
Pointer 247

CHAPTER-11

POINTERS

Objectives:

 To understand the concepts of pointers.
 Usage of pointers.
 The role of pointers in array, strings, structures.
 Concepts of dynamic and static allocation of memory.
 Relationship between pointers and functions.
 Relationship between pointers and objects.

Pointer248

I11.1ntroduction:

When writing a program, you declare the necessary variables that you will
need in order to accomplish your work. When declaring variables, you are simply
asking the computer to reserve a set amount of space in its memory for a particular
object you want to use. When you declare a variable, the computer reserves an
amount of space for that variable, and uses the variable’s name to refer to that
memory space. This will allow you to store the value of that variable, in that
space. Indeed, the computer refers to that space using an address. Therefore,
everything you declare has an address, just like the address of your house. You
can find out what address a particular variable is using.

Pointers are a powerful concept in C++ and have the following advantages.

 It is possible to write efficient programs.

 Memory is utilized properly.

 Dynamically allocate & deallocate memory.

 Easy to deal with hardware components.

 Establishes communication between program and data.

I12.Memory representation of pointers.

Before understanding the concept of pointers it is necessary to know the
memory organization. Memory is organized as an
array of bytes. A byte is basic storage and
accessible unit in memory. Each byte is identifiable
by a unique number called address. Suppose we
have 1KB of memory, since 1KB=1024 bytes, the
memory can be viewed as an array of locations of
size 1024 with the subscript range (0 to 1023). 0
represents the address of first location; 1
represents the address of second location; and so
on 1023 represents the address of last location.

We know that variables are declared before they are used in a program.
Declaration of a variable tells the compiler to perform the following.

 Allocate a location in memory. The number of location depends on data
type.

 Establish relation between address of the location and the name of the
variable.

Consider the declaration, int num;

0
1
2
3
—

1022
1023

Address Location

Pointer 249

This declaration tells the compiler to reserve a location in memory. We know
that the size of int type is two byte. So the location would be two bytes wide.

Address num

100 15

101

In the above figure, num is the variable that stores the value 15 and address
of num is 100. The address of a variable is also an unsigned integer number. It
can also be retrieved and stored in another variable.

Pointer:

A pointer is a variable that holds a memory address, usually the location
of another variable in memory.

11.3 Declaration and Initialization of pointer:

The general form is, data-type *variable_name;

data-type is any valid data type supported by C++ or any user defined type and
variable_name is the name of pointer variable. The presence of * indicates that it
is a pointer variable.

Defining a Pointer Variable:

int *iptr; iptr is declared to be pointer variable of int type.
float *fptr; fptr is declared to be pointer variable of float type.
char *cptr; cptr is declared to be pointer variable of character type.

Pointer Variables Assignment:

We can assign the address of a variable to a pointer variable as follows:

 int num = 25;
 int *iptr;
 iptr = #

In the above example, the variable num (=25) is assigned to pointer variable iptr.

11.4 The address-of operator (&):

& is a unary operator that returns the memory address of its operand. For
example, if var is an integer variable, then &var is its address. This operator has
the same precedence and right-to-left associativity as the other unary operators.

You should read & operator as “the address-of” which means &var will be
read as “the address of var”.

Example: int num = 25;

Pointer250

 int *iptr;
 iptr = # // The Address of Operator &

11.5 Pointer operator or Indirection Operator (*):

The second operator is Indirection Operator *, and it is the complement of
&. It is a unary operator that returns the value of the variable located at the
address specified by its operand.

Example:

int num = 25;
int *iptr; //Pointer operator (Indirection Operator *):
iptr = #

The following program executes the above two operations

#include <iostream>
#include <iomanip.h>
void main()
{

int var;
 int *ptr;

int val;

var = 3000;
ptr = &var;
val = *ptr;

cout << “Value of var: “ << var << endl;
 cout << “Value of ptr: “ << ptr << endl;

cout << “Value of val: “ << val << endl;

 }

Value of var: 3000
Value of ptr: 0xbff64494
Value of val: 3000

11.6 Pointer Arithmetic:

As you understood, pointer is an address which is a numeric value.
Therefore, you can perform arithmetic operations on a pointer just as you can
on a numeric value.

There are four arithmetic operators that can be used on pointers: ++, —, +, and
. (dot operator).

Following operations can be performed on pointers.

 We can add an integer value to a pointer.

 We can subtract an integer value from a pointer,

Pointer 251

 We can compare two pointers, if they point the elements of the same array

 We can subtract one pointer from another pointer if both point to the
same array.

 We can assign one pointer to another pointer provided both are of same
type.

Following operations cannot be performed on pointers.

 Addition of two pointers.

 Subtraction of one pointer from another pointer when they do not point to
the same array.

 Multiplication of two pointers.

 Division of two pointers.

Example:

a. Suppose if p is an integer pointer then p++ will increment p by 2 bytes.
Each time a pointer is incremented by 1, it points to the memory location
of the next element of its base type.

b. Suppose if p is a char pointer then p++ will incremented p by 1-byte.

c. p-- each time a pointer is decremented by 1, it points to the memory
location of the previous element of its base type.

d. p=p + integer value.
p=p - integer value.

11.7 Pointers and Arrays:

There is a close relationship between arrays and pointers in C++.

Consider the declaration. int a[6];

The elements of the array can be referred to in the program as a[0], a[1],
…. , a[9]. When the program is compiled, the compiler does not save the addresses

of all the elements, but only the address of the
first element, a[0]. When the program needs to
access any element, a[i], it calculates its address
by adding i units to the address of a[0]. The
number of bytes in each “unit” is, in our example,
equal to the sizeof(int). i.e., 2. In general, it is equal

to the number of bytes required to store an element of the array.

The address of a[0] can be explicitly obtained using the & (address-of)
operator. i.e., &a[0]. Since the data type of a[0] is int, the data type of &a[0] is, as
usual, int* (pointer to int).

A[0] A[1] A[2] A[3] A[4]

Pointer252

C++ allows us to use the name of the array a, without any subscript, as
another name for &a[0].

The following example shows the relationship between pointer and one-
dimensional array.

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
void main()
{

int a[10], i, n;

cout<<"How many elements? ";
cin>>n;
cout<<"Enter array elements: ";
for(i=0; i<n; i++)

cin>>*(a+i);

cout<<"The given array elements are ";
for(i=0; i<n; i++)

cout<<setw(4)<<*(a+i);

getch();

}

How many elements? 5
Enter array elements: 1 2 3 4 5
The given array elements are 1 2 3 4 5

11.8 Array of pointers:

As we know that there is an array of integers, array of float, similarly,
there can be an array of pointers. Since we know that pointer is a variable which
stores address of another variable, an array of pointers means that it is a collection
of addresses.

The example below shows the array of pointers.

int *iptr[5];
int i=10, j=20, k=30, l=40, m=50;

iptr[0] = &i; *iptr[0] = 10;
iptr[1] = &j; *iptr[1] = 20;
iptr[2] = &k; *iptr[2] = 30;
iptr[3] = &l; *iptr[3] = 40;
iptr[4] = &m; *iptr[4] = 50;

Pointer 253

11.9 Pointers and Strings:

We have already discussed that there is a close relationship between array
and pointers. Similarly there is also a close relationship between strings and
pointers in C++. String is sequence of characters ends with null (‘\0’) character.
Suppose we have declared an array of 5 elements of the data type character.

char s[5];
char *cptr;
cptr = s;

Here, s is array of characters (strings). cptr is character pointer to string. s
also represents character pointer to string.

The elements of the array can be referred to in the program as s[0], s[1],
…. , s[5]. When the program is compiled, the compiler does not save the addresses
of all the elements, but only the name of the array. Here, s gives the base
address of the array. i.e., the address of the first character in the string variable
and hence can be regarded as pointer to character. Since we know that string
always end with null character, it is enough for us to know the starting address
of a string to be able to access entire string. The number of bytes allocated for a
string is determined by the number of characters within string.

Let us now consider a string constant “HELLO”. s is pointer to the
memory location where ‘H’ is stored. Here, s can be viewed as a character array
of size 6, the only difference being that a can be reassigned another memory
location.

 char s[5] = “Hello”;

Here, s gives address of ‘H’.
*a gives ‘H’
a[0] gives ‘H’
a++ gives address of ‘E’
*a++ gives ‘E'

11.10 Pointers as Function Parameters.

A pointer can be a parameter. It works like a reference parameter to allow
change to argument from within the function.

 void swap(int *x, int *y)
 {

int temp;
temp = *x;

 *x = *y;
 *y = temp;

}
swap(&num1, &num2);

H \0
s[0] s[5]

E
s[1]

L
s[2]

L
s[3]

O
s[4]

Pointer254

11.11 Pointers and Structures

We can create pointers to structure variables.

 struct student
{

int rollno;
float fees;

};

student s;
student *sp = &s;
(*sp).rollno = 104;

The above statements can be written using the operator -> as
ptr -> member:
sp -> rollno = 104;

11.12. Memory allocation of pointers (Dynamic and Static)

The compiler allocates the required memory space for a declared variable.
For example, integer variable it reserves 2- bytes, float variable it reserves 4-
bytes, character variable it reserves 1-byte and so on. Therefore every data and
instruction that is being executed must be allocated some space in the main or
internal memory. Memory allocation is done in two ways:

 Static allocation of memory
 Dynamic allocation of memory

11.12.1 Static allocation of memory

In the static memory allocation, the amount of memory to be allocated is
predicted and pre known. This memory is allocated during the compilation itself.
All the variables declared normally, are allocated memory statically.

Example: int a; //Allocates 2 bytes of memory space during the
//compilation time.

11.12.2 Dynamic allocation of memory (new and delete)

In the dynamic memory allocation, the amount of memory to be allocated
is not known. This memory is allocated during run-time as and when required.

C++ supports dynamic allocation and deallocation of objects using the
new and delete operators. These operators allocate memory for objects from a
pool called the free store. The new operator calls the special function operator
new and the delete operator calls the special function operator delete.

We can allocate storage for a variable while program is running by using
new operator. Dynamic allocation is perhaps the key to pointers. It is used to
allocate memory without having to define variables and then make pointers

Pointer 255

point to them. Although the concept may appear confusing, it is really simple.
The following codes demonstrate how to allocate memory for different variables.

To allocate memory of type integer, int *iptr = new int;

int *pNumber;
pNumber = new int;

The first line declares the pointer, pNumber. The second line then allocates
memory for an integer and then makes pNumber point to this new memory.
Here is another example, this time using a double:

double *pDouble;
pDouble = new double;

To allocate memory for array, double *dptr = new double[25];

To allocate dynamic structure variables or objects,

student sp = new student; //student is tag name of structure

The formula is the same every time, so you can’t really fail with this bit.
What is different about dynamic allocation, however, is that the memory you
allocate is not deleted when the function returns, or when execution leaves the
current block. So, if we rewrite the above example using dynamic allocation, we
can see that it works fine now:

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
int *p;
void SomeFunction()
{
 // make p pointer point to a new integer
 p = new int;
 *p = 25;
}

void main()
{
 SomeFunction(); // make pPointer point to something
 cout<<"Value of *p: "<<*p;
}

When SomeFunction is called, it allocates some memory and makes p
point to it. This time, when the function returns, the new memory is left intact,
so p still points to something useful.

Output Value of *p: 25

Pointer256

delete pointer:

Memory that is dynamically allocated using the NEW operator can be freed using
delete operator. THe delete operator calls the operator delete functio, which
frees memory back to the avalable pool.

Releasing Dynamic Memory

Use delete function to free dynamic memory as: delete iptr;

To free dynamic array memory, delete [] dptr;

To free dynamic structure, delete student;

Static allocation of memory Dynamic allocation of memory

11.13 Free store(heap memory)

Free store is a pool of unallocated memory heap given to a program that is
used by the program for dynamic allocation during execution.

11.14 Memory Leak

If the objects, that are allocated memory dynamically, are not deleted
using delete, the memory block remains occupied even at the end of the program.
Such memory blocks are known as orphaned memory blocks. These orphaned
memory blocks when increase in number, bring adverse effect on the system.
This situation is called memory leak.

11.15 Self Referential Structure

The self referential structures are structures that include an element that
is a pointer to another structure of the same type.

Memory is allocated before the
execution of the program begins.
(During Compilation)

No memory allocation or deallocation
actions are performed during
Execution.

Variables remain permanently
allocated.

Implemented using stacks and
heaps.

Memory is allocated during the
execution of the program.

Memory Bindings are established
and destroyed during the Execution.

Allocated only when program unit is
active.

Implemented using data segments.

Pointer 257

struct node
{

 i n t d a t a ;

 n o d e * n e x t ;

}

11.16 Pointers and functions

A function is named unit of a group of program statements designed to
perform a specific task and returns single value. There is a close relationship
between pointers and functions. We know that a function uses arguments in
order to carry its assignment. The arguments are usually provided to the function.
When necessary, a function also declares its own variable to get the desired
return value. Like other variables, pointers can be provided to a function, with
just a few rules. When declaring a function that takes a pointer as an argument,
make sure you use the asterisk for each argument. When calling the function,
use the references to the variables. The function will perform its assignment on
the referenced variable(s). After the function has performed its assignment, the
changed value(s) of the argument(s) will be preserved and given to the calling
function. To pass pointer arguments, use the asterisks when declaring the
function and use the ampersand (&) when calling the function.

Invoking of function can be done by following two methods:

 By passing the references.

 By passing the pointers.

11.16.1. Invoking functions by passing the references

When parameters are passed to the functions by reference, the formal
parameters become reference (or aliases) to the actual parameters in the calling
function. This means that invoking the called function does not create its own
copy of original values, rather than, it refers to the original values by different
names i.e., their references. Thus the called function works with the original
data and any change in the values gets reflected to the data.

The call by reference method is useful in situation where the values of the
original variable are to be changed using a function. Say, for instance a function
is to be invoked that swap two variables that are passed by references. The
following example program explains it.

Program to swap the values of two variables using pass-by-reference
method:

#include <iostream.h>
#include <conio.h>
#include <iomanip.h>
void main()
{

Pointer258

void swap(int &, int &);
int a=10, b=30;

cout<<“Original values: “;
cout<<“a = “<<a<<“ and b = “<<b<<endl;
swap(a,b);
cout<<“values after swapping: “;
cout<<“a = “<<a<<“ and b = “<<b<<endl;
getch();

}
void swap(int &x , int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}
void swap(int &x , int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}

Original values: a = 10 and b = 30
Values after swapping: a = 30 and b = 10

In the above program the function swap() creates reference x for first
incoming integer and reference y for second incoming integer. Thus the original
values are worked with, but by using the names x and y. Notice that the, function
call statement is simple one. i.e., swap(a, b);

But the function declaration (prototype) and definition include the
reference symbol &. The function declaration and definition, both start as: void
swap(int &x , int &y)

Therefore, by passing the references the function works with the original
values (i.e., the same memory area in which original values are stored) but in
case alias names to refer to them. Thus the values are not duplicated. The same
happens when pointers are passed but in different manner.

11.16.2. Invoking functions by passing the pointers

When the pointers are passed to the function, the addresses of actual
arguments in the calling function are copied into formal arguments of the called
function. This means that using formal arguments (the addresses of original

Pointer 259

values) in the called function, we can make changes into the actual arguments
of the calling function, therefore here also, the called function does not create
own copy of original values rather, it refers to the original values by the addresses(
passed through pointers) it receives.

To swap two values, we have seen how the passing references method
works. The same can be achieved by passing addresses through pointers. The
following example program explains it.

Program to swap values of two variables using pass by references method:

#include <iostream.h>
#include <conio.h>
void main()
{

void swap(int *x int *y);
int a=10,b=30;

cout<<“Original values: “;
cout<<“a = “<<a<<“ and b=”<<b<<endl;

swap(&a, &b);
cout<<“values after swapping: “;
cout<<“a = “<<a<<“ and b = “<<b<<endl;
getch();

}

void swap(int *x , int *y)
{

int temp;

temp= *x;
*x = *y;
*y = *temp;

}

Original values: a = 10 and b = 30
Values after swapping: a = 30 and b = 10

The above program invokes swap() by passing addresses of a and b. i.e.,
swap(&a , &b); Here, &a and &b pass the addresses of a and b respectively.

The function definition receives the incoming addresses in corresponding pointers
x and y. Notice the function declaration.

void swap(int *x, int *y);

Thus, we have seen that using call-by-reference, in both ways, we are able
to return more than one value at a time (we sent back changed values of two

Pointer260

variables a and b), which are not possible using ordinary return statement. A
return statement can return only one value from a function at a time.

11.17 Memory Comes, Memory Goes

There’s always a complication and this one could become quite serious,
although it’s very easy to remedy. The problem is that although the memory
that you allocate using dynamic allocation is conveniently left intact, it actually
never gets deleted automatically. That is, the memory will stay allocated until
you tell the computer that you’ve finished with it. The upshot of this is that if
you don’t tell the computer that you’ve finished with the memory, it will be
wasting space that other applications or other parts of your application could be
using. This eventually will lead to a system crash through all the memory being
used up, so it’s pretty important, freeing the memory when you’ve finished with
it is very simple:

11.18 Pointers and objects

As we know that there is pointer to variables, pointer to strings, pointer to
structures, similarly there is pointer to objects. The pointers pointing to objects
are referred to as object pointers.

Declaration of pointers to objects

class_name *object-pointer;

Here, class_name is the name of an already defined class and object-
pointer is the pointer to an object of this classtype.

Example: employee *eptr;

Here, employee is an already defined class. When accessing members of a
class using an object pointer, the arrow operator (->) is used instead of dot (.)
operator.

The following program illustrates how to access an object given a pointer to it.

#include<iostream.h>
#include <iomanip.h>
#include<conio.h>
class emp
{

private:
int empno;
char name[20];
float salary;

public:
void get();
void display();

Pointer 261

};

void emp::get()
{

cout<<“Enter employee number: “;
cin>>empno;
cout<<“Enter employee name: “;
cin>>name;
cout<<“Enter employee salary: “;
cin>>salary;

}
void emp::display()
{

cout<<“Employee number: “<<empno<<endl;
cout<<“Employee name: “<<name<<endl;
cout<<“Employee salary: “<<salary;

}
void main()

{

emp e, *ep;

ep = &e;
clrscr();
ep->get();
ep->display();
getch();

}

Enter employee number: 2505
Enter employee name: Harshini
Enter employee salary: 6500.00
Employee number: 2505
Employee name: Harshini
Employee salary: 6500.00

The given program is self referential. Here, *ep is pointer to an object.

11.19 this pointer
Every object in C++ has access to its own address through an important

pointer called this pointer. The this pointer is an implicit parameter to all member
functions. Therefore, inside a member function, this may be used to refer to the
invoking object.

Pointer262

Friend functions do not have a this pointer, because friends are not
members of a class. Only member functions have this pointer.

Points to Remember:

 Pointers are a powerful concept in C++ and have following advantages.

 It is possible to write efficient programs
 Memory is utilized properly
 Dynamically allocate & de allocate-memory
 Easy to deal with hardware components
 Establishes communication between program and data

 A pointer is a variable that holds a memory address, usually the location
of another variable in memory.

 Following operations that can be performed over pointers.

 We can add an integer value to a pointer.
 We can subtract an integer value from a pointer,
 We can compare two pointers. if they point the elements of the

same array
 We can subtract one pointer from another pointer if both point to

the same array.

 Following operations that cannot be performed over pointers.

 Addition of two pointers
 Subtraction of one pointer from another pointer when they do not

point to the same array
 Multiplication of two pointers
 Division of two pointers

 There is a close relationship between arrays and pointers in C++.

 C++ allows us to use the name of the array a , without any subscript, as
another name for &a[0].

 Array of pointers means that it is a collection of address.

 There is also a close relationship between strings and pointers in C++.

 A pointer can be a parameter. It works like a reference parameter to allow
change to argument from within function

 We can create pointers to structure variables

 In the static memory allocation, the amount of memory to be allocated is
predicted and pre known.

Pointer 263

 In the dynamic memory allocation, the amount of memory to be allocated
is not known. This memory is allocated during run-time as and when
required.

 We can allocate storage for a variable while program is running by using
new operator.

 Use delete to free dynamic memory.

 Free store is a pool of unallocated heap memory given to a program that is
used by the program for dynamic allocation during execution.

 Memory leak: If the objects, that are allocated memory dynamically, are
not deleted using delete, the memory block remains occupied even at the
end of the program. Such memory blocks are known as orphaned memory
blocks. These orphaned memory blocks when increase in number, bring
adverse effect on the system. This situation is called memory leak

 The self referential structures are structures that include an element that
is a pointer to another structure of the same type.

 There is a close relationship between pointers and functions. We know
that a function uses arguments in order to carry its assignment.

 Invoking of function can be done by following two methods.

 By passing the references

 By passing the pointers

 The pointers pointing to objects are referred to as object pointers.

 Every object in C++ has access to its own address through an important
pointer called this pointer.

Pointer264

One marks questions.
1. What do you mean by pointer?.

2. Mention any one advantage of pointer?

3. What is address operator?

4. What is pointer operator?

5. How to declare pointer?

6. How to initialize pointer?

7. What is static memory?

8. What is dynamic memory?

9. What is free store?

10. Write a definition for a variable of type pointer to float.

11. What is new operator in C++?

12. What is delete operator in C++?

Two marks questions.
1. What do you mean by pointer? Explain with example.

2. Mention any 2 advantages of pointer?

3. What is address operator? Give example.

4. What is pointer operator? Give example.

5. How to declare pointer? Give example.

6. How to initialize pointer? Give example.

7 . What is static memory?

8. What is dynamic memory?

9. What is free store?

10. Illustrate the use of “self referential structures” with the

help of example.

11. What is new operator in C++?

12 What is delete operator in C++?

13. What is array of pointers? Give example.

Review Questions

Pointer 265

Three marks questions:
1. What are the advantages of pointer?

2. How dynamic memory allocation is different from static memory

 allocation.

3. What is new operator in C++? Give example.

4. What is delete operator in C++? Give example.

5. Show the general form new and delete operator in C++?

6. What is array of pointers? Give example.

7. What is the relationship between array and pointers? Give example.

8 What is the relationship between string and pointers? Give example.

9. What is the relationship between structures and pointers? Give

example.

10. What is the relationship between object and pointers? Give example.

Five marks questions:
1. Show the general form new and delete operator in C++?

2. What is the relationship between object and pointers? Give example.

3. Explain with example by passing the reference.

4. Explain with example by passing the pointers.
