to (c) 1 a.(b×c) = (c) 12	Scalar Triple Product Scalar Triple Product "1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these [Rajasthan PET 1986] (d) None of these [Rajasthan PET 1989, 2001] (d) 24
31. 32. 33. 34.	(a) 1 a .[(b + c)×(a + b + c)] $\frac{1}{2}$ (a) [a b c] If a , b , c are three not (a) 0 If i , j , k are the unit v (a) 0 If a = 2 i + j - k , b = i + (a) 6 If a . b = b . c = c . a = 0	(b) 2 Bas is equal to [(b) 2[a b c] on-coplanar vector, then $\frac{a \cdot b \times c}{c \times a \cdot c}$ (b) 2 vectors and mutually perpend (b) -1 · 2j+k and c = i - j + 2k, then (b) 10 or a, b, c are a right handed	(c) 3 sic Level (a) 3[a b c] (c) 3[a b c] (c) 3[a b c] (c) -2 (c) 1 (c) 1 (c) 12 triad of mutually perpendicu	Scalar Triple Product Scalar Triple Product '1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these [Rajasthan PET 1986] (d) None of these [Rajasthan PET 1989, 2001] (d) 24 (d) 24 tlar vectors, then [a b c] =
31. 32. 33. 34.	(a) 1 a .[(b + c)×(a + b + c)] $\frac{1}{2}$ (a) [a b c] If a , b , c are three not (a) 0 If i , j , k are the unit v (a) 0 If a = 2 i + j - k , b = i + (a) 6 If a . b = b . c = c . a = 0	(b) 2 Bas is equal to (b) 2[a b c] on-coplanar vector, then $\frac{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}{\mathbf{c} \times \mathbf{a}}$. (b) 2 vectors and mutually perpend (b) -1 $\cdot 2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$, then (b) 10 or $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are a right handed	(c) 3 sic Level (c) 3[a b c] (c) 3[a b c] (c) 3[a b c] (c) -2 icular, then [i k j] is equal to (c) 1 a.(b×c) = (c) 12 triad of mutually perpendicu	Scalar Triple Product "1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these [Rajasthan PET 1986] (d) None of these [Rajasthan PET 1989, 2001] (d) 24 tlar vectors, then [a b c] = P PET 1994; Tamilnadu Engg. 2001]
31. 32. 33. 34.	(a) 1 a .[(b + c)×(a + b + c)] $\frac{1}{2}$ (a) [a b c] If a , b , c are three not (a) 0 If i , j , k are the unit v (a) 0 If a = 2 i + j - k , b = i + (a) 6 If a . b = b . c = c . a = 0 (a) a b c	(b) 2 Bas is equal to [(b) 2[a b c] on-coplanar vector, then $\frac{a \cdot b \times c}{c \times a \cdot c}$ (b) 2 vectors and mutually perpend (b) -1 $2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$, then (b) 10 or a , b , c are a right handed (b) 1	(c) 3 sic Level (c) 3[a b c] (c) 3[a b c] (c) -2 icular, then [i k j] is equal to (c) 1 a.(b×c) = (c) 12 triad of mutually perpendicu [M (c) -1	Scalar Triple Product Scalar Triple Product '1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these [Rajasthan PET 1986] (d) None of these [Rajasthan PET 1989, 2001] (d) 24 tlar vectors, then [a b c] = P PET 1994; Tamilnadu Engg. 2001] (d) A non-zero vector
31.33.33.34.35.36.	(a) 1 a .[(b + c)×(a + b + c)] $\frac{1}{2}$ (a) [a b c] If a , b , c are three not (a) 0 If i , j , k are the unit v (a) 0 If a = 2 i + j - k , b = i + (a) 6 If a . b = b . c = c . a = 0 (a) a b c i .(j × k)+ j .(k × i)+ k .(i	(b) 2 Bas is equal to (b) 2[a b c] on-coplanar vector, then $\frac{a \cdot b \times c}{c \times a}$. (b) 2 vectors and mutually perpend (b) -1 $2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$, then (b) 10 or a , b , c are a right handed (b) 1 $\times \mathbf{j} =$	(c) 3 sic Level (c) 3[a b c] (c) 3[a b c] (c) 3[a b c] (c) -2 icular, then [i k j] is equal to (c) 1 a.(b×c) = (c) 12 triad of mutually perpendicu [M (c) -1	Scalar Triple Product Scalar Triple Product '1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these [Rajasthan PET 1986] (d) None of these [Rajasthan PET 1989, 2001] (d) 24 tlar vectors, then [a b c] = P PET 1994; Tamilnadu Engg. 2001] (d) A non-zero vector [Karnataka CET 1994]
 31. 32. 33. 34. 35. 36. 	(a) 1 a .[(b + c)×(a + b + c)] i (a) [a b c] If a , b , c are three not (a) 0 If i , j , k are the unit v (a) 0 If a = 2 i + j - k , b = i + (a) 6 If a . b = b . c = c . a = 0 (a) a b c i .(j × k)+ j .(k × i)+ k .(i (a) 1	(b) 2 Base is equal to [(b) 2[a b c] on-coplanar vector, then $\frac{a \cdot b \times c}{c \times a \cdot c}$ (b) 2 vectors and mutually perpend (b) -1 ·2j+k and c = i - j + 2k, then (b) 10 or a, b, c are a right handed (b) 1 ×j) = (b) 3	(c) 3 sic Level [Rajasthan PET 1988, 2002; IIT (c) 3[a b c] (c) 3[a b c] (c) -2 icular, then [i k j] is equal to (c) 1 a.(b×c) = (c) 12 triad of mutually perpendicu (c) -1 (c) -3	Scalar Triple Product "1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these [Rajasthan PET 1986] (d) None of these [Rajasthan PET 1989, 2001] (d) 24 tlar vectors, then [a b c] = P PET 1994; Tamilnadu Engg. 2001] (d) A non-zero vector [Karnataka CET 1994] (d) 0
81. 82. 83. 84. 85. 86. 87.	(a) 1 a .[(b + c)×(a + b + c)] $\stackrel{i}{=}$ (a) [a b c] If a , b , c are three not (a) 0 If i , j , k are the unit v (a) 0 If a = 2 i + j - k , b = i + (a) 6 If a . b = b . c = c . a = 0 (a) a b c i .(j × k)+ j .(k × i)+ k .(i (a) 1 If a = 3 i - j +2 k , b = 2	(b) 2 Base is equal to [(b) 2[a b c] on-coplanar vector, then $\frac{a \cdot b \times c}{c \times a \cdot c}$ (b) 2 vectors and mutually perpend (b) -1 · 2j+k and c = i - j + 2k, then (b) 10 or a, b, c are a right handed (b) 1 × j) = (b) 3 i + j - k, then a × (a · b) =	(c) 3 sic Level (c) 3[a b c] (c) 3[a b c] (c) 3[a b c] (c) -2 (c) -2 (c) 1 a.(b×c) = (c) 12 triad of mutually perpendicu (c) -1 (c) -3	(d) 4 Scalar Triple Product 71981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these [Rajasthan PET 1986] (d) None of these [Rajasthan PET 1989, 2001] (d) 24 tlar vectors, then [a b c] = P PET 1994; Tamilnadu Engg. 2001] (d) A non-zero vector [Karnataka CET 1994] (d) 0 [Karnataka CET 1994]
81. 82. 83. 84. 85. 86. 87.	(a) 1 a .[(b + c)×(a + b + c)] $\stackrel{f}{=}$ (a) [a b c] If a , b , c are three not (a) 0 If i , j , k are the unit v (a) 0 If a = 2 i + j - k , b = i + (a) 6 If a . b = b . c = c . a = 0 (a) a b c i .(j × k)+ j .(k × i)+ k .(i (a) 1 If a = 3 i - j +2 k , b = 2 (a) 3 a	(b) 2 Bas is equal to [(b) 2[a b c] on-coplanar vector, then $\frac{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}{\mathbf{c} \times \mathbf{a}}$. (b) 2 vectors and mutually perpend (b) -1 · 2j+k and $\mathbf{c} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$, then (b) 10 or $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are a right handed (b) 1 × j) = (b) 3 $\mathbf{i} + \mathbf{j} - \mathbf{k}$, then $\mathbf{a} \times (\mathbf{a} \cdot \mathbf{b}) =$ (b) $3\sqrt{14}$	(c) 3 sic Level (c) 3[a b c] (c) 3[a b c] (c) 3[a b c] (c) -2 (c) -2 (c) 1 a.(b×c) = (c) 12 triad of mutually perpendicution (c) -1 (c) -3 (c) 0	Scalar Triple Product "1981; UPSEAT 2003; MP PET 2004] (d) 0 [IIT 1985, 86; UPSEAT 2003] (d) None of these [Rajasthan PET 1986] (d) None of these [Rajasthan PET 1989, 2001] (d) 24 tlar vectors, then [a b c] = P PET 1994; Tamilnadu Engg. 2001] (d) A non-zero vector [Karnataka CET 1994] (d) None of these

(b) 2 (c) 0 (d) - 12 (a) 12 **289.** $a(a \times b) =$ [MP PET 1996] (d) $a^2 + ab$ (a) **b**.**b** (b) a^2b (c) 0 290. For three vectors u, v, w which of the following expressions is not equal to any of the remaining three [IIT 1998; Oriss (a) $\mathbf{u}.(\mathbf{v} \times \mathbf{w})$ (b) $(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}$ (c) $\mathbf{v}.(\mathbf{u} \times \mathbf{w})$ (d) $(\mathbf{u} \times \mathbf{v}).\mathbf{w}$ **291.** Which of the following expressions are meaningful [IIT 1998; Rajasthan PET 2001] (a) $\mathbf{u}.(\mathbf{v} \times \mathbf{w})$ (b) (u.v).w (C) (u.v)w(d) $\mathbf{u} \times (\mathbf{v} \cdot \mathbf{w})$ **292.** Given vectors **a**, **b**, **c** such that $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \lambda \neq 0$, the value of $(\mathbf{b} \times \mathbf{c}) \cdot (\mathbf{a} + \mathbf{b} + \mathbf{c})/\lambda$ is [AMU 1999] (d) $\frac{3}{\lambda}$ (b) 1 (c) -3λ (a) 3 **293.** If a = 3i - 2j + 2k, b = 6i + 4j - 2k and c = 3i - 2j - 4k, then $a \cdot (b \times c)$ is [Karnataka CET 2001] (a) 122 (b) - 144 (d) - 120 (c) 120 **294.** $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ is equal to [Rajasthan PET 2001] (a) **b**.($\mathbf{a} \times \mathbf{c}$) (b) $\mathbf{c} \cdot (\mathbf{b} \times \mathbf{a})$ (c) **b**.($\mathbf{c} \times \mathbf{a}$) (d) None of these **295.** [i k j] + [k j i] + [j k i][UPSEAT 2002] (a) 1 (d) - 1 (c) - 3(b) 3 **296.** If $[a \ b \ c] = 1$, then $\frac{a \cdot b \times c}{c \times a \cdot b} + \frac{b \cdot c \times a}{a \times b \cdot c} + \frac{c \cdot a \times b}{b \times c \cdot a}$ is equal to (d) None of these (a) 3 (c) - 1 **297.** If the vectors $2\mathbf{i} - 3\mathbf{j}$, $\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $3\mathbf{i} - \mathbf{k}$ form three concurrent edges of a parallelopiped, then the volume of the parallelopiped is [IIT 1983; Rajasthan PET 1995; DCE 2001; Kurukshetra CEE 1998; MP PET 2001] (a) 8 (b) 10 (c) 4 (d) 14 **298.** If three vectors $\mathbf{a} = 12\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = 8\mathbf{i} - 12\mathbf{j} - 9\mathbf{k}$ and $\mathbf{c} = 33\mathbf{i} - 4\mathbf{j} - 24\mathbf{k}$ represents a cube, then its volume will be [Roorkee 1988] (a) 616 (b) 308 (d) None of these (c) 154 **299.** Volume of the parallelopiped whose coterminous edges are 2i - 3j + 4k, i + 2j - 2k, 3i - j + k, is [EAMCET 1993] (a) 5 cubic units (b) 6 cubic units (c) 7 cubic units (d) 8 cubic units **300.** If $\mathbf{a} = -3\mathbf{i} + 7\mathbf{j} + 5\mathbf{k}$, $\mathbf{b} = -3\mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$ and $\mathbf{c} = 7\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}$ are the three coterminous edges of a parallelopiped, then its volume is [MP PET 1996] (a) 108 (b) 210 (c) 272 (d) 308 **301.** Three concurrent edges *OA*, *OB*, *OC* of a parallelopiped are represented by three vectors $2\mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and -3i - j + k, the volume of the solid so formed in cubic units is [Kurukshetra CEE 1998] (b) 6 (c) 7 (d) 8 (a) 5 **302.** What will be the volume of that parallelopiped whose sides are $\mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ and $\mathbf{c} = 2\mathbf{i} - 5\mathbf{j} + 3\mathbf{k}$ [UPSEAT 10] (a) 5 unit (b) 6 unit (c) 7 unit (d) 8 unit **303.** The volume of the parallelopiped whose coterminous edges are $\mathbf{i} - \mathbf{j} + \mathbf{k}$, $2\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}$ and $3\mathbf{i} - 5\mathbf{j} + 2\mathbf{k}$ is [Kerala (Engg.) 2 (b) 3 (c) 2 (d) 8 (a) 4 **304.** The volume of the parallelopiped whose edges are represented by $-12\mathbf{i} + \alpha \mathbf{k}$, $3\mathbf{j} - \mathbf{k}$ and $2\mathbf{i} + \mathbf{j} - 15\mathbf{k}$ is 546, then $\alpha =$

[IIT Screening 1989; MNR 1987]

-					
	(a) 3	(b) 2	(c) - 3	(d) – 2	
		Adu	vance Level		
305.	$ (\mathbf{a} \times \mathbf{b}).\mathbf{c} \Rightarrow \mathbf{a} \mathbf{b} \mathbf{c} $,	if	[Raı	nchi BIT 1990; IIT 1982	; AMU 2002]
	(a) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{c} = 0$	(b) b . c = c . a = 0	(c) $c \cdot a = a \cdot b = 0$	(d) $a \cdot b = b \cdot c =$	$\mathbf{c} \cdot \mathbf{a} = 0$
306.	If a, b, c be any three n	on-coplanar vectors, then	[a + b, b + c, c + a] =		
			[Rajasthan PET 1988; MP PE	T 1990, 2002; Kerala (Engg.) 2002]
	(a) [a b c]	(b) 2[a b c]	(c) $[a \ b \ c]^2$	(d) $2[a b c]^2$	
307.	If a , b , c are three n	on-coplanar vectors and	p, q, r are defined by the n	relations $\mathbf{p} = \frac{\mathbf{b} \times \mathbf{c}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}$,	$\mathbf{q} = \frac{\mathbf{c} \times \mathbf{a}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]} ,$
	$\mathbf{r} = \frac{\mathbf{a} \times \mathbf{b}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}$, then $(\mathbf{a} + \mathbf{b})$.	p + (b + c). q + (c + a). r =	[117	1988; BIT Ranchi 1996	; AMU 2002]
	(a) 0	(b) 1	(C) 2	(d) 3	
308.	If $\mathbf{p} = \frac{\mathbf{b} \times \mathbf{c}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}$, $\mathbf{q} = \frac{\mathbf{c} \times \mathbf{c}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}$	$\frac{\mathbf{a}}{\mathbf{c}}$, $\mathbf{r} = \frac{\mathbf{a} \times \mathbf{b}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}$, where \mathbf{a}	, b, c are three non-copla	nar vectors, then tl	ne value of
	$(\mathbf{a} + \mathbf{b} + \mathbf{c}).(\mathbf{p} + \mathbf{q} + \mathbf{r})$ is given by	iven by		[MNR 1992; U	PSEAT 2000]
	(a) 3	(b) 2	(C) 1	(d) o	
309.	The value of $[\mathbf{a} - \mathbf{b} \ \mathbf{b} - \mathbf{c}]$	c-a], where $ a = 1$, $ b =$	5 and $ \mathbf{c} = 3$ is [R	ajasthan PET 1988, 20	00; IIT 1989]
	(a) 0	(b) 1	(c) 2	(d) 4	
310.	If a , b and c are three n	ion-coplanar vectors, then	$(\mathbf{a} + \mathbf{b} + \mathbf{c}).[(\mathbf{a} + \mathbf{b}) \times (\mathbf{a} + \mathbf{c})]$ is eq	ual to	[IIT 1995]
	(a) [a b c]	(b) 2[a b c]	(c) - [a b c]	(d) o	
311.	If a , b , c are three copla	anar vectors, then $[\mathbf{a} + \mathbf{b} \ \mathbf{b}]$	$+\mathbf{c} \mathbf{c} + \mathbf{a}] =$	[]	AP PET 1995]
	(a) [a b c]	(b) 2[a b c]	(c) 3[a b c]	(d) o	
312.	If b and c are any two r	non-collinear unit vectors a	and \mathbf{a} is any vector, then $(\mathbf{a} \cdot \mathbf{b})$	$\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c})$	≺c)= [IIT 1996
	(a) a	(b) b	(c) c	(d) o	
313.	If three coterminous ed	ges of a parallelopiped are	e represented by $\mathbf{a} - \mathbf{b}$, $\mathbf{b} - \mathbf{c}$ a	and $\mathbf{c} - \mathbf{a}$, then its vol	ume is [MP PE
	(a) [a b c]	(b) 2[a b c]	(c) [a b c] ²	(d) o	
314.	If a , b and c are unit co	planar vectors then the sca	alar triple product $[2\mathbf{a} - \mathbf{b} \ 2\mathbf{b} - \mathbf{b}]$	$-\mathbf{c} \ 2\mathbf{c} - \mathbf{a}$] is equal to [IIT Screening 2
	(a) 0	(b) 1	(c) $-\sqrt{3}$	(d) $\sqrt{3}$	
315.	Let $\mathbf{a} = \mathbf{i} - \mathbf{k}$, $\mathbf{b} = x\mathbf{i} + \mathbf{j} + (\mathbf{a} + \mathbf{j})$	(1 - x) k and c = y i + x j + (1 + x -	$(y)\mathbf{k}$, then $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$ depends on	[IIT Scr	eening 2001]
	(a) Only <i>x</i>	(b) Only <i>y</i>	(c) Neither x nor y	(d) Both <i>x</i> and	y
316.	$(\mathbf{a} + \mathbf{b}).(\mathbf{b} + \mathbf{c}) \times (\mathbf{a} + \mathbf{b} + \mathbf{c})$	=		[E4	MCET 2002]
	(a) – [a b c]	(b) [a b c]	(c) O	(d) 2[a b c]	
317.	Let $V = 2i + j - k$ and V W] is	$\mathbf{V} = \mathbf{i} + 3\mathbf{k}$ if U is a unit vec	tor, then the maximum value	of the scalar triple p	roduct [U V
		(h) (h) (h)	(-) 50	[IIT Scr	eening 2002]
240	(a) - 1	(D) $\sqrt{10} + \sqrt{6}$	(C) √39	$(a) \sqrt{60}$	
310.	n a, v are non-zero and	a non-commear vectors the	:11 [a d 1]1+[a d]]]+[a d k]1	s is equal to	
	(a) $\mathbf{a} + \mathbf{b}$	(b) a ×b	(c) a - b	(d) $\mathbf{b} \times \mathbf{a}$	

(a) [b c a] a	(b) [c a b]b	(c) [a b c]c	(d) None of these
Let a, b, c be three un	it vectors and $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c} = 0$.	If the angle between b and	c is $\frac{\pi}{3}$, then [a b c] is equal to
(a) $\frac{\sqrt{3}}{2}$	(b) $\frac{1}{2}$	(c) 1	(d) None of these
If a , b , c are three not $(a + b).(b \times c) + (b + c).(c)$	n-coplanar vectors represent $(\mathbf{c} + \mathbf{a}) \cdot (\mathbf{c} + \mathbf{a})$ is equal to	ed by concurrent edges of a	parallelopiped of volume 4, then
(a) 12	(b) 4	(c) ±12	(d) o
The three concurrent	t edges of a parallelopiped	represent the vectors a , b ,	c such that $[\mathbf{a} \mathbf{b} \mathbf{c}] = \lambda$. Then the
volume of the paralle the given parallelopig	lopiped whose three concurr bed is	ent edges are the three cond	current diagonals of three faces of
(a) 2λ	(b) 3λ	(c) λ	(d) None of these
If a , b , c are non-copl to	anar non-zero vectors and ${f r}$	is any vector in space then [[bcr]a+[car]b+[abr]c is equal
(a) 3[a b c] r	(b) [a b c] r	(c) [b c a] r	(d) None of these
If the vertices of a t tetrahedron is	etrahedron have the position	n vectors 0, i + j, 2j - k	and $\mathbf{i} + \mathbf{k}$ then the volume of the
(a) $\frac{1}{6}$	(b) 1	(c) 2	(d) None of these
The three vectors i perpendicular to thre	+ j , j + k , k + i taken two at e planes form a parallelopipe	a time form three planes d of volume	. The three unit vectors drawn
(a) $\frac{1}{3}$ cubic units	(b) 4 cubic units	(c) $\frac{3\sqrt{3}}{4}$ cubic units	(d) $\frac{4}{3\sqrt{3}}$ cubic units
The volume of $\mathbf{i} - 6\mathbf{j} + 10\mathbf{k}, -\mathbf{i} - 3\mathbf{j} + 7\mathbf{k}$	the tetrahedron whose , $5\mathbf{i} - \mathbf{j} + \lambda \mathbf{k}$ and $7\mathbf{i} - 4\mathbf{j} + 7\mathbf{k}$ is	vertices are the p 11 cubic units if the value of	oints with position vectors λ is
(a) – 1	(b) 1	(c) – 7	(d) 7
Let a , b and c be $\mathbf{p} = \mathbf{a} + \mathbf{b} - 2\mathbf{c}$, $\mathbf{q} = 3\mathbf{a} - V_1$ and that of the particular	three non-zero and non-cop $2\mathbf{b} + \mathbf{c}$ and $\mathbf{r} = \mathbf{a} - 4\mathbf{b} + 2\mathbf{c}$. If allelopiped determined by \mathbf{p} ,	planar vectors and \mathbf{p} , \mathbf{q} a the volume of the parallelog \mathbf{q} , and \mathbf{r} is V_2 , then $V_2: V_1 =$	nd r be three vectors given by piped determined by a , b , and c is
(a) 2:3	(b) 5:7	(c) 15:1	(d) 1:1
If a , b , c are any three	e vectors and their inverse a	$\mathbf{c} \in \mathbf{a}^{-1}, \mathbf{b}^{-1}, \mathbf{c}^{-1} \text{ and } [\mathbf{a} \mathbf{b} \mathbf{c}] \neq 0$, then $[\mathbf{a}^{-1} \ \mathbf{b}^{-1} \ \mathbf{c}^{-1}]$ will be [Roorkee
(a) Zero	(b) One	(c) Non-zero	(d) [a b c]
a , b , c are three not	n-zero, non-coplanar vectors	and p, q, r are three oth	her vectors such that $\mathbf{p} = \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$,
$\mathbf{q} = \frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}, \ \mathbf{r} = \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$	– . Then [p q r] equals c		[Kurukshetra CEE 1993]
(a) $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$	(b) $\frac{1}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$	(c) 0	(d) None of these
			Coplanarity of Vectors
	(a) $[\mathbf{b} \mathbf{c} \mathbf{a}]\mathbf{a}$ Let a , b , c be three un (a) $\frac{\sqrt{3}}{2}$ If a , b , c are three not (a + b).(b × c) + (b + c).(d (a) 12 The three concurrent volume of the parallelopit (a) 2λ If a , b , c are non-cople to (a) $3[\mathbf{a} \mathbf{b} \mathbf{c}]\mathbf{r}$ If the vertices of a to tetrahedron is (a) $\frac{1}{6}$ The three vectors i perpendicular to three (a) $\frac{1}{3}$ cubic units The volume of i - 6 j + 10 k , - i - 3 j + 7 k (a) - 1 Let a , b and c be a p = a + b - 2 c , q = 3 a - V_1 and that of the part (a) 2 : 3 If a , b , c are any three (a) Zero a , b , c are three not q = $\frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$, $\mathbf{r} = \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$	Let a , b , c be three unit vectors and a . b = a . c = 0. (a) $\frac{\sqrt{3}}{2}$ (b) $\frac{1}{2}$ If a , b , c are three non-coplanar vectors represent: (a + b).(b × c) + (b + c).(c × a) + (c + a).(a × b) is equal to (a) 12 (b) 4 The three concurrent edges of a parallelopiped is (a) 2 λ (b) 3 λ If a , b , c are non-coplanar non-zero vectors and r to (a) 3[a b c] r (b) [a b c] r If the vertices of a tetrahedron have the position tetrahedron is (a) $\frac{1}{6}$ (b) 1 The three vectors i + j , j + k , k + i taken two at perpendicular to three planes form a parallelopiped (a) $\frac{1}{3}$ cubic units (b) 4 cubic units The volume of the tetrahedron whose i - 6 j + 10 k , - i - 3 j + 7 k , 5 i - j + λ k and 7 i - 4 j + 7 k is s : (a) -1 (b) 1 Let a , b and c be three non-zero and non-cop p = a + b - 2 c , q = 3 a - 2 b + c and r = a - 4 b + 2 c . If <i>V</i> ₁ and that of the parallelopiped determined by p , (a) 2 : 3 (b) 5 : 7 If a , b , c are any three vectors and their inverse ar (a) Zero (b) One a , b , c are three non-zero, non-coplanar vectors q = $\frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$, r = $\frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$. Then [p q r] equals	(a) $[b c a]a$ (b) $[c a b]b$ (c) $[a b]c$ Let a , b , c be three unit vectors and a . b = a . c = 0. If the angle between b and c (a) $\frac{\sqrt{3}}{2}$ (b) $\frac{1}{2}$ (c) 1 If a , b , c are three non-coplanar vectors represented by concurrent edges of a (a + b).(b × c)+(b + c).(c × a)+(c + a).(a × b) is equal to (a) 12 (b) 4 (c) ±12 The three concurrent edges of a parallelopiped represent the vectors a , b , volume of the parallelopiped whose three concurrent edges are the three conc the given parallelopiped is (a) 2 λ (b) 3 λ (c) λ If a , b , c are non-coplanar non-zero vectors and r is any vector in space then [to (a) 3[a b c] r (b) [a b c] r (c) [b c a] r If the vertices of a tetrahedron have the position vectors o , i + j , 2j - k tetrahedron is (a) $\frac{1}{6}$ (b) 1 (c) 2 The three vectors i + j , j + k , k + i taken two at a time form three planes perpendicular to three planes form a parallelopiped of volume (a) $\frac{1}{3}$ cubic units (b) 4 cubic units (c) $\frac{3\sqrt{3}}{4}$ cubic units The volume of the tetrahedron whose vertices are the p i - 6 j + 10 k , - i - 3 j + 7 k , 5 i - j + 2 k and 7 i - 4 j + 7 k is 11 cubic units if the value of (a) -1 (b) 1 (c) -7 Let a , b and c be three non-zero and non-coplanar vectors and p , q , a a p = a + b - 2 c , q = 3 a - 2 b + c and r = a - 4 b + 2 c . If the volume of the parallelopiped determined by p , q , and r is V_2 , then $V_2 : V_1 = 4$ (a) 2 : 3 (b) 5 : 7 (c) 15 : 1 If a , b , c are any three vectors and their inverse are a^{-1}, b^{-1}, c^{-1} and [a b] \neq 0 (a) Zero (b) One (c) Non-zero a , b , c are three non-zero, non-coplanar vectors and p , q , r are three oft q = $\frac{c \times a}{a, b \times c}$. Then [p q r] equals

330. If the vectors $2\mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ and $3\mathbf{i} + \lambda\mathbf{j} + 5\mathbf{k}$ be coplanar, then $\lambda =$

[Roorkee 1986; Rajasthan PET 1999, 2002; Kurukshetra CEE 2002]

	(a) – 1	(b) - 2	(c) - 3	(d) - 4		
331.	If $\mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$	and $\mathbf{c} = 3\mathbf{i} + p\mathbf{j} + 5\mathbf{k}$ are coplan	nar then the value of <i>p</i> will t	De la		
			-	ajasthan PET 1985, 86, 88, 91]		
	(a) - 6	(b) - 2	(c) 2	(d) 6		
332.	A unit vector which is cop	lanar to vector $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and \mathbf{i}	$\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and perpendicular t	to $\mathbf{i} + \mathbf{j} + \mathbf{k}$, is		
			[11]	۲ 1992; Kurukshetra CEE 2002]		
	(a) $\frac{\mathbf{i}-\mathbf{j}}{\sqrt{2}}$	(b) $\pm \left(\frac{\mathbf{j}-\mathbf{k}}{\sqrt{2}}\right)$	(c) $\frac{\mathbf{k}-\mathbf{i}}{\sqrt{2}}$	(d) $\frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}$		
333.	If the vectors $2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$, i	$+2\mathbf{j}-\mathbf{k}$ and $x\mathbf{i}-\mathbf{j}+2\mathbf{k}$ are cop	planar, then $x =$	[EAMCET 1994]		
	(a) $\frac{8}{5}$	(b) $\frac{5}{8}$	(c) 0	(d) 1		
334.	If the vectors $\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, $2\mathbf{i}$	$\mathbf{i} - \mathbf{j} + 4\mathbf{k}$ and $3\mathbf{i} + 2\mathbf{j} + x\mathbf{k}$ are c	oplanar ,then the value of x	is [Karnataka CET 2000]		
	(a) – 2	(b) 2	(C) 1	(d) 3		
335.	a = i + j + k, $b = 2i - 4k$, $c =$	$\mathbf{i} + \lambda \mathbf{j} + 3\mathbf{k}$ are coplanar, then	the value of λ is	[MP PET 2000]		
	(a) $\frac{5}{2}$	(b) $\frac{3}{5}$	(c) $\frac{7}{3}$	(d) None of these		
336.	$\vec{A} = \mathbf{i} + \mathbf{j} + \mathbf{k}, \vec{B} = \mathbf{i}, \vec{C} = C_1 \mathbf{i} + C_2$	$\mathbf{j} + C_2 \mathbf{k}$. If $C_2 = -1$ and $C_3 = 1$, then to make three vectors	coplanar [AMU 2000]		
	(a) $C_1 = 0$		(b) $C_1 = 1$			
	(c) $C_1 = 2$		(d) No value of C_1 can be	found		
337.	The vector a lies in the pla	ne of vectors b and c , which	of the following is correct	[Roorkee 1990]		
	(a) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0$	(b) $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = 1$	(c) $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = -1$	(d) $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = 3$		
		Advance	e Level			
338.	If the vectors $\mathbf{r}_1 = \sec^2 A$, 1,	1; $\mathbf{r}_2 = 1$, sec ² B,1 ; $\mathbf{r}_3 = 1$, 1, sec	2 C are coplanar, then \cot^{2}	$A + \cot^2 B + \cot^2 C$ is equal to		
	(a) 0	(b) 1	(c) 2	(d) Not defined		
339.	If $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$ and a	$=(1, a, a^2), \mathbf{b} = (1, b, b^2)$ and c	$=(1, c, c^2)$ are non-coplanar v	vectors, then <i>abc</i> is equal to		
				[IIT 1985; AIEEE 2003]		
	(a) – 1	(b) O	(c) 1	(d) 4		
340.	Let <i>a</i> , <i>b</i> , <i>c</i> be distinct non-	negative numbers. If the vector	ors $a\mathbf{i} + a\mathbf{j} + c\mathbf{k}$, $\mathbf{i} + \mathbf{k}$ and $c\mathbf{i} + c\mathbf{j}$	$+b\mathbf{k}$ lie in a plane, then c is [IIT		
	(a) The airthmetic mean of and <i>b</i>	f a and b	(b)	The geometric mean of a		
	(c) The harmonic mean of	a and b	(d)	Equal to zero		
341.	If the vectors $a\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{i} + \mathbf{k}$	$b\mathbf{j} + \mathbf{k}$ and $\mathbf{i} + \mathbf{j} + c\mathbf{k}$ ($a \neq b \neq c \neq c$	1) are coplanar, then the va	lue of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$		
			[BIT Ranchi 1988; Rajasthan	PET 1987; IIT 1987; DCE 2001]		
	(a) - 1	(b) $-\frac{1}{2}$	(c) $\frac{1}{2}$	(d) 1		

342. If a, b, c are position vector of vertices of a triangle ABC, then unit vector perpendicular to its plane is [Rajasthan PET

19

				Vector Algebra 311
	(a) $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}$	(b) $\frac{\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}}{ \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} }$	(c) $\frac{\mathbf{a} \times \mathbf{b}}{ \mathbf{a} \times \mathbf{b} }$	(d) None of these
343.	If a, b, c are non-coplan	ar vectors and $\mathbf{d} = \lambda \mathbf{a} + \mu \mathbf{b} + v \mathbf{c}$, then λ is equal to	[Roorkee 1999]
	(a) $\frac{[d b c]}{[b a c]}$	(b) $\frac{[b c d]}{[b c a]}$	(c) $\frac{[b \ d \ c]}{[a \ b \ c]}$	(d) $\frac{[\mathbf{c} \mathbf{b} \mathbf{d}]}{[\mathbf{a} \mathbf{b} \mathbf{c}]}$
344.	If the points whose posi	tion vectors are $3\mathbf{i} - 2\mathbf{j} - \mathbf{k}$, $2\mathbf{i} - \mathbf{k}$	+3j-4k, -i+j+2k and 4	$\mathbf{i} + 5\mathbf{j} + \lambda \mathbf{k}$ lie on a plane, then $\lambda =$
				[IIT 1986]
	(a) $-\frac{146}{17}$	(b) $\frac{146}{17}$	(c) $-\frac{17}{146}$	(d) $\frac{17}{146}$
345.	Vector coplanar with ve	ctors i+j and j+k and parallel	to the vector $2\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}$, is [Roorkee 2000]
	(a) i - k	(b) $i - j - 2k$	(c) $\mathbf{i} + \mathbf{j} - \mathbf{k}$	(d) $3i + 3j - 6k$
346.	Let $\lambda = a \times (b + c), \ \mu = b \times b$	$(\mathbf{c} + \mathbf{a})$ and $\mathbf{v} = \mathbf{c} \times (\mathbf{a} + \mathbf{b})$. Then	L	
	(a) $\lambda + \mu = v$	(b) λ, μ, v are coplanar	(c) $\lambda + \mathbf{v} = 2\boldsymbol{\mu}$	(d) None of these
347.	Let $a = i - 2i + 3k = 2i$	$-3\mathbf{i} - \mathbf{k}$ and $\mathbf{c} = \lambda \mathbf{i} + \mathbf{i} + (2\lambda - 1)\mathbf{k}$	If \mathbf{c} is parallel to the pl	ane of the vectors \mathbf{a} and \mathbf{b} then λ
54/•	is	$J = \mathbf{K} = \mathbf{M} + \mathbf{J} + (2\pi) + \mathbf{J} \mathbf{K}$		
	(a) 1	(b) o	(c) - 1	(d) 2
348.	The vectors $\mathbf{a} = x\mathbf{i} + (x+1)$	(j + (x + 2)k, b = (x + 3)i + (x + 4)j +	(x+5) k and c = $(x+6)$ i + (x)	$(x + 7)\mathbf{j} + (x + 8)\mathbf{k}$ are coplanar for
	(a) All values of <i>x</i>	(b) <i>x</i> < 0	(c) $x > 0$	(d) None of these
349.	Given a cube $ABCD A_1B_1$ and DD_1 : M and M_2 are	C_1D_1 with lower base <i>ABCD</i> , the the centres of the faces <i>AB</i>	upper base $A_1B_1C_1D_1$ ar BCD and $A_1B_1C_1D_1$ respectively.	nd the lateral edges AA_1, BB_1, CC_1 ctively. <i>Q</i> is a point on line <i>MM</i> .
	such that $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +$	$\overrightarrow{OD} = \overrightarrow{OM_1}$, then $\overrightarrow{OM} = \lambda . \overrightarrow{OM_1}$, if $\lambda =$, , , , , , , , , , , , , , , , , , ,
	(a) ¹	(b) ¹	(a) ¹	(d) ¹
	(a) $\frac{-}{4}$	(b) $\frac{1}{2}$	(c) $\frac{-}{6}$	(a) $\frac{-}{8}$
				Vector Triple Product
		Basic	Level	
350.	$\mathbf{i} \times (\mathbf{j} \times \mathbf{k})$ is equal to			[Rajasthan PET 1988; MP PET 1997]
	(a) 0	(b) i	(c) j	(d) k
351.	If $\mathbf{a} = \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} - \mathbf{j}$	$\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = \mathbf{i} + 3\mathbf{j} - \mathbf{k}$, then $\mathbf{a} = \mathbf{i}$	$(\mathbf{b} \times \mathbf{c})$ is equal to	[Rajasthan PET 1989]
	(a) $20i - 3j + 7k$	(b) $20i - 3j - 7k$	(c) $20i + 3j - 7k$	(d) None of these
352.	11 $a = 1 + j - k$, $b = 1 - j + k$	(b) 2; 2;	(c) $2i$ $i+k$	[MP PET 2000]
252	(a) $I - J + K$ If a b c are any three v	(0) 2I - 2J	(c) JI = J + K	(u) 2i + 2j - k
353.	(a) Perpendicular to $\mathbf{a} \times$	(b) Coplanar with a and b	(c) Parallel to c	(d) Parallel to either a or b
354.	If a and b are two unit v	vectors, then the vector $(\mathbf{a} + \mathbf{b})$	\times (a \times b) is parallel to the	vector [DCE 2001]
	(a) $a + b$	(b) a – b	(c) $2a + b$	(d) $2a - b$
355.	If $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = 0$, then			[Rajasthan PET 1995]
	(a) $ a = b c = 1$	(b) b c	(c) $\mathbf{a} \parallel \mathbf{b}$	(d) $\mathbf{b} \perp \mathbf{c}$
356.	Which of the following i	s a true statement		[Kurukshetra CEE 1996]

	(a) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ is coplanar	with c	(b) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ is perpendicular to \mathbf{a}						
	(c) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ is perpendic	cular to b	(d)	$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ is perpendicular					
	to c								
357.	If $\mathbf{u} = \mathbf{i} \times (\mathbf{a} \times \mathbf{i}) + \mathbf{j} \times (\mathbf{a} \times \mathbf{j}) + \mathbf{k} \times \mathbf{i}$	$\langle (\mathbf{a} \times \mathbf{k}) \rangle$, then							
	[Rajasthan PET 19	89, 97; MNR 1986, 93; MP PET 1	987, 98, 99, 2004; UPSEAT 20	00, 2002; Kerala (Engg.) 2002]					
0	(a) $\mathbf{u} = 0$	(D) $\mathbf{u} = \mathbf{i} + \mathbf{j} + \mathbf{k}$	(c) $\mathbf{u} = 2\mathbf{a}$	(d) $\mathbf{u} = \mathbf{a}$					
358.	A unit vector perpendicul	ar to vector c and coplanar with $\mathbf{b}_{\mathbf{x}}(\mathbf{a} \times \mathbf{s})$	ith vectors a and b is $a_{X}(a_{X}b)$	[MP PET 1999]					
	(a) $\frac{\mathbf{a} \times (\mathbf{b} \times \mathbf{c})}{ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) }$	(b) $\frac{\mathbf{b} \times (\mathbf{c} \times \mathbf{a})}{ \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) }$	(c) $\frac{\mathbf{c} \times (\mathbf{a} \times \mathbf{b})}{ \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) }$	(d) None of these					
359.	$\mathbf{i} \times (\mathbf{j} \times \mathbf{k}) + \mathbf{j} \times (\mathbf{k} \times \mathbf{i}) + \mathbf{k} \times (\mathbf{i} \times \mathbf{j})$) equals		[Rajasthan PET 1999]					
	(a) i	(b) j	(c) k	(d) o					
360.	Given three unit vectors a	a , b , c such that $\mathbf{a} \perp \mathbf{b}$ and $\mathbf{a} \parallel \mathbf{c}$	\mathbf{c} , then $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is	[AMU 1999]					
	(a) a	(b) b	(c) c	(d) o					
361.	$A = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k}, \ B = 2\mathbf{i} + \mathbf{j} - \mathbf{k},$	$\vec{C} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, then $(\vec{A} \times \vec{B}) \times \vec{C}$	is	[MP PET 2001]					
	(a) $5(-i+3j+4k)$	(b) $4(-i+3j+4k)$	(c) $5(-i-3j-4k)$	(d) $4(i + 3j + 4k)$					
362.	If i, j, k are unit vectors,	then		[MP PET 2001]					
	(a) $i \cdot j = 1$	(b) $i \cdot i = 1$	(c) $\mathbf{i} \times \mathbf{j} = 1$	(d) $\mathbf{i} \times (\mathbf{j} \times \mathbf{k}) = 1$					
363.	If a , b , c are any vectors,	then the true statement is		[Rajasthan PET 1988]					
	(a) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$	(b) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$	(c) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} \times \mathbf{a} \cdot \mathbf{c}$	(d) $a.(b-c) = a.b-a.c$					
364.	$\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is equal to		[Rajasthan PET 1995; Kuruk	shetra CEE 1998; MP PET 2003]					
	(a) $(a.c)b - (a.a)b$	(b) $(a.c)a - (b.c)a$	(c) $(a.c)b - (a.b)c$	(d) $(a.b)c - (a.c)b$					
365.	$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a})$	\times b) =		[Rajasthan PET 2003]					
	(a) 0	(b) 2[a b c]	(c) $\mathbf{a} + \mathbf{b} + \mathbf{c}$	(d) 3[a b c]					
		Advance	e Level						
366.	If a, b, c are non-coplana	r unit vectors such that $\mathbf{a} \times (\mathbf{b} \times \mathbf{b})$	$(\mathbf{c}) = \frac{\mathbf{b} + \mathbf{c}}{\sqrt{2}}$, then the angle b	etween a and b is [IIT 1995]					
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c) $\frac{3\pi}{4}$	(d) <i>π</i>					
367.	Let a , b , c be three vector	is from $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$, if	-	[Orissa JEE 2003]					
	(a) $\mathbf{b} \times (\mathbf{a} \times \mathbf{c}) = 0$	(b) a .(b × c) = 0	(c) $\mathbf{c} \times \mathbf{a} = \mathbf{a} \times \mathbf{b}$	(d) $\mathbf{c} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$					
368.	If a , b , c are any three ve	ctors such that $(\mathbf{a} + \mathbf{b}) \cdot \mathbf{c} = (\mathbf{a} - \mathbf{b})$	b). $\mathbf{c} = 0$, then $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ is						
	(a) 0	(b) a	(c) b	(d) None of these					
369.	If three unit vectors a , b	, c are such that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \frac{\mathbf{b}}{2}$, then the vector ${f a}$ makes	with b and c respectively the					
	angles			[MP PET 1998]					
	(a) 40°, 80°	(b) 45°, 45°	(c) 30° , 60°	(d) 90°, 60°					
370.	$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}), \ \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) \ \text{and} \ \mathbf{c} = \mathbf{c}$	$\times (\mathbf{a} \times \mathbf{b})$ are							

(c) Parallel vectors (d) None of these (a) Linearly dependent (b) Equal vectors 371. a and b are two given vectors. On these vectors as adjacent sides a parallelogram is constructed. The vector which is the altitude of the parallelogram and which is perpendicular to **a** is (a) $\frac{(a \cdot b)}{|a|^2}a - b$ (b) $\frac{1}{|\mathbf{a}|^2} \{ |\mathbf{a}|^2 \mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{a} \}$ (c) $\frac{\mathbf{a} \times (\mathbf{a} \times \mathbf{b})}{|\mathbf{a}|^2}$ (d) $\frac{\mathbf{a} \times (\mathbf{b} \times \mathbf{a})}{|\mathbf{b}|^2}$ Scalar and Vector Product of Four or more Vectors **Basic** Level **372.** If $\alpha = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$, $\beta = -\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$ and $\gamma = \mathbf{i} + \mathbf{j} + \mathbf{k}$, then $(\alpha \times \beta).(\alpha \times \gamma)$ is equal to [MNR 1984; UPSEAT 2000] (a) 60 (b) 64 (c) 74 (d) - 74 $373. \quad (\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a}) =$ [MP PET 1997] (a) [**b** c a]a (b) [c a b]b (c) [**a b c**]**c** (d) [a c b]b **374.** If **a**, **b**, **c**, **d** are coplanar vectors, then $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) =$ [MP PET 1998] (a) $|\mathbf{a} \times \mathbf{c}|^2$ (b) $|\mathbf{a} \times \mathbf{d}|^2$ (c) $|\mathbf{b} \times \mathbf{c}|^2$ (d) 0 **375.** If \cdot and \times represent dot product and cross product respectively then which of the following is meaningless (a) $(\mathbf{a} \times \mathbf{b}).(\mathbf{c} \times \mathbf{d})$ (b) $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d})$ (c) $(\mathbf{a} \cdot \mathbf{b}) (\mathbf{c} \times \mathbf{d})$ (d) $(\mathbf{a} \cdot \mathbf{b}) \times (\mathbf{c} \times \mathbf{d})$ 376. Two planes are perpendicular to one another. One of them contains vectors a and b and the other contains vectors **c** and **d**, then $(\mathbf{a} \times \mathbf{b}).(\mathbf{c} \times \mathbf{d})$ equals (a) 1 (b) O (d) [**b c d**] (C) [a b c] Advance Level **377. a**, **b**, **c**, **d** are any four vectors then $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d})$ is a vector (a) Perpendicular to **a**, **b**, **c**, **d** (b) Along the line of intersection of two planes, one containing **a**, **b** and the other containing **c**, **d** (c) Equally inclined to both $\mathbf{a} \times \mathbf{b}$ and $\mathbf{c} \times \mathbf{d}$ (d) None of these **378.** If **a**, **b**, **c** are non-coplanar non-zero vectors then $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{c}) + (\mathbf{b} \times \mathbf{c}) \times (\mathbf{b} \times \mathbf{a}) + (\mathbf{c} \times \mathbf{a}) \times (\mathbf{c} \times \mathbf{b})$ is equal to (a) $[a b c]^2 (a + b + c)$ (b) [a b c](a+b+c)(c) **0** (d) None of these **379.** If **a**, **b**, **c** are three non-coplanar non-zero vectors and **r** is any vector is space then $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{r} \times \mathbf{c}) + (\mathbf{b} \times \mathbf{c}) \times (\mathbf{r} \times \mathbf{a}) + (\mathbf{c} \times \mathbf{a}) \times (\mathbf{r} \times \mathbf{b})$ is equal to (a) 2[**a b c**]**r** (b) 3[**a b c**]**r** (c) [**a b c**]**r** (d) None of these **380.** If $\mathbf{a} \parallel \mathbf{b} \times \mathbf{c}$ then $(\mathbf{a} \times \mathbf{b}).(\mathbf{a} \times \mathbf{c})$ is equal to (a) $a^{2}(b.c)$ (b) $b^{2}(a.c)$ (c) $c^{2}(a.b)$ (d) None of these

381.	$(\mathbf{a} \times \mathbf{b}).(\mathbf{c} \times \mathbf{d})$ is equal to							
	(a) $\mathbf{a} \cdot \{\mathbf{b} \times (\mathbf{c} \times \mathbf{d})\}$	(b) $(a.c)(b.d) - (a.d)(b.c)$	(c) $\{(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}\}.\mathbf{d}$	(d) $(\mathbf{d} \times \mathbf{c}).(\mathbf{b} \times \mathbf{a})$				
382.	$(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{c})$.d equals							
	(a) $[a b c] (b.d)$	(b) [a b c](a . d)	(C) $[a b c](c.d)$	(d) None of these				
383.	$[(\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{c}) (\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})$	$(\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})$] is equal to						
	(a) [a b c] ²	(b) [a b c] ³	(c) [a b c] ⁴	(d) None of these				
384.	If a , b , c are coplanar vect	ors, then		[IIT 1989]				
	(a) $\begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{b} & \mathbf{c} & \mathbf{a} \\ \mathbf{c} & \mathbf{a} & \mathbf{b} \end{vmatrix} = 0$	(b) $\begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \end{vmatrix} = 0$	(c) $\begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{b} \end{vmatrix} = 0$	(d) $\begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{c} & \mathbf{c} \cdot \mathbf{b} \end{vmatrix} = 0$				
385.	For any three non-zero ve	ctors \mathbf{r}_1 , \mathbf{r}_2 and \mathbf{r}_3 , $\begin{vmatrix} \mathbf{r}_1 \cdot \mathbf{r}_1 & \mathbf{r}_1 \cdot \mathbf{r}_2 \\ \mathbf{r}_2 \cdot \mathbf{r}_1 & \mathbf{r}_2 \cdot \mathbf{r}_3 \\ \mathbf{r}_3 \cdot \mathbf{r}_1 & \mathbf{r}_3 \cdot \mathbf{r}_3 \end{vmatrix}$	$\begin{vmatrix} \mathbf{r}_1 \cdot \mathbf{r}_3 \\ \mathbf{r}_2 \cdot \mathbf{r}_3 \cdot \mathbf{r}_3 \\ \mathbf{r}_3 \cdot \mathbf{r}_3 \end{vmatrix} = 0.$ Then which of	the following is false [AMU 2000]				
	(a) All the three vectors a are linearly dependent	(b) All the three vectors						
	(c) This system of equation other	on has a non-trivial solution	(d) All the three vectors	are perpendicular to each				
386.	$[\mathbf{b} \ \mathbf{c} \ \mathbf{b} \times \mathbf{c}] + (\mathbf{b} \cdot \mathbf{c})^2$ is equal	to						
	(a) $ \mathbf{b} ^2 \mathbf{c} ^2$	(b) $(\mathbf{b} + \mathbf{c})^2$	(c) $ \mathbf{b} ^2 + \mathbf{c} ^2$	(d) None of these				
387.	If a , b , c are vectors such	that $[\mathbf{a} \mathbf{b} \mathbf{c}] = 4$, then $[\mathbf{a} \times \mathbf{b} \mathbf{b} \times \mathbf{b}]$	$\langle \mathbf{c} \ \mathbf{c} \times \mathbf{a}] =$	[AIEEE 2002]				
	(a) 16	(b) 64	(c) 4	(d) 8				
				Vector Equations				
		Basic Le	evel					
388.	If position vector of points	s A, B, C are respectively i, j, l	k and <i>AB</i> = <i>CX</i> , then position	n vector of point X is [MP PET 199				
	(a) $-i + j + k$	(b) $\mathbf{i} - \mathbf{j} + \mathbf{k}$	(c) $\mathbf{i} + \mathbf{j} - \mathbf{k}$	(d) $i + j + k$				
389.	If $a \cdot i = a \cdot (i + j) = a \cdot (i + j + k)$, then a =		[EAMCET 2002]				
	(a) i	(b) k	(c) j	(d) $\mathbf{i} + \mathbf{j} + \mathbf{k}$				
390.	If $\mathbf{a} = \mathbf{i} + \mathbf{j}$, $\mathbf{b} = 2\mathbf{j} - \mathbf{k}$ and \mathbf{i}	$\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}, \ \mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$, then -	$\frac{\mathbf{r}}{ \mathbf{r} }$ is equal to					
	(a) $\frac{1}{\sqrt{11}}(i+3j-k)$	(b) $\frac{1}{\sqrt{11}}$ (i - 3j + k)	(c) $\frac{1}{\sqrt{3}}(i-j+k)$	(d) None of these				

391.	. Given that the vectors a and b are non-collinear, the values of <i>x</i> and <i>y</i> for which the vector equality $2\mathbf{u} - \mathbf{v} = \mathbf{w}$ holds true if $\mathbf{u} = x\mathbf{a} + 2y\mathbf{b}$, $\mathbf{v} = -2y\mathbf{a} + 3x\mathbf{b}$, $\mathbf{w} = 4\mathbf{a} - 2\mathbf{b}$ are										
	(a) $x = \frac{4}{7}, y = \frac{6}{7}$	(b) $x = \frac{10}{7}, y = \frac{4}{7}$	(c) $x = \frac{8}{7}, y = \frac{2}{7}$	(d) $x = 2, y = 3$							
392.	If $\mathbf{a} \times \mathbf{b} = \mathbf{c} \times \mathbf{d}$ and $\mathbf{a} \times \mathbf{c} = \mathbf{b}$	$ imes \mathbf{d}$, then									
	(a) $(a - d) = \lambda(b - c)$	(b) $\mathbf{a} + \mathbf{d} = \lambda(\mathbf{b} + \mathbf{c})$	(c) $(a - b) = \lambda(c + d)$	(d) None of these							
393.	If $\mathbf{r} \cdot \mathbf{a} = \mathbf{r} \cdot \mathbf{b} = \mathbf{r} \cdot \mathbf{c} = 0$ where	e a, b, c are non-coplanar, the	n								
	(a) $\mathbf{r} \perp \mathbf{c} \times \mathbf{a}$	(b) $\mathbf{r} \perp \mathbf{a} \times \mathbf{b}$	(c) $\mathbf{r} \perp \mathbf{b} \times \mathbf{c}$	(d) $r = 0$							
394.	If i, j, k are unit orthonorr	nal vectors and a is a vector, i	if $\mathbf{a} \times \mathbf{r} = \mathbf{j}$, then $\mathbf{a} \cdot \mathbf{r}$ is	[EAMCET 1990]							
	(a) 0	(b) 1	(c) - 1	(d) Arbitrary scalar							
395.	$\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}$ where $(\mathbf{a} \neq 0)$ is	mplies that		[Kurukshetra CEE 1996]							
	(a) b = c		(b) a and b are parallel								
	(c) a, b, c are mutually pe	rpendicular	(d) a, b, c are coplanar								
396.	The scalars l and m such the scalars l and m such the scalars l and m such the scalar state l and m scalar state l	hat $l\mathbf{a} + m\mathbf{b} = \mathbf{c}$, where \mathbf{a}, \mathbf{b} and	d c are given vectors, are eq	ual to							
	(a) $l = \frac{(\mathbf{c} \times \mathbf{b}).(\mathbf{a} \times \mathbf{b})}{(\mathbf{a} \times \mathbf{b})^2}, m = \frac{(\mathbf{c} \times \mathbf{b})^2}{(\mathbf{a} \times \mathbf{b})^2}$	$\frac{(\mathbf{x} \times \mathbf{a}) \cdot (\mathbf{b} \times \mathbf{a})}{(\mathbf{b} \times \mathbf{a})^2}$	(b) $l = \frac{(\mathbf{c} \times \mathbf{b}).(\mathbf{a} \times \mathbf{b})}{(\mathbf{a} \times \mathbf{b})}, m = \frac{(\mathbf{c} \times \mathbf{a}).(\mathbf{b} \times \mathbf{a})}{(\mathbf{b} \times \mathbf{a})}$								
	(c) $l = \frac{(\mathbf{c} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{b})}{(\mathbf{a} \times \mathbf{b})^2}, m = \frac{(\mathbf{c} \times \mathbf{b})^2}{(\mathbf{a} \times \mathbf{b})^2}$	$\frac{(\mathbf{x} \cdot \mathbf{a}) \times (\mathbf{b} \times \mathbf{a})}{(\mathbf{b} \times \mathbf{a})}$	(d) None of these								
397.	If a is a vector perpend a . $(\mathbf{i}-2\mathbf{j}+\mathbf{k}) = -6$, then a =	icular to the vectors $\mathbf{b} = \mathbf{i} + \mathbf{i}$	$2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{c} = -2\mathbf{i} + 4\mathbf{j} + \mathbf{k}$	and satisfies the condition							
	(a) $5i + \frac{7}{2}j - 4k$	(b) $10i + 7j - 8k$	(c) $5i - \frac{7}{2}j + 4k$	(d) None of these							
398.	If $a = (1, -1, 1)$ and $c = (-$	1, – 1, 0), then the vector b sa	tisfying $\mathbf{a} \times \mathbf{b} = \mathbf{c}$ and $\mathbf{a} \cdot \mathbf{b} =$	1 is [MP PET 1989]							
	(a) (1, 0, 0)	(b) (0, 0, 1)	(c) (0, -1, 0)	(d) None of these							
399.	If a = (1, 1, 1), c = (0, 1, -	1) are two vectors and b is a v	vector such that $\mathbf{a} \times \mathbf{b} = \mathbf{c}$ and	ad $\mathbf{a} \cdot \mathbf{b} = 3$, then \mathbf{b} is equal to							
				[IIT 1985, 1991]							
	(a) $\left(\frac{2}{3}, \frac{2}{3}, \frac{5}{3}\right)$	(b) $\left(\frac{2}{3}, \frac{5}{3}, \frac{2}{3}\right)$	(c) (5, 2, 2)	(d) $\left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$							
400.	If $\mathbf{a} = 2\mathbf{i} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and	$\mathbf{d} \mathbf{c} = 4\mathbf{i} - 3\mathbf{j} + 7\mathbf{k}$. If $\mathbf{d} \times \mathbf{b} = \mathbf{c} \times \mathbf{b}$	and $\mathbf{d} \cdot \mathbf{a} = 0$, then \mathbf{d} will be	[IIT 1990]							
	(a) $i + 8j + 2k$	(b) $i - 8j + 2k$	(c) $-i + 8j - k$	(d) $-i - 8j + 2k$							
401.	If $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c}$, $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}$ and	d $\mathbf{a} \neq 0$, then		[Rajasthan PET 1990]							
	(a) b = o	(b) $\mathbf{b} \neq \mathbf{c}$	$(c) \mathbf{b} = \mathbf{c}$	(d) None of these							
402.	If $\mathbf{x} \cdot \mathbf{a} = 0$, $\mathbf{x} \cdot \mathbf{b} = 0$ and $\mathbf{x} \cdot \mathbf{c}$	c = 0 for some non-zero vecto	r x , then the true statement	is [IIT 1983; Karnataka CET 2002]							
	(a) [a b c] = 0	(b) $[a b c] \neq 0$	(c) [a b c] = 1	(d) None of these							

403.	A unit vector a makes an a	angle $\frac{\pi}{4}$ with <i>z</i> -axis. If $\mathbf{a} + \mathbf{i} + \mathbf{j}$	i is a unit vector, then a is e	equal to [IIT 1988]
	(a) $\frac{\mathbf{i}}{2} + \frac{\mathbf{j}}{2} + \frac{\mathbf{k}}{\sqrt{2}}$	(b) $\frac{\mathbf{i}}{2} + \frac{\mathbf{j}}{2} - \frac{\mathbf{k}}{\sqrt{2}}$	$(c) -\frac{\mathbf{i}}{2} - \frac{\mathbf{j}}{2} + \frac{\mathbf{k}}{\sqrt{2}}$	(d) None of these
404.	If $[3\mathbf{a} + 5\mathbf{b} \mathbf{c} \mathbf{d}] = p[\mathbf{a} \mathbf{c} \mathbf{d}] + q$	$[\mathbf{b} \mathbf{c} \mathbf{d}], \mathbf{then} p + q = 0$		
	(a) 8	(b) - 8	(c) 2	(d) o
		Advance	Level	
405.	Given the following simul	taneous equations for vectors	x and y	
	$\mathbf{x} + \mathbf{y} = \mathbf{a}$ (i) $\mathbf{x} \times \mathbf{y}$	$y = b$ (ii) $x \cdot a = 1$	(iii). Then x =,	y = [Roorkee 1994]
	(a) a , a - x	(b) a - b , b	(c) b , a – b	(d) None of these
406.	$\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}; \ \mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}; \ \mathbf{a}$	$\neq 0$; b $\neq 0$; a $\neq \lambda$ b , a is not per	rpendicular to b , then \mathbf{r} =	[EAMCET 1993]
	(a) a - b	(b) a +b	(c) $\mathbf{a} \times \mathbf{b} + \mathbf{a}$	(d) $\mathbf{a} \times \mathbf{b} + \mathbf{b}$
407.	Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i}$ \mathbf{c} is 30° , then $ (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} =$	$\mathbf{i} + \mathbf{j}$. If \mathbf{c} is a vector such that	$\mathbf{a} \cdot \mathbf{c} = \mathbf{c} , \mathbf{c} - \mathbf{a} = 2\sqrt{2}$ and	the angle between $(\mathbf{a} \times \mathbf{b})$ and [IIT 1999]
	(a) $\frac{2}{3}$	(b) $\frac{3}{2}$	(c) 2	(d) 3
408.	Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$	k and a unit vector c be copla	anar. If c is perpendicular to	o a , then c = [IIT 1999]
	(a) $\frac{1}{\sqrt{2}}(-\mathbf{j}+\mathbf{k})$	(b) $\frac{1}{\sqrt{3}}(-i-j-k)$	(c) $\frac{1}{\sqrt{5}}(i-2j)$	(d) $\frac{1}{\sqrt{3}}(\mathbf{i}-\mathbf{j}-\mathbf{k})$
409.	Let a and b be two non-co	llinear unit vectors. If $\mathbf{u} = \mathbf{a} - \mathbf{b}$	$(\mathbf{a} \cdot \mathbf{b})\mathbf{b}$ and $\mathbf{v} = \mathbf{a} \times \mathbf{b}$, then	v is [11T 1999]
	(a) u	(b) $ \mathbf{u} + \mathbf{u} . \mathbf{a} $	(c) $ u + u.b $	(d) $ u +u.(a+b)$
410.	Let a , b , c be three vector	s such that $\mathbf{a} \neq 0$ and $\mathbf{a} \times \mathbf{b} = 2$	$2\mathbf{a} \times \mathbf{c}, \mathbf{a} = \mathbf{c} = 1, \mathbf{b} = 4$ and	$\mathbf{d} \mid \mathbf{b} \times \mathbf{c} \mid = \sqrt{15}$. If $\mathbf{b} - 2\mathbf{c} = \lambda \mathbf{a}$,
	then λ equal to			[Orissa JEE 2004]
	(a) 1	(b) - 4	(c) 4	(d) - 2
411.	Unit vectors a , b and c are	e coplanar. A unit vector d is p	perpendicular to them. If (a	$(\mathbf{c} \times \mathbf{d}) = \frac{1}{6}\mathbf{i} - \frac{1}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}$ and
	the angle between a and b	is 30°, then c is		[Roorkee Qualifying 1998]
	(a) $\frac{(i-2j+2k)}{3}$	(b) $\frac{(2i+j-k)}{3}$	(c) $\frac{(-\mathbf{i}+2\mathbf{j}-2\mathbf{k})}{3}$	(d) $\frac{(-\mathbf{i}+2\mathbf{j}+\mathbf{k})}{3}$
412.	If vectors a , b , c satisfy th	e condition $ \mathbf{a} - \mathbf{c} \Rightarrow \mathbf{b} - \mathbf{c} $, th	then $(\mathbf{b} - \mathbf{a}) \cdot \left(\mathbf{c} - \frac{\mathbf{a} + \mathbf{b}}{2}\right)$ is equal	al to [AMU 1999]
	(a) 0	(b) - 1	(c) 1	(d) 2
413.	Let r be a vector perpendic	cular to $\mathbf{a} + \mathbf{b} + \mathbf{c}$, where $[\mathbf{a} \mathbf{b}]$	\mathbf{c}]= 2. If $\mathbf{r} = l(\mathbf{b} \times \mathbf{c}) + m(\mathbf{c} \times \mathbf{a}) + m(\mathbf{c} \times \mathbf{a})$	$-n(\mathbf{a} \times \mathbf{b})$, then $l+m+n$ is
	(a) 2	(b) 1	(c) 0	(d) None of these

- **414.** Let **a**, **b** and **c** be three vectors having magnitudes 1, 1 and 2 respectively. If $\mathbf{a} \times (\mathbf{a} \times \mathbf{c}) + \mathbf{b} = \mathbf{0}$, the acute angle between **a** and **c** is
 - (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{6}$ (d) None of these
- **415.** If $\mathbf{a} = \mathbf{i} + \mathbf{j} \mathbf{k}$, $\mathbf{b} = \mathbf{i} \mathbf{j} + \mathbf{k}$ and **c** is a unit vector perpendicular to the vector **a** and coplanar with **a** and **b**, then a unit vector **d** perpendicular to both **a** and **c** is
 - (a) $\frac{1}{\sqrt{6}}(2i j + k)$ (b) $\frac{1}{\sqrt{2}}(j + k)$ (c) $\frac{1}{\sqrt{2}}(i + j)$ (d) $\frac{1}{\sqrt{2}}(i + k)$
- **416.** If **a** is perpendicular to **b** and **r** is a non-zero vector such that $p\mathbf{r} + (\mathbf{r}, \mathbf{b})\mathbf{a} = \mathbf{c}$, then $\mathbf{r} =$

(a)
$$\frac{\mathbf{c}}{p} - \frac{(\mathbf{b} \cdot \mathbf{c})\mathbf{a}}{p^2}$$
 (b) $\frac{\mathbf{a}}{p} - \frac{(\mathbf{c} \cdot \mathbf{a})\mathbf{b}}{p^2}$ (c) $\frac{\mathbf{b}}{p} - \frac{(\mathbf{a} \cdot \mathbf{b})\mathbf{c}}{p^2}$ (d) $\frac{\mathbf{c}}{p^2} - \frac{(\mathbf{b} \cdot \mathbf{c})\mathbf{a}}{p}$

417. Given three vectors **a**, **b**, **c** such that $\mathbf{b} \cdot \mathbf{c} = 3$, $\mathbf{a} \cdot \mathbf{c} = \frac{1}{3}$. The vector **r** which satisfies $\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}$ and $\mathbf{r} \cdot \mathbf{c} = 0$ is

- (a) b + 9a (b) a + 9b (c) b 9a (d) None of these
- **418.** If $\mathbf{a} = \mathbf{i} + \mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} \mathbf{k}$ are two vectors, then the point of intersection of two lines $\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}$ and $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$ is

[IIT 1992; Rajasthan PET 2000]

(a) i+j-k (b) i-j+k (c) 3i+j-k (d) 3i-j+k

419. A line passes through the points whose position vectors are $\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{i} - 3\mathbf{j} + \mathbf{k}$. The position vector of a point on it at a unit distance from the first point is

- (a) $\frac{1}{5}(5i+j-7k)$ (b) $\frac{1}{5}(5i+9j-13k)$ (c) i-4j+3k (d) None of these
- **420.** The projection of the vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$ on the line whose vector equation is $\mathbf{r} = (3 + t)\mathbf{i} + (2t 1)\mathbf{j} + 3t\mathbf{k}$, *t* being the scalar parameter, is
 - (a) $\frac{1}{\sqrt{14}}$ (b) 6 (c) $\frac{6}{\sqrt{14}}$ (d) None of these

421. If $\mathbf{a} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \times (\mathbf{b} \times \mathbf{c})$ and $\mathbf{a} \cdot \mathbf{b} \neq 0$, then $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$ is equal to

422. If $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ and $\mathbf{b} = \mathbf{c} \times \mathbf{a}$ then

(a)
$$a \cdot b = c^2$$
 (b) $c \cdot a = b^2$ (c) $a \perp b$ (d) $a \parallel b \times c$

423. If **r** satisfies the equation $\mathbf{r} \times (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = \mathbf{i} - \mathbf{k}$, then for any scalar *m*, **r** is equal to

(a) i + m(i + 2j + k)(b) j + m(i + 2j + k)(c) k + m(i + 2j + k)(d) i - k + m(i + 2j + k)

424. If $\mathbf{a} = (-1, 1, 1)$ and $\mathbf{b} = (2, 0, 1)$, then the vector \vec{X} satisfying the conditions

(i) That it is coplanar with **a** and **b** (ii) That it is perpendicular to **b** (iii) That $\mathbf{a} \cdot \vec{X} = 7$ is

(a) $-3i + 4j + 6k$	(b) $-\frac{3}{2}i + \frac{5}{2}j + 3k$	(c) $3i + 16j - 6k$	(d) None of these
---------------------	---	---------------------	-------------------

425. If the non-zero vectors **a** and **b** are perpendicular to each other, then the solution of the equation, $\mathbf{r} \times \mathbf{a} = \mathbf{b}$ is given by

(a)
$$\mathbf{r} = x\mathbf{a} + \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a}|^2}$$
 (b) $\mathbf{r} = x\mathbf{b} - \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{b}|^2}$

(c) $\mathbf{r} = x(\mathbf{a} \times \mathbf{b})$ (d) $\mathbf{r} = x(\mathbf{b} \times \mathbf{a})$

Assignment (Basic and Advance level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	b	a	d	d	a	d	d	с	с	b	a	a	b	с	a	b	b	с	d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	b	d	а	с	b	d	b	d	b	b	b	с	с	b	d	с	d	с	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
d	с	с	с	а	с	с	d	а	с	с	а	с	с	b	а	a	с	с	a,c
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a,d	a	d	a	с	а	b	с	a	b	с	b	а	b	b	b	b	b	а	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
с	b	а	а	d	b	а	a	b	с	с	а	с	b	с	с	d	d	с	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
с	с	а	а	a,b,c, d	а	а	d	b	d	с	b	d	а	а	с	b	а	b	с
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
а	b	a	с	a	d	d	b	с	d	с	а	а	d	с	с	с	с	d	с
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
а	с	d	d	d	a	a	a	b	с	с	с	с	а	а	с	d	с	b	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	с	с	с	d	d	a	с	a,c, d	b	a	a	b	b	b	d	a	d	b	с
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
с	d	с	b	d	a	с	b	d	с	b	b	b	с	а	a	b	b	а	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
d	с	a	а	а	с	с	с	b	а	b	а	с	с	с	b	a	с	с	d
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
с	a	d	a	d	с	b	a	с	а	с	с	a	с	b	b	b	b	а	d

318	318 Vector Algebra																		
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
d	С	a	С	b	a	b	b	с	С	b	с	a,b, c	b	С	b	b	С	b	С
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
d	a	a	d	с	с	с	a	d	d	b	с	a	с	d	с	b	a	b	b
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
d	a	b	с	a	b	d	d	с	с	с	b	b	с	d	a	с	d	с	с
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
a	с	d	с	d	b	d	a	a	с	d	a	d	a	с	b	с	b	a	a
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
с	a	b,c	a	d	b,d	с	с	b	d	a	b	a	b	d	d	a	d	a	b
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
d	b	b	a	b	b	b	b	a	a	a	b	a,b	b	b	d	с	с	d	b
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
a	b	d	с	a	с	a	a	d	a	a,b, c	d	с	d	d	b	b,c	b	a	a
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
a,b,c, d	b	с	b	a	a	a	a	а	a	b	b	d	d	a	a	a	b	d	d
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420
с	a	с	a	d	b	b	a	a,c	b,c	a,c	a	с	с	a	a	с	с	a,b	с
421	422	423	424	425															
a	c,d	b	b	a															