Introduction to Euclid's Geometry

Solve each of the following question using appropriate Euclid's axiom:

- Two salesmen make equal sales during the month of August. In September, each salesman doubles his sale of the month of August. Compare their sales in September.
- 2) It is known that x + y = 10 and that x = z. Show that z + y = 10?
- 3) Look at the Fig. 5.3. Show that length AH > sum of lengths of AB + BC + CD.

- 4) In the Fig.5.4, we have
 - AB = BC, BX = BY. Show that AX = CY.
- 5) In the Fig.5.5, we have X and Y are the mid-points of AC and BC and AX = CY. Show that AC = BC.

6) In the Fig.5.6, we have

$$BX = \frac{1}{2}AB$$

$$BY = \frac{1}{2} BC$$
 and $AB = BC$. Show that

$$BX = BY$$
.

7) In the Fig.5.7, we have

$$\angle 1 = \angle 2$$
, $\angle 2 = \angle 3$. Show that $\angle 1 = \angle 3$.

8) In the Fig. 5.8, we have

$$\angle 1 = \angle 3$$
 and $\angle 2 = \angle 4$. Show that $\angle A = \angle C$.

Fig. 5.8

9) In the Fig. 5.9, we have

$$\angle$$
ABC = \angle ACB, \angle 3 = \angle 4. Show that \angle 1 = \angle 2.

10) In the Fig. 5.10, we have

$$AC = DC$$
, $CB = CE$. Show that $AB = DE$.

Fig. 5.10

11) In the Fig. 5.11, if $OX = \frac{1}{2}XY$, $PX = \frac{1}{2}XZ$ and OX = PX, show that XY = XZ.

- (i) AB = BC, M is the mid-point of AB and N is the mid-point of BC. Show that AM = NC.
- (ii) BM = BN, M is the mid-point of AB and N is the mid-point of BC. Show that AB = BC.

Write whether the following statements are True or False? Justify your answer:

- Euclidean geometry is valid only for curved surfaces.
- The boundaries of the solids are curves.
- 15) The edges of a surface are curves.
- 16) The things which are double of the same thing are equal to one another.
- 17) If a quantity B is a part of another quantity A, then A can be written as the sum of B and some third quantity C.
- 18) The statements that are proved are called axioms.

"For every line *l* and for every point P not lying on a given line *l*, there exists a unique line *m* passing through P and parallel to *l*" is known as Playfair's axiom.

- 19) Two distinct intersecting lines cannot be parallel to the same line.
- 20) Attempts to prove Euclid's fifth postulate using the other postulates and axioms led to the discovery of several other geometries.

21) Read the following statement:

An equilateral triangle is a polygon made up of three line segments out of which two line segments are equal to the third one and all its angles are 60° each.

Define the terms used in this definition which you feel necessary. Are there any undefined terms in this? Can you justify that all sides and all angles are equal in a equilateral triangle.

22) Study the following statement:

"Two intersecting lines cannot be perpendicular to the same line".

Check whether it is an equivalent version to the Euclid's fifth postulate. [Hint: Identify the two intersecting lines l and m and the line n in the above statement.]

- 23) Read the following statements which are taken as axioms:
 - If a transversal intersects two parallel lines, then corresponding angles are not necessarily equal.
 - If a transversal intersect two parallel lines, then alternate interior angles are equal.

Is this system of axioms consistent? Justify your answer.

- 24) Read the following two statements which are taken as axioms:
 - If two lines intersect each other, then the vertically opposite angles are not equal.
 - If a ray stands on a line, then the sum of two adjacent angles so formed is equal to 180°.

Is this system of axioms consistent? Justify your answer.

- 25) Read the following axioms:
 - (i) Things which are equal to the same thing are equal to one another.
 - (ii) If equals are added to equals, the wholes are equal.
 - (iii) Things which are double of the same thing are equal to one another.

Check whether the given system of axioms is consistent or inconsistent.